CS 188: Artificial Intelligence

Informed Search

Oliver Grillmeyer

University of California, Berkeley

Announcements

HWO (optional) is due Thursday, June 26, 11:59 PM PT
Project O (optional) is due Friday, June 27, 11:59 PM PT
HW1 is due Tuesday, July 1, 11:59 PM PT

HW?2 is due Thursday, July 3, 11:59 PM PT

Project 1 is due Friday, July 4, 11:59 PM PT

Today

» Informed Search

s Heuristics
= Greedy Search
= A* Search

= Graph Search

Recap: Search

Recap: Search

= Search problem:

= States (configurations of the world)
= Actions and costs

= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states

= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph (partial) with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

\ (=
Action: flip top two A Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>

Informed Search

Search Heuristics

s A heuristic is:

= A function that estimates how close a state is to a goal //\\\

= Designed for a particular search problem NOPEY T\ _Gonct

= Examples: Manhattan distance, Euclidean distance for "T*a:_il
pathing ‘]

>
Heuristi - Tron J

< ———4) '
=

Heuristi - Tron J

Example: Heuristic Function

ﬁtraight—line distance \

to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
] Vaslui Hirsova 151
lasi 226
Timisoara Lugoj 244
Mehadia 241
Pitesti Neamt 234
Oradea 380
98 . Pitesti 98

] Hirsova . . re
™ Mehadia Urziconi Rimnicu Vilcea 193
75 Sibiu 253
Timisoara 329
Dobreta [] Urziceni 80
=l Craiova Eforie | Vaslui 199
L] Giurgiu Zerind 374

J

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

99 Fagaras

= Expand the node that seems closest...

[[] Mehadia

75
Arad

Dobreta []

Eforie

329 374

380 193

366
253 0

= What can go wrong?

Greedy Search

s Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

‘® 00 Search Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Uniform-Cost Search

Example: Teg Grenager

Greedy Search

Example: Teg Grenager

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

8

S h=1
1

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?
h=2 f=0+3

f=2+2 f=2+1
(&)

2 e 3 f=4+0 f=5+0
& &

h=1
= No: only stop when we dequeue a goal

Is A* Optimal?

h=6
N
f=1+6 f=5+0
G/ ORI
5

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi = Tron

ldea: Admissibility

Heurist - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
» A heuristic /1 is admissible (optimistic) if:

0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

- 4

= Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

= Examples:

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
= Ais an optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)

= Definition of f-cost says:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

» The admissible heuristic must underestimate the true cost A
h(A) = (est. costof Ato A) =0

= SO0 now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

= h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) < (path cost to A)

g(n) + h(n) < g(A)
f(n) < f(A)

Optimality of A* Tree Search: Blocking

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
and A will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

Optimality of A* Tree Search: Blocking

2. f(A)is less than f(B)

= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

= The heuristic must underestimate the true cost:
h(A)=h(B)=0

= SO0 now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)

= We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)

g(A) < g(B)
f(A) < f(B)

Optimality of A* Tree Search: Blocking

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the fringe,
too (maybe Al)

s Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

= All ancestors of A expand before B
= A expands before B
s A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

s Uniform-cost expands equally in all

“directions”
St Goal

s A* expands mainly toward the goal,

but does hedge its bets to ensure
Optima“ty StarGoaI

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

‘® 00 Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

‘® 00 Search Strategies Demo

Video of Demo Contours (Empty) — A*

‘® 00 Search Strategies Demo

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

language analysis
Machine translation

Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

= Pydev - [dipze T

File Edit Navigate Search Project Run Window |elp

[~ B~ Q - v i v v > v 1S r’ pch._é Team

@ 1 search demno emnply

a’ 2 search -~ cartaurs greedy vs ucs (greedy

& 3 search -- contours greedy vs ucs (ucs)

@ A search -- contours greedy vs ucs (aster)

e‘ S seacch - plan tay astar

& Gsearch--p C tiny ucs

& 7 vearch - gla}.d;, bad

& 8search - greedy good

& 9 search demo maze

@ sesrch demo costs
Run As »
Run Carfigurations

Organize Favorites

] Console B B x cAlE

<terminated> empty.oe

11:53 AM

8/30/2012

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

e R
File Edit Navigste Search Project Run Window |elp
- -0 -9 - - - - - v - - T ,3 Pvu:-— A Team

1 search -- plan Lny astar =3

2 search - plan tryy ucs <
|
. 3 search demo empty G-

4 search -- Ccontours greedy vs ucs (greedy

S search - cantours greedy vs ucs (ucs

]

search -- contours greedy vs ucs (astar)
[search < greedy bad

8 search - greedy good

9 search demo maze

T LI L LI

search done costs

13

Run Ay ’
Run 1'.1r.1»q|.v.1?mn'.

Organize Favorites

[Console X % el = 2. v -

<terminated> L 5

Number of nodea expanded: 182

of unigue nodes expanded: 182

1 exerges victoraious! Scere: 573
=

"
: |
"

umKilla': [0], 'resulta': ['Win’'), ‘numMoven': [27

tannyen ' =
). > H

11:54 AM
8/30/2012

F' & il ‘-‘ ’

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new actions
are available

s Inadmissible heuristics are often useful too

Example: 8 Puzzle

!

1 2 % 7|1
> 6| (W 45 a
83 1 /eiSH 6 7

Start State Actions Goal State

3
5

P2
>
-

= What are the states? o~
= How many states?
= What are the actions?

= How many successors from the start state?
= What should the costs be?

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps
UCS 112 6,300 3.6 x 106
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

3+1+2+..=18

Goal State

Average nodes expanded when
the optimal path has...

h(start) =
() ...4 steps |...8 steps |...12 steps
TILES 13 39 227
MANHATTAN 12 25 /3

8 Puzzle Il

= How about using the actual cost as a heuristic?

= Would it be admissible?

= Would we save on nodes expanded?
= What’s wrong with it? ; . rt

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

« Dominance: h, > h_if

Vn : hg(n) > he(n)

s Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hy(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

mazx(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-~

B®

§ '\
/)
4 {
Iy 1}
§)
§ {
§ a
§ {
§ {
/ : \

f o
R} U
; L \ 1
) \ § [
) \))
) ' § 1
4 1))

\ 1

Search Tree

~

' k)
J 1)
£ "
F "
. 1
“ P
. 1
M /)
)) [
- \ |)
\) [
M \

1
)
[
/ !
[
/ !
[
/ /

Graph Search

= In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

/\ |
b/m h o or q
| /@I
r f
- OO
f a ¢ G
|
/\G .

C
I
a

Graph Search

= ldea: never expand a state twice
= How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= If not new, skip it, if new add to closed set

= Important: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }

S (0+2)

A/\A
SA (1+4) \SB Q‘

SBC (3+1) SBS (2+2)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBC }
S (0+2)
A/\A
SA (1+4) SB (1+1)

..
L]
.
L]
«
-
o
-
5
-
v,
..A

SBC (3+1) -SBS{2+2)

™~

SBCG (6+0) SBCB (5+1)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBC }
S (0+2)
A/\A
SA (1+4) SB (1+1)

..
L]
.
L]
«
-
o
-
5
-
v,
..A

SAC (2+1) SBC (3+1) -SBS{2+2)

SBCG (6+0) -SBCB(5+1)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBCG }
S (0+2)
A/\A
SA (1+4) SB (1+1)

SBCG (6+0) -SBCB(5+1)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

Optimality

Tree search:

= A¥*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:

= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

A*: Summary

A*: Summary

s A* uses both backward costs and (estimates of) forward costs
» A* is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

,

e

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

