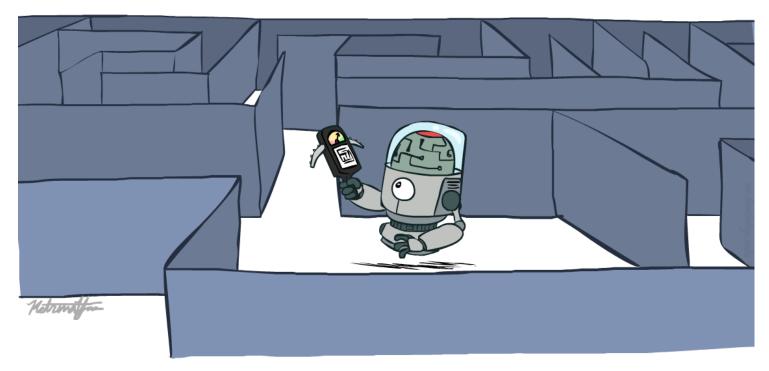
CS 188: Artificial Intelligence

Informed Search



Oliver Grillmeyer

University of California, Berkeley

Announcements

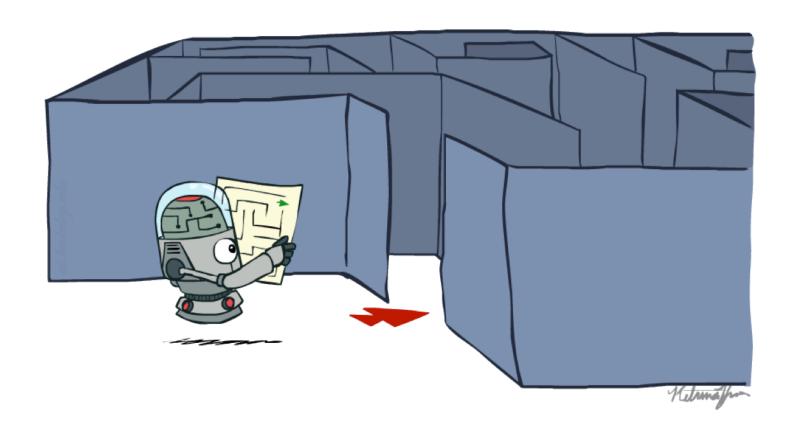
- HW0 (optional) is due Thursday, June 26, 11:59 PM PT
- Project 0 (optional) is due Friday, June 27, 11:59 PM PT
- HW1 is due **Tuesday, July 1**, 11:59 PM PT
- HW2 is due **Thursday**, July **3**, 11:59 PM PT
- Project 1 is due Friday, July 4, 11:59 PM PT

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

Graph Search

Recap: Search



Recap: Search

Search problem:

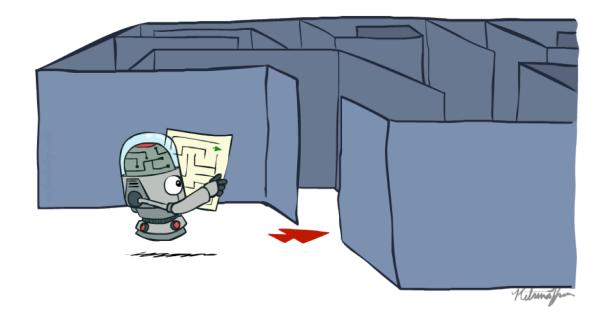
- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

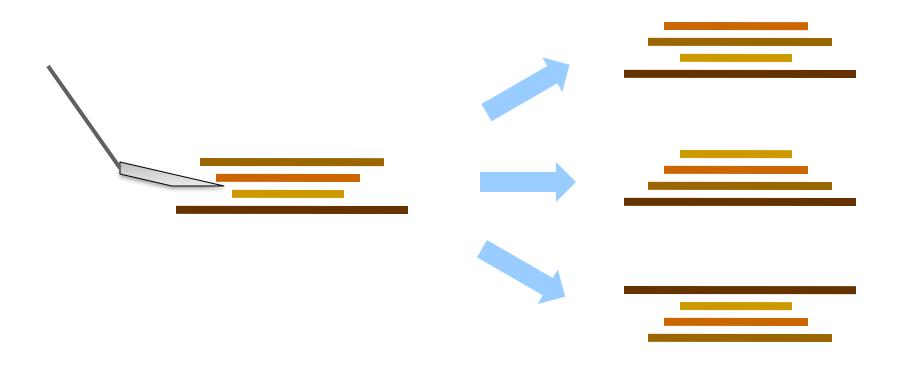
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans



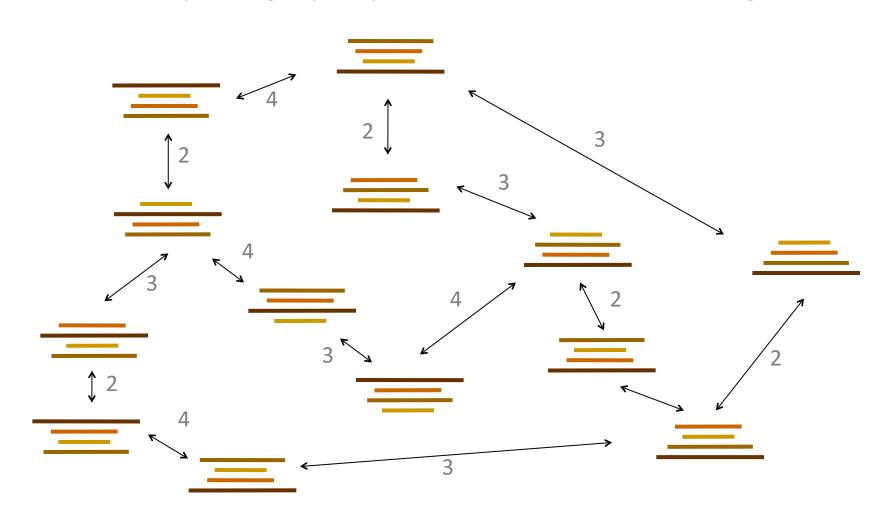
Example: Pancake Problem



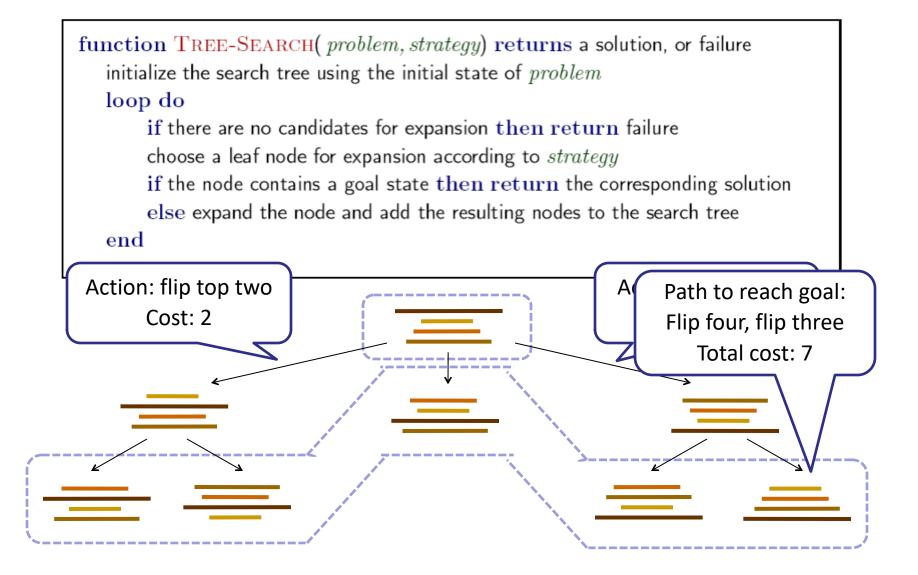
Cost: Number of pancakes flipped

Example: Pancake Problem

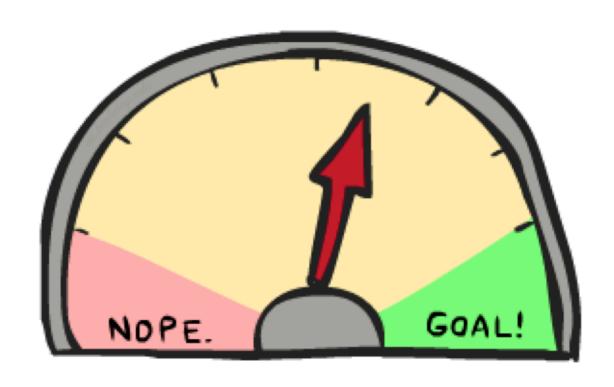
State space graph (partial) with costs as weights



