CS 188: Artificial Intelligence

Search

Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

Announcements

HWO (optional) is due Thursday, June 26, 11:59 PM PT
Project O (optional) is due Friday, June 27, 11:59 PM PT
HW1 is due Tuesday, July 1, 11:59 PM PT

HW?2 is due Thursday, July 3, 11:59 PM PT

Project 1 is due Friday, July 4, 11:59 PM PT

Today

= Agents that Plan Ahead

s Search Problems

a Uninformed Search Methods

= Depth-First Search
» Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

s Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE: 0

Planning Agents

= Planning agents:
s Ask “what if”

= Decisions based on (hypothesized) consequences
of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Mastermind

SCORE: 0

Video of Demo Replanning

SCORE: 0

Search Problems

Search Problems

= A search problem consists of:

e |- L [.[.1.[

. ”N”, 1.0
= A successor function / u
(with actions, costs) !

i
HEII’ 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
m Cities
s Successor function:

= Roads: Go to adjacent city with
cost = distance

s Start state:
= Arad

= Goal test:

= |s state == Bucharest?

Eforie

[]Giurgiu

= Solution?

What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

s Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:

= Agent positions: 120
= Food count: 30

= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(230)x(122)x4
= States for pathing?
120
= States for eat-all-dots?
120x(230)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations

= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations

= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

Search Trees

! _ This is now / start
“N”, 1.0 “E”, 1.0
/ \.
u ! _ Possible futures
T T

= Asearch tree:

= A “what if” tree of plans and their outcomes

= The start state is the root node

= Children correspond to successors

= Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

o F
=

_ /

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

/7 \
e h r
\ / \ I
r p q f
I ! 7\
f q c G
1\ !
c G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

S
a/ \b

b/\G 24\6

! \G é\G
/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

"] Oradea

Sibiu 99 Fagaras

M} Vaslui

Hirsova

86

Dobreta [

Eforie

Searching with a Search Tree

Arad

Si

CArad > CFagaras > COradea D oy Viesd)

s Search:
» Expand out potential plans (tree nodes)
» Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Important ideas:
= Fringe
= EXxpansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

@ ©

Example: Tree Search

S
@\ 5=
a © o s> o
N | s> p
e h o or q s> d> b
@/\CD N l‘ s> d=2 c
= | P Q/\ > d> e
q @ q |C G s> d2> e—> h
| / s >—et>—e> r
@}@ a s> —d>—eD>—r> f

s> d=2 e=> r> 2> c
e . D G

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity? [1 node
b nodes
Cartoon of search tree: b2 nodes
= b is the branching factor m tiers <
= M is the maximum depth
= solutions at various depths
bm nodes

Number of nodes in entire tree?
m 1+b+b2+ ... bm=0(bm)

Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= If mis finite, takes time O(bm) b2 nodes
= How much space does the fringe take? m tiers <
= Only has siblings on path to root, so O(bm)
i ?
« Isit complete: bm nodes

= m could be infinite, so only if we prevent that

= Isit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

s Processes all nodes above shallowest solution
= Let depth of shallowest solution be s
= Search takes time O(bs)

How much space does the fringe take?
= Has roughly the last tier, so O(bs)

Is it complete?

= S must be finite if a solution exists, so yes!

Is it optimal?

= Only if costs are all 1 (more on costs later)

s tiers

<

1 node
b nodes

b2 nodes

bs nodes

bm nodes

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

‘® 00 Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

‘® 00 Search Strategies Demo

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

» Idea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages

= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= Isn’t that wastefully redundant?

= Generally most work happens in the lowest level

searched, so not so bad!

= Branching factor 10, solution 5 deep:
= BFS: 10+ 100 + 1,000 + 10,000 + 100,000 =111,110
= IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Cost-Sensitive Search

(v (—0]
, (0
START
1 4 2
T s I e
q

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand the
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

S 0
@ 3 © ® 1
—— |

(o,, (@5 17 ()1 @) 16
B - AN
a W17 p q f

AN | PR

p g (O8 9 ¢ G

| N e|7

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution! e

= |f that solution costs C* and arcs cost at least €, then the “effective depth”

is roughly C*/e
C*/e "tiers” <

= Takes time O(bC*%) (exponential in effective depth)

= How much space does the fringe take?

» Has roughly the last tier, so O(bC*%)

= Isit complete?

O

= Assuming best solution has a finite cost and minimum arc cost is positive,
yes!

= Isit optimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

Remember: UCS explores increasing cost
contours

The good: UCS is complete and optimal!

The bad:

= Explores options in every “direction”
= No information about goal location

We’'ll fix that soon!

Goal

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

‘® 00 Search Strategies Demo .

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

‘® 0O Search Strategies Demo

A

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

p— Search Strategies Demo L3

The One Queue

= All these search algorithms are the
same except for fringe strategies L@_x_g&g#@jv\pﬂl . L@j

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation that
takes a variable queuing object

Search and Models

= Search operates over
models of the world

= The agent doesn’t actually
try all the plans out in the
real world!

= Planning is all “in
simulation”

= Your search is only as good
as your models...

Search Gone Wrong?

WT ——-— Y To] 4y ; v
— - i A el Microsoft*
B MAPQVEST.F [| G sl 477% 1. MapPoint
‘ @ = (o) — 3 {3 i
,g B\ C - ICELAND ﬂé“d %
. o .
q i 5 > ‘ e
— c o = : RUSSIA
b w‘ Q
- || Tver
gsmg ll’S C
Vaxia : Smrblenak@

Wil mus) 15 \.-'

e Blal?'stoké" BELARUS,"”
h 7 POLAND s fKW@
AT Wrochm:x
S ERmany .. UKRAINE
570 EEH§E Chl?jﬂe

UﬁcARv t ,
i ROMAHIA

- x. \.‘@{)' :.-Eu ch a;es‘_.

‘ 15v3 ——-""

~a .
%.9 km 500 1000 et V' Zoom on map di
S ' mo' o200 400 600

Start: Haugesund, Rogaland, Norway
End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

nrk.no/alltidmoro