General Tree Search



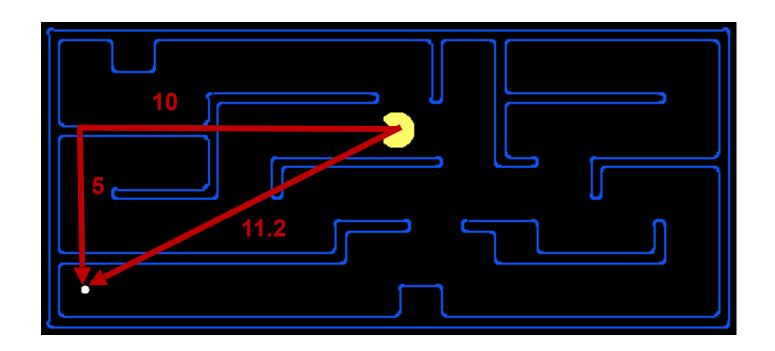
Informed Search

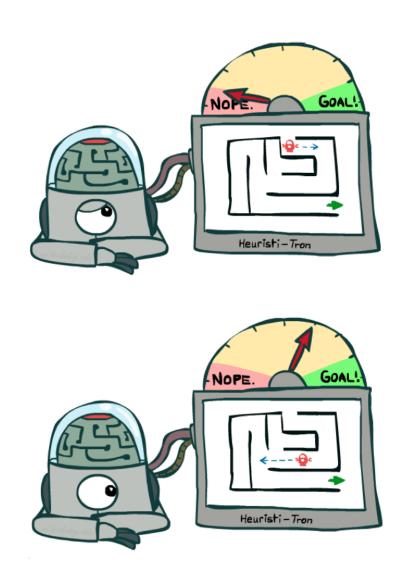


Search Heuristics

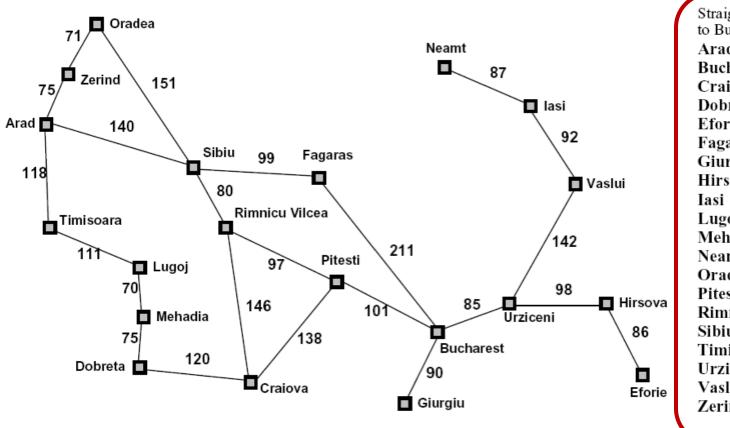
A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing





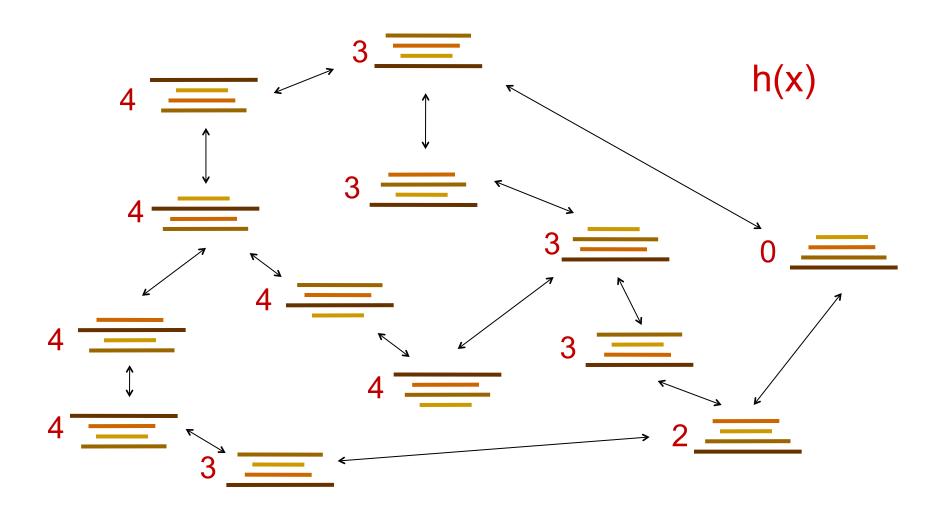
Example: Heuristic Function



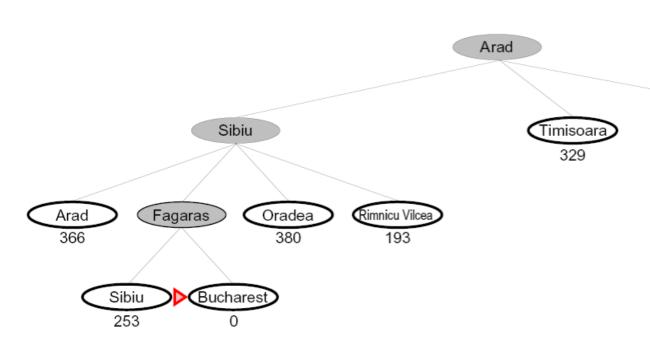
Straight-line distance to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Example: Heuristic Function

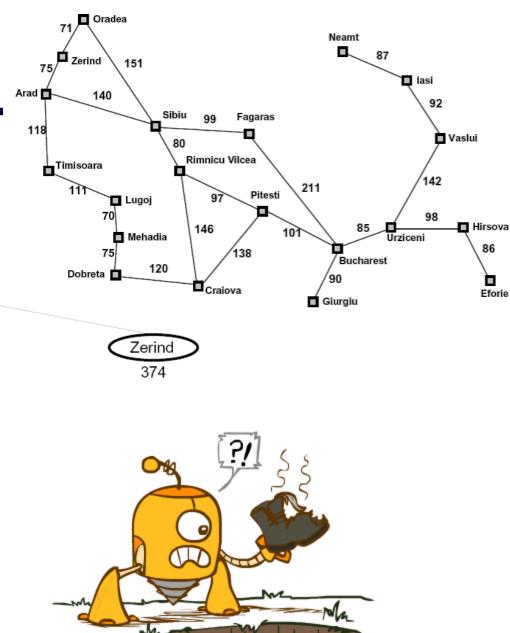
Heuristic: the number of the largest pancake that is still out of place



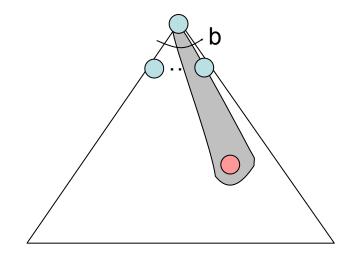
Expand the node that seems closest...



What can go wrong?

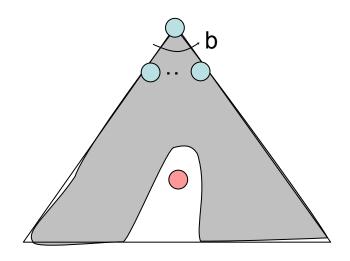


- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state



- A common case:
 - Best-first takes you straight to the (wrong) goal

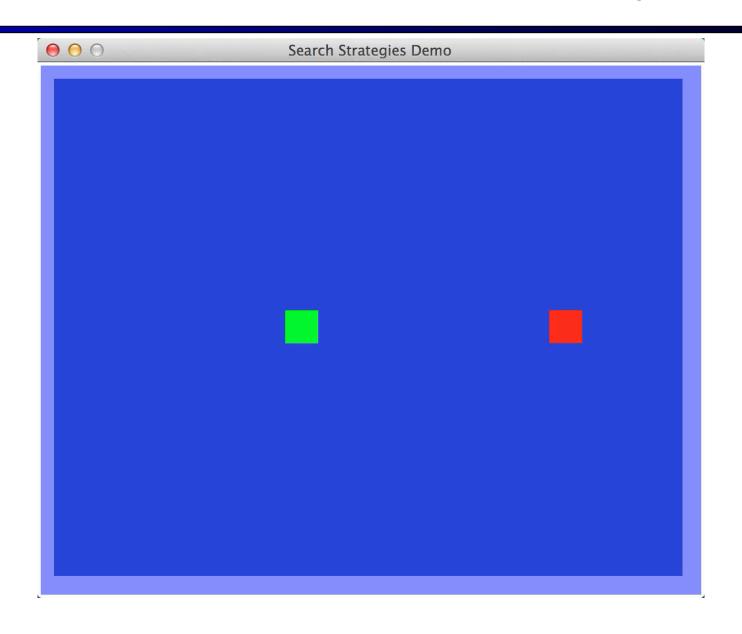
Worst-case: like a badly-guided DFS



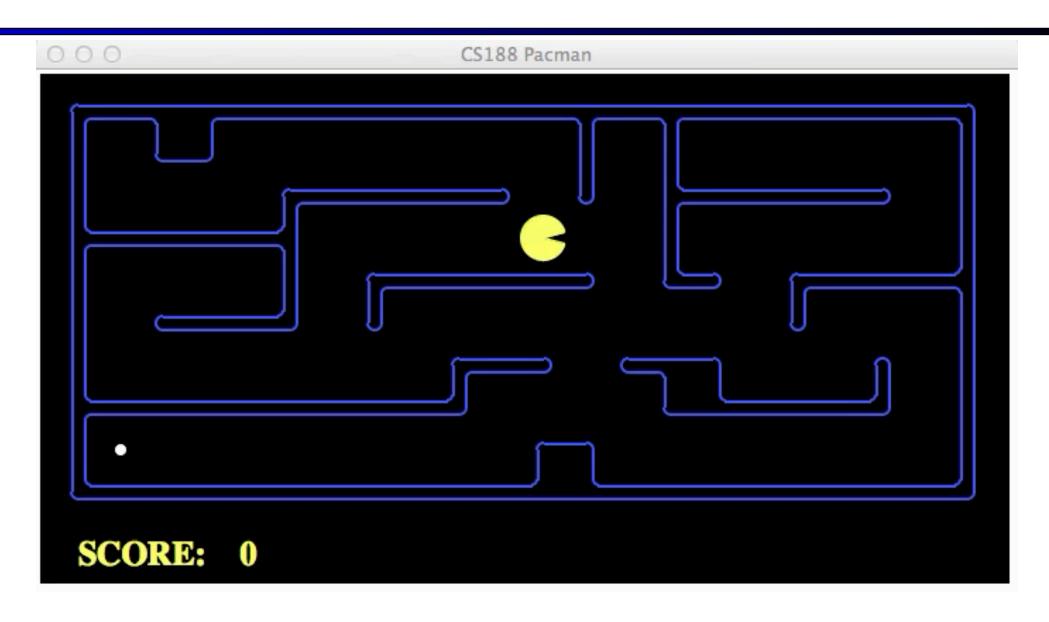
[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

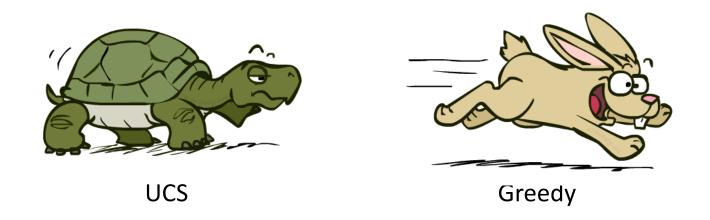


Video of Demo Contours Greedy (Pacman Small Maze)

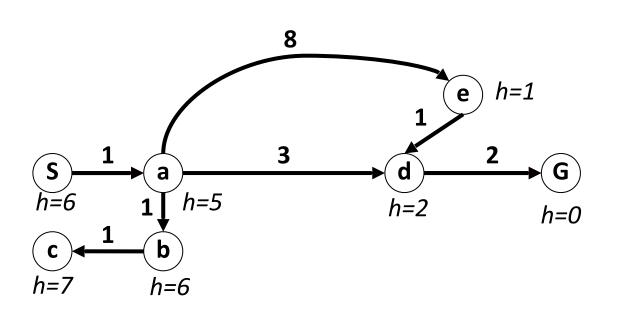


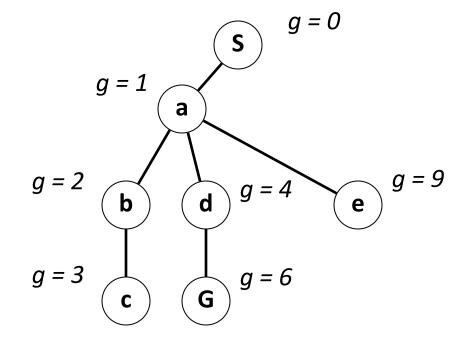
A* Search

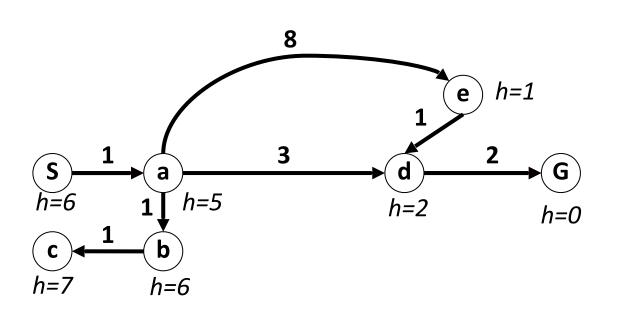
A* Search

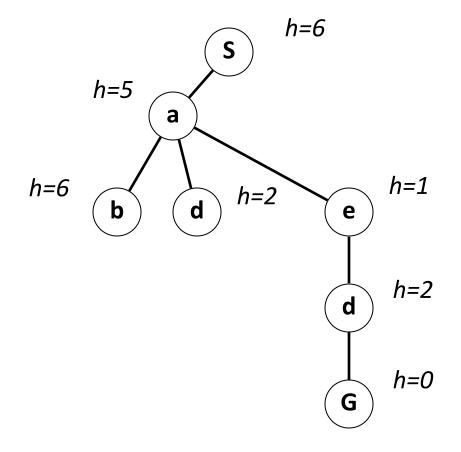


Uniform-Cost Search





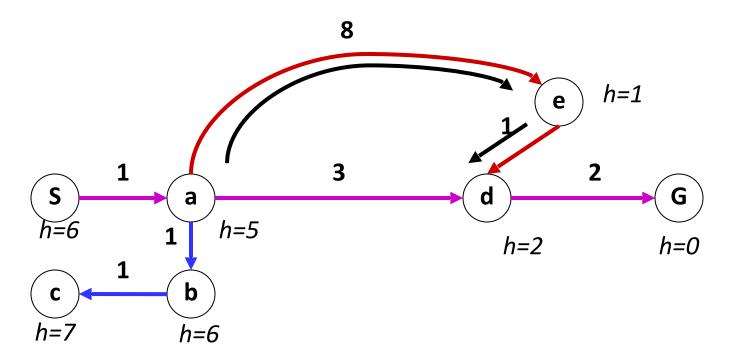




Example: Teg Grenager

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

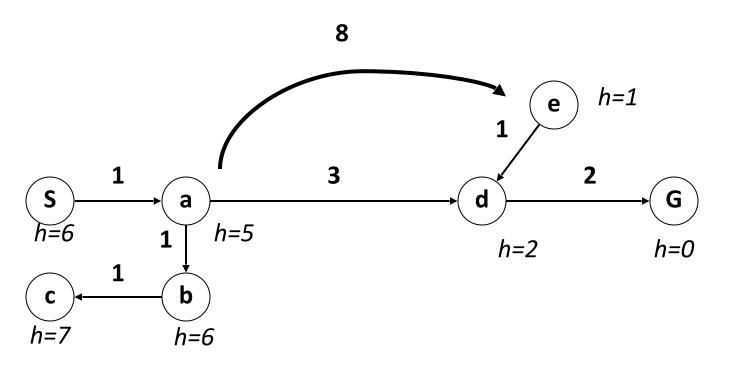


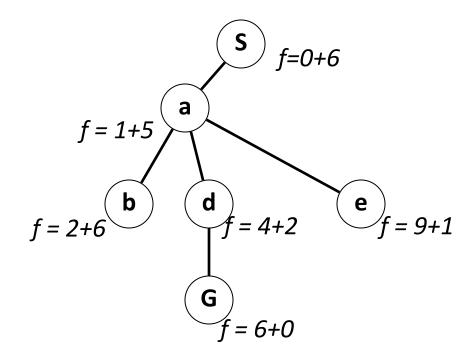
A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)



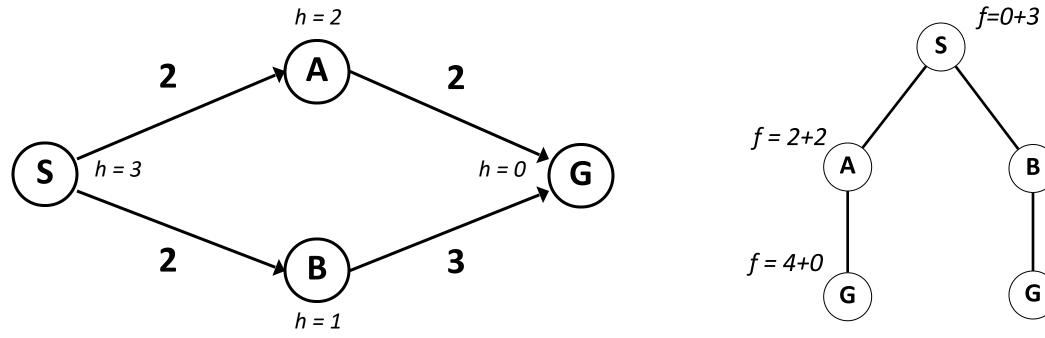


A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

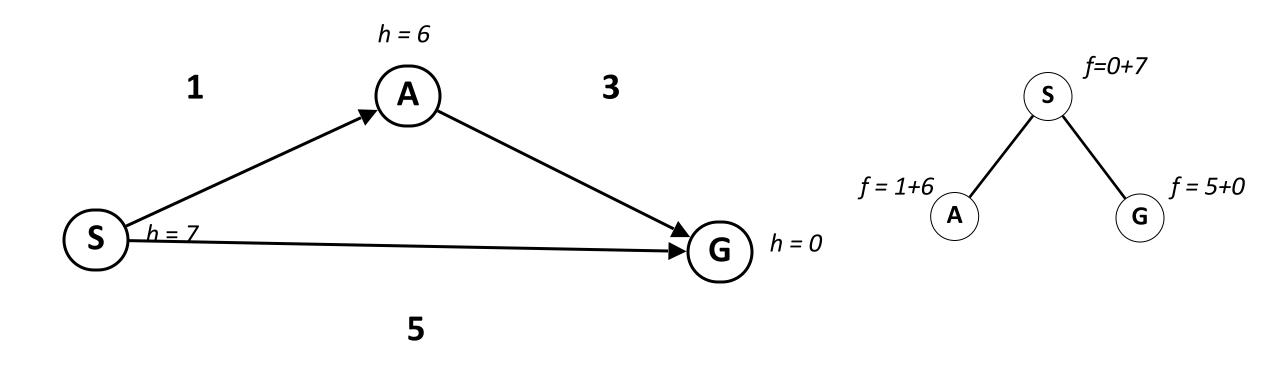
Should we stop when we enqueue a goal?



f = 2+1

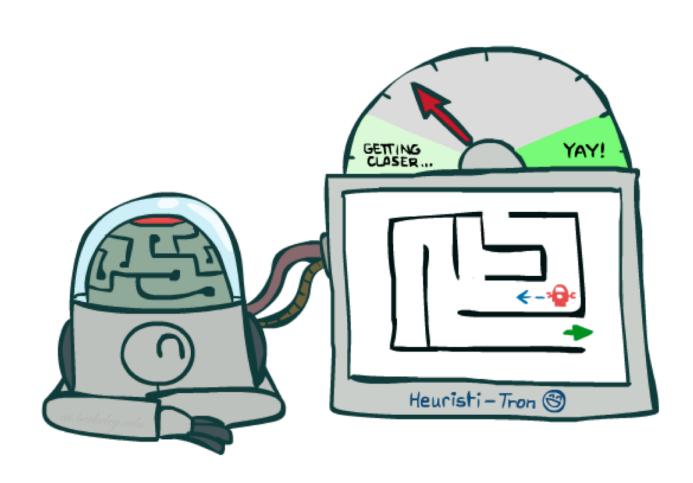
No: only stop when we dequeue a goal

Is A* Optimal?

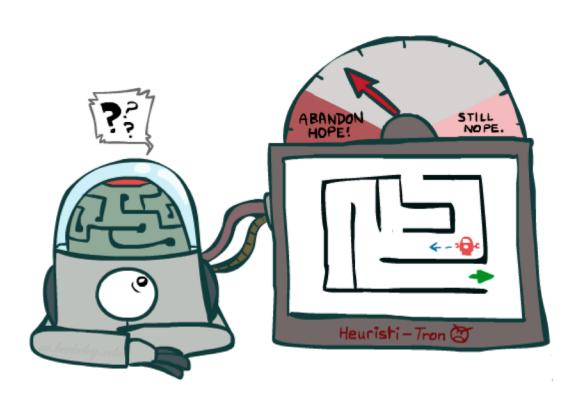


- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

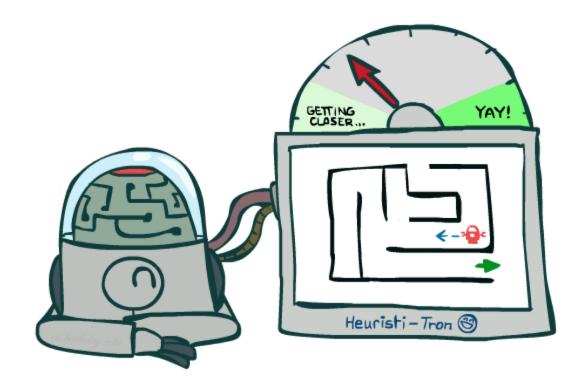
Admissible Heuristics



Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

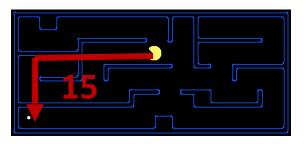
Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

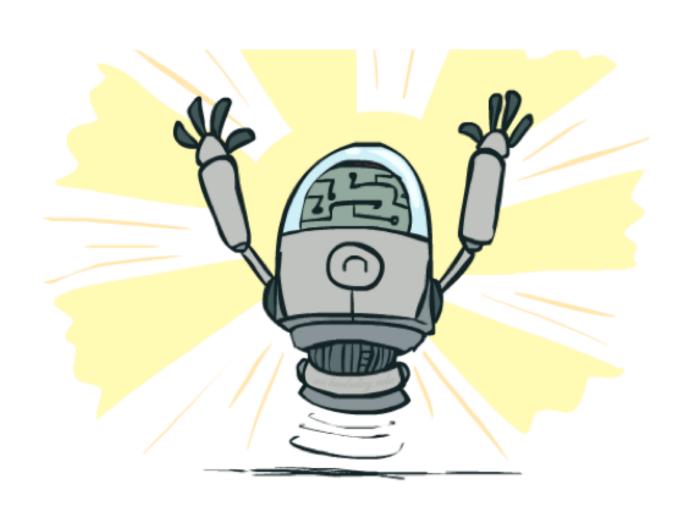
where $h^*(n)$ is the true cost to a nearest goal

Examples:



 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search



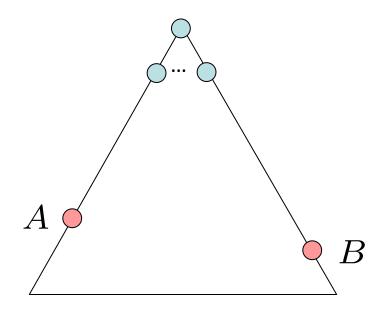
Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

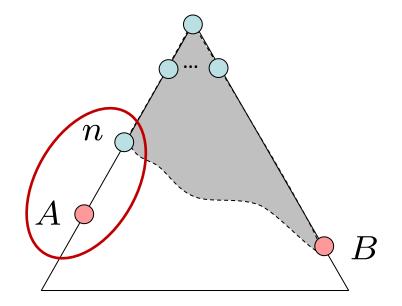
Claim:

A will exit the fringe before B



Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)



1. f(n) is less than or equal to f(A)

Definition of f-cost says:

```
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)

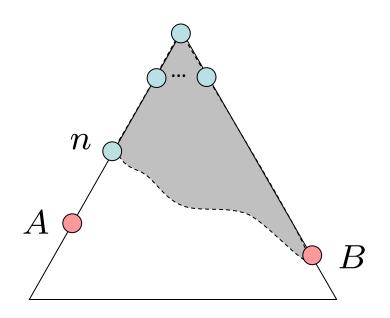
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
```

- The admissible heuristic must underestimate the true cost h(A) = (est. cost of A to A) = 0
- So now, we have to compare:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

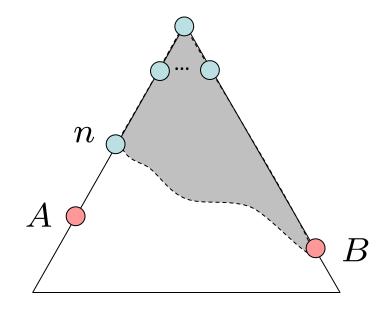
 $f(A) = g(A) = (path cost to A)$

h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) ≤ (path cost to A) g(n) + h(n) ≤ g(A) f(n) ≤ f(A)



Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 and A will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)



2. f(A) is less than f(B)

■ We know that:

$$f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$$

 $f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)$

■ The heuristic must underestimate the true cost:

$$h(A) = h(B) = 0$$

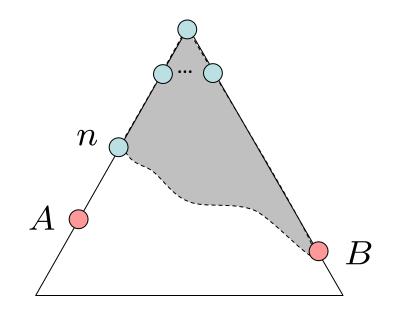
■ So now, we have to compare:

$$f(A) = g(A) = (path cost to A)$$

 $f(B) = g(B) = (path cost to B)$

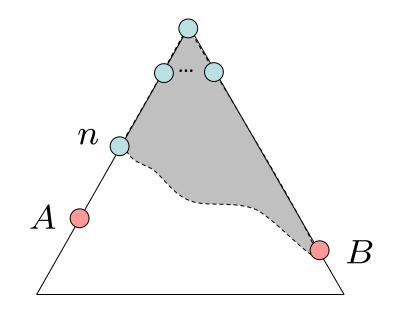
We assumed that B is suboptimal! So

```
(path cost to A) < (path cost to B)
g(A) < g(B)
f(A) < f(B)
```



Proof:

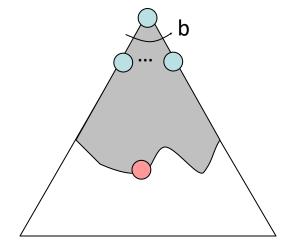
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

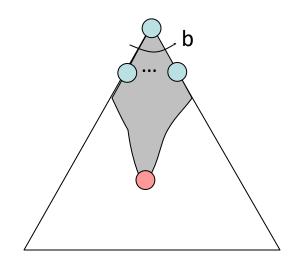


Properties of A*

Properties of A*

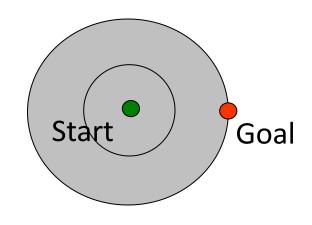
Uniform-Cost



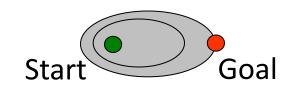


UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

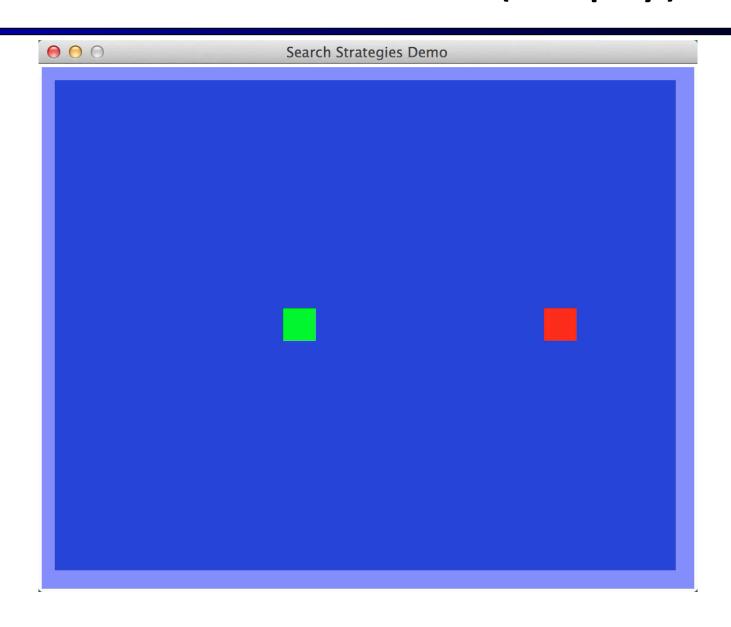


 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

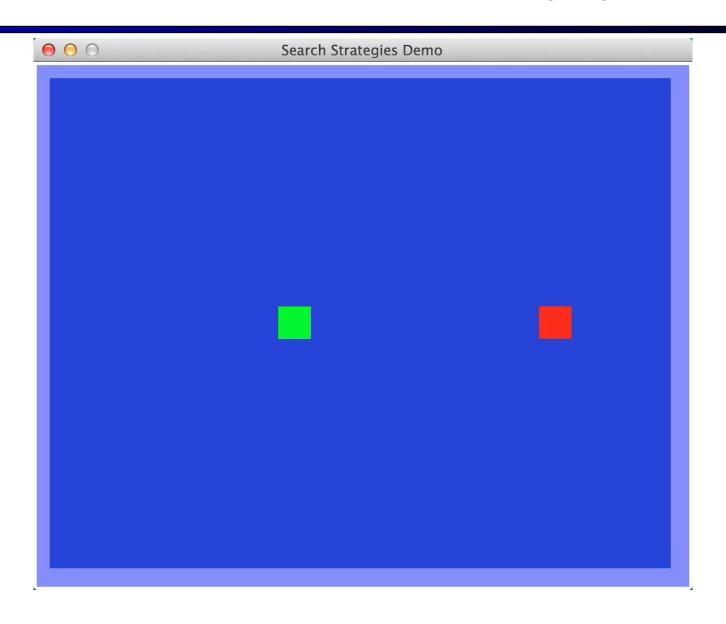


[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

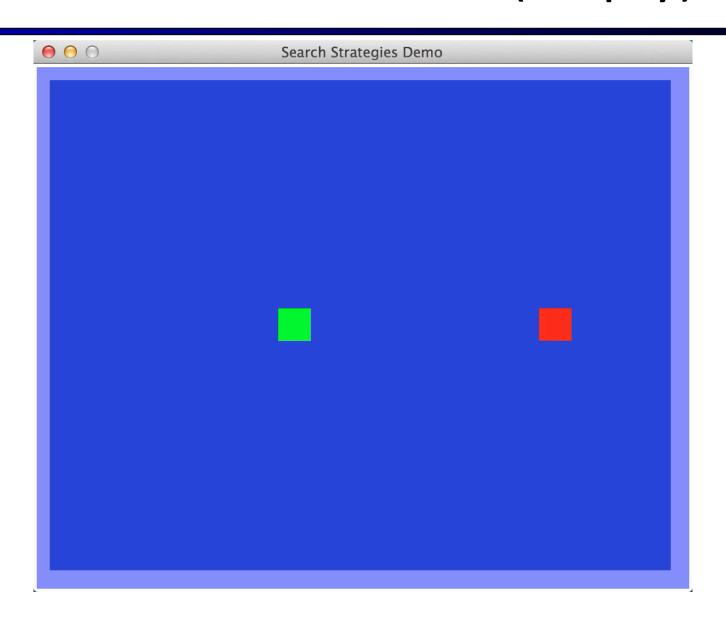
Video of Demo Contours (Empty) -- UCS



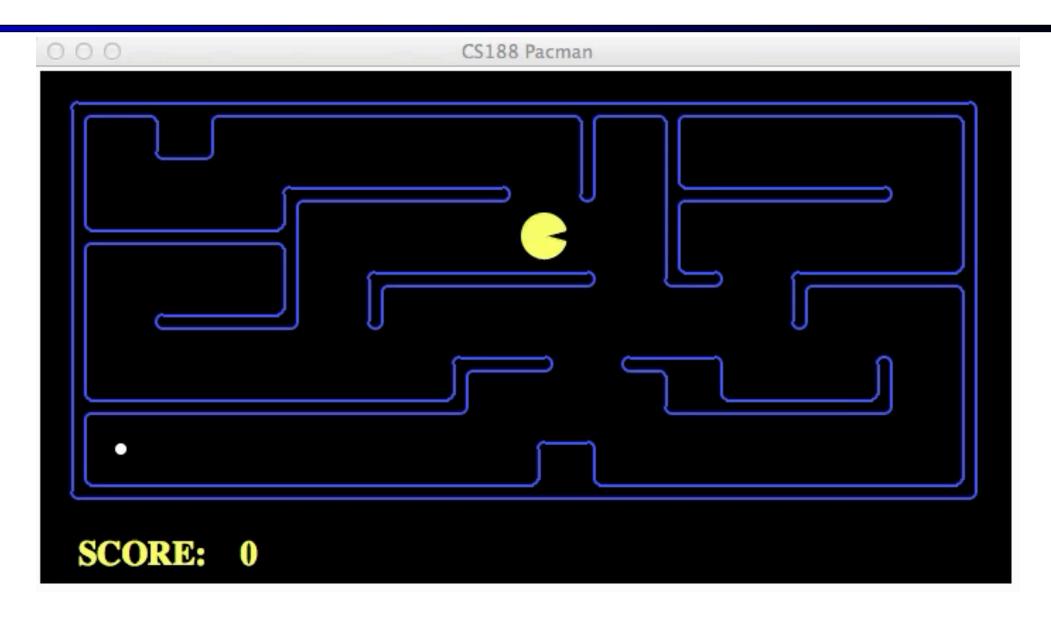
Video of Demo Contours (Empty) -- Greedy



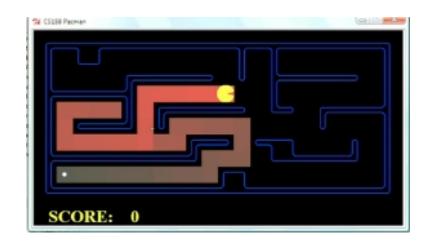
Video of Demo Contours (Empty) – A*

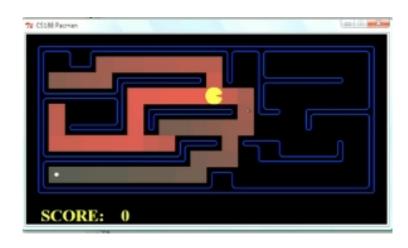


Video of Demo Contours (Pacman Small Maze) – A*



Comparison





Greedy

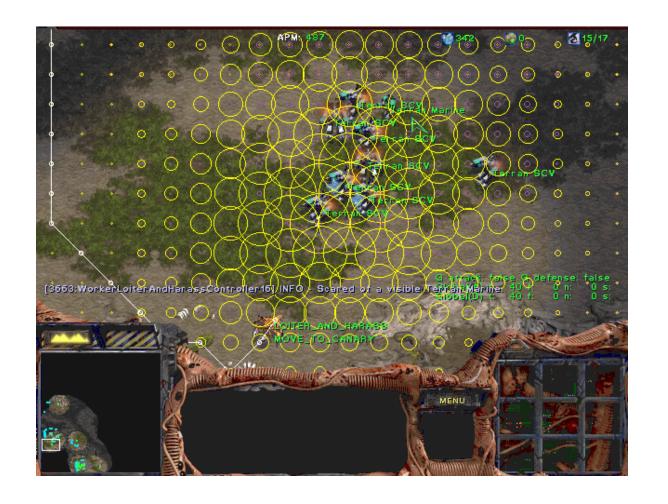
Uniform Cost

A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

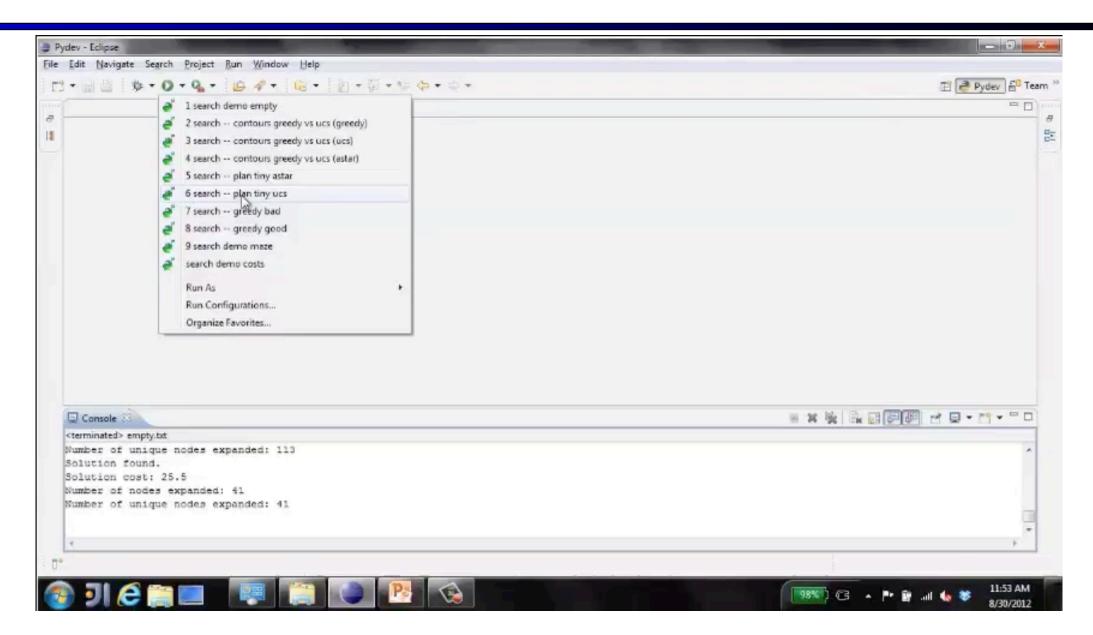
• • •



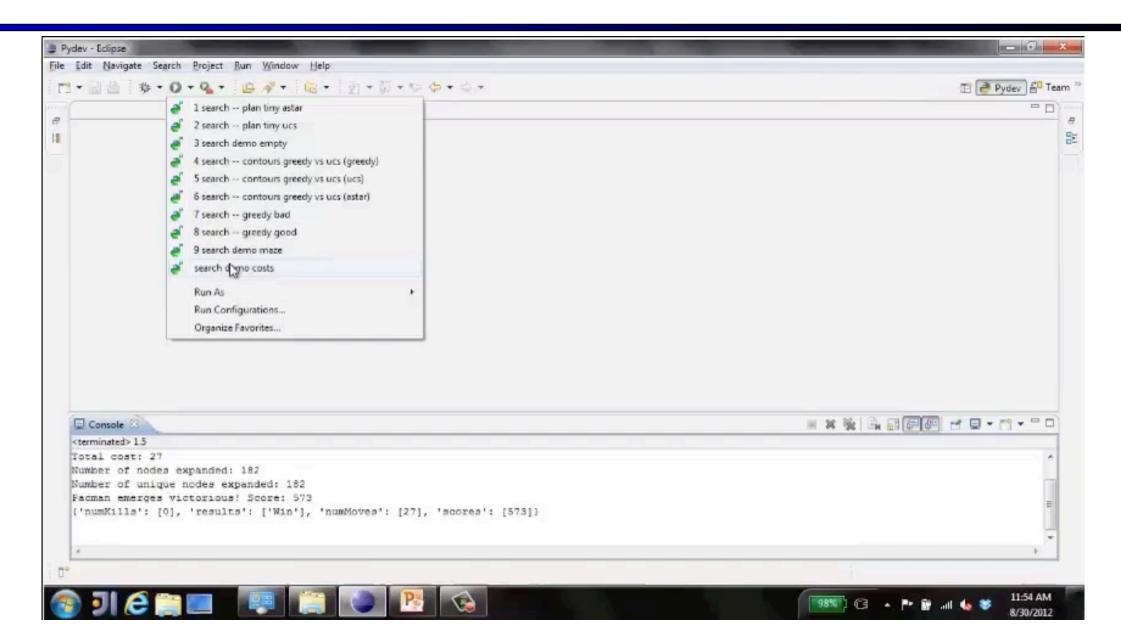
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]

[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*



Video of Demo Empty Water Shallow/Deep - Guess Algorithm

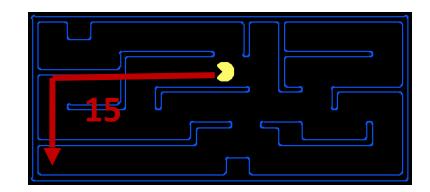


Creating Heuristics

Creating Admissible Heuristics

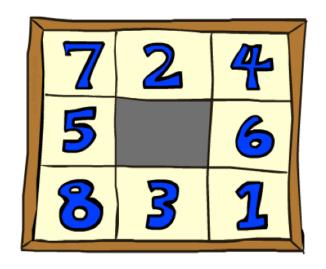
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available



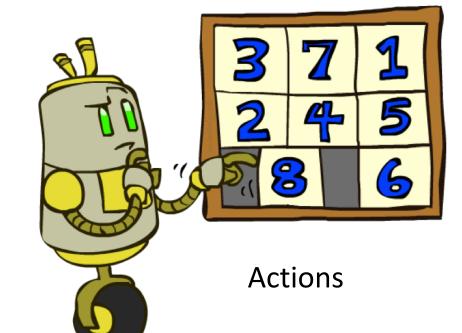


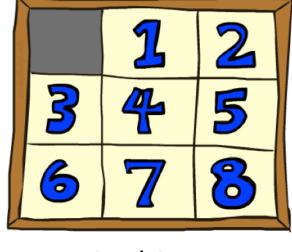
Inadmissible heuristics are often useful too

Example: 8 Puzzle



Start State



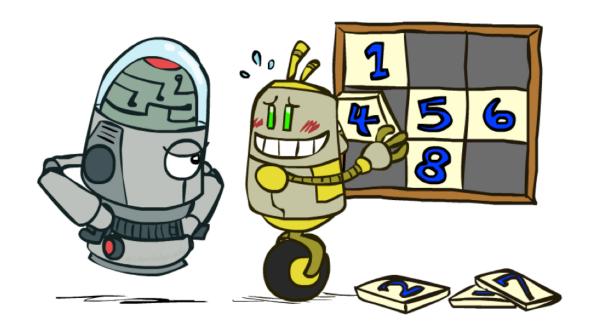


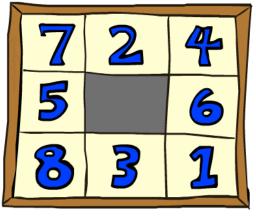
Goal State

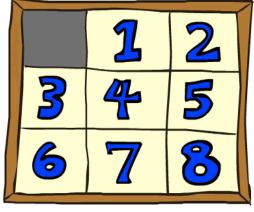
- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







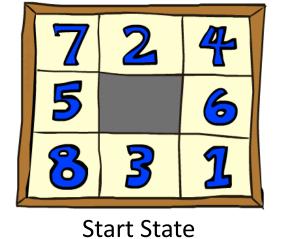
ヒナつ	rt	State
Sta	ΙL	State

Goal State

	Average nodes expanded when				
	the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

8 Puzzle II

What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?



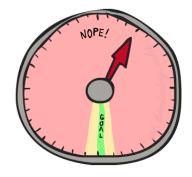
- Total *Manhattan* distance
- Why is it admissible?

•
$$h(start) = 3 + 1 + 2 + ... = 18$$

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?



- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

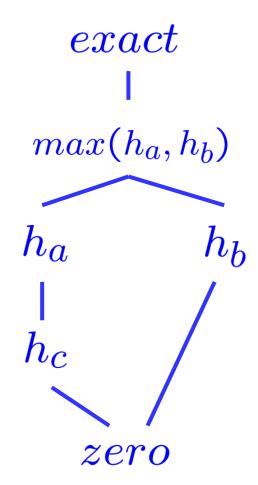
■ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

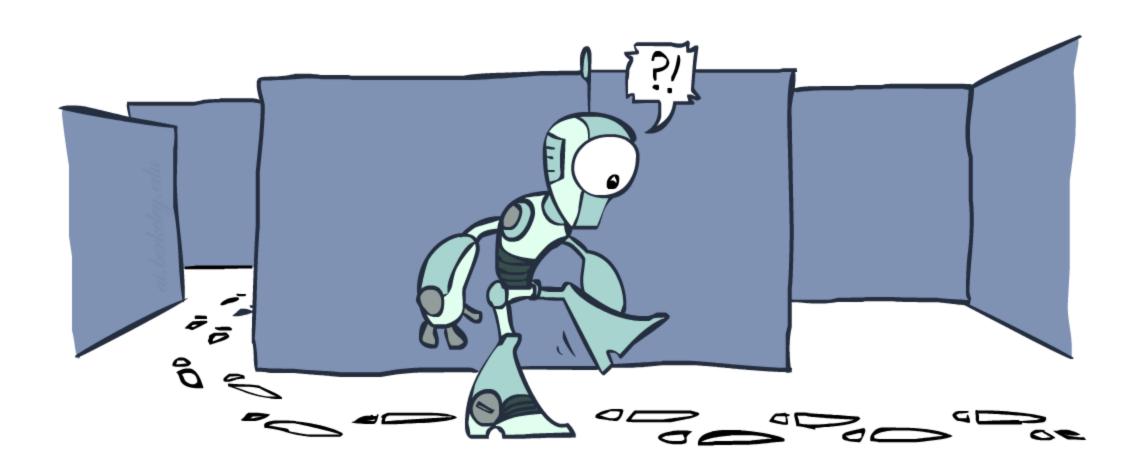
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = \max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

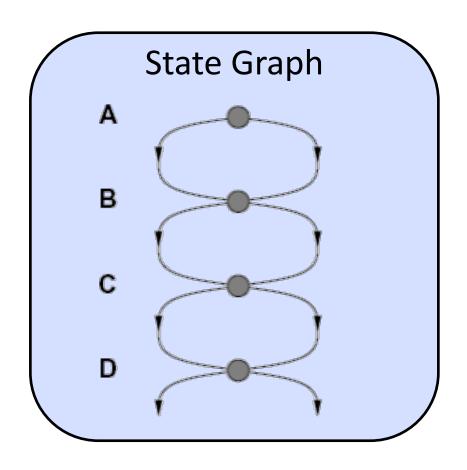


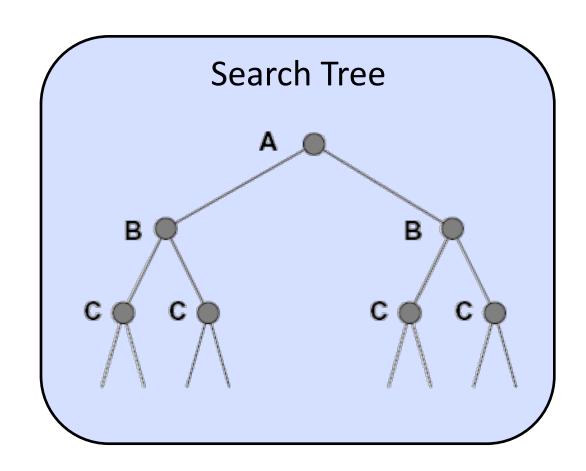
Graph Search



Tree Search: Extra Work!

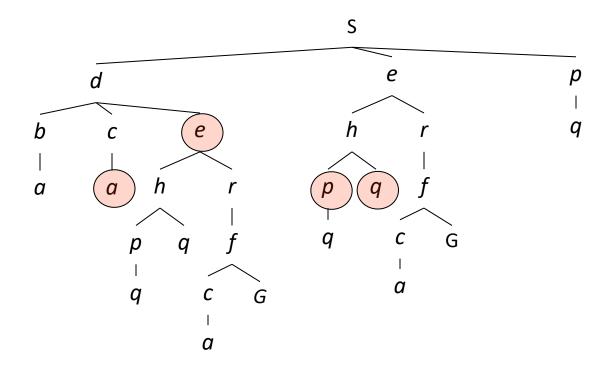
■ Failure to detect repeated states can cause exponentially more work.





Graph Search

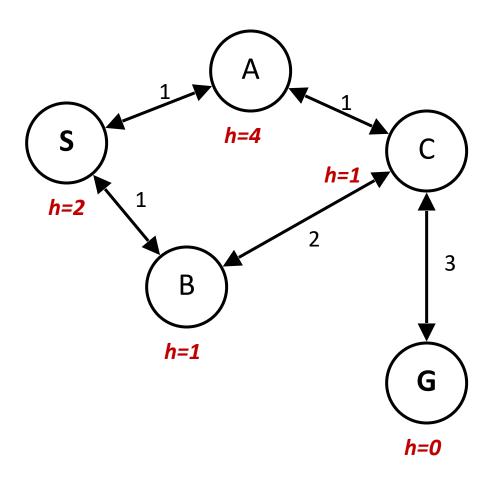
■ In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



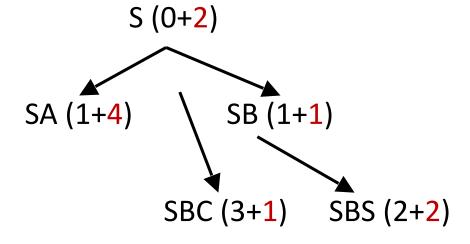
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

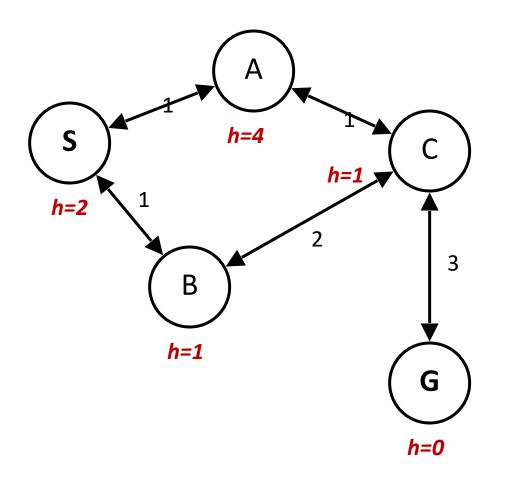
State space graph

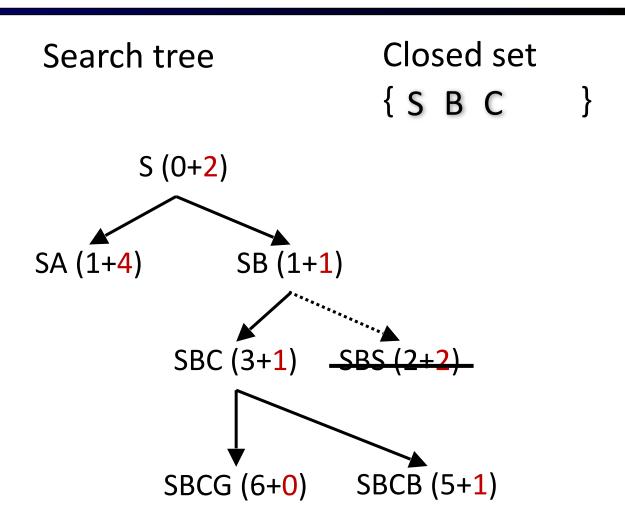


Search tree Closed set { S B }

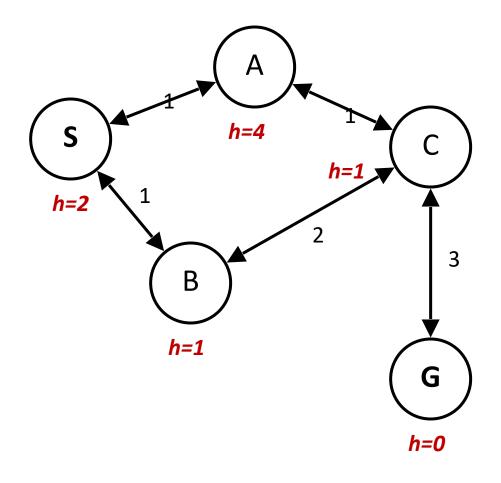


State space graph





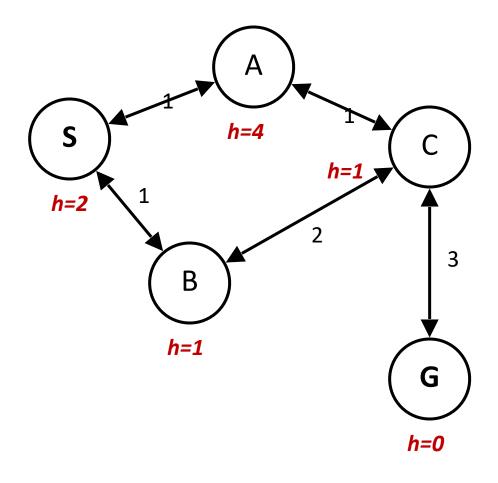
State space graph



Closed set Search tree $\{SBC$ S(0+2)SB (1+1) SA (1+4) SAC (2+1) SBC (3+1)

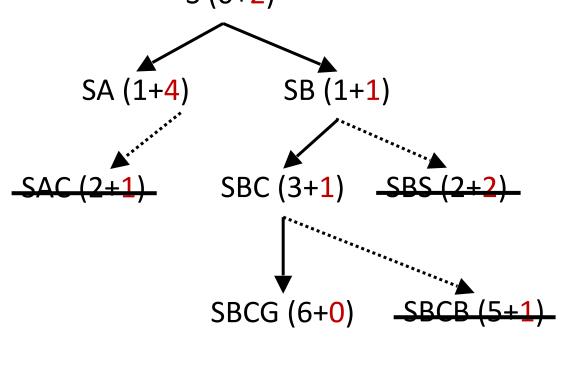
SBCG (6+0)

State space graph

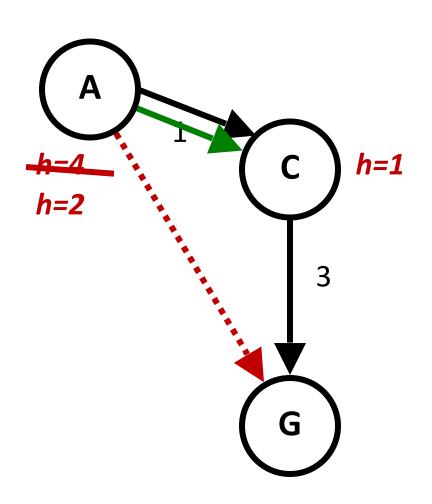


Search tree Closed set { S B C G }

S (0+2)



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \le actual cost from A to G$

■ Consistency: heuristic "arc" cost ≤ actual cost for each arc

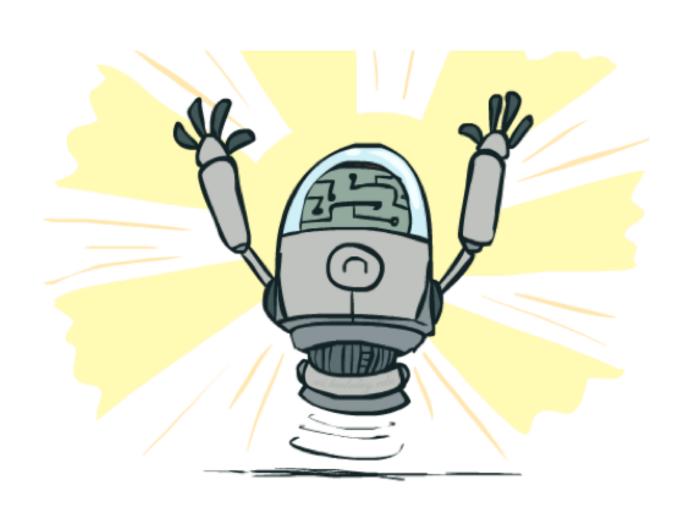
$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

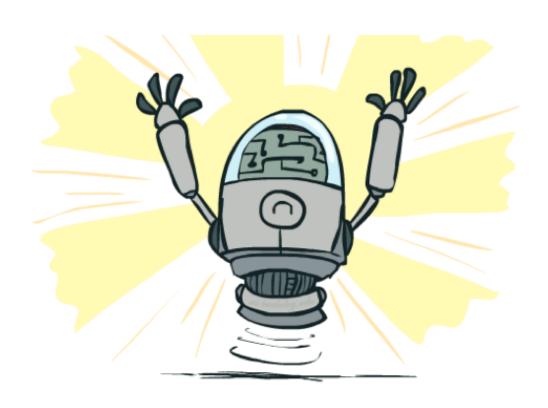
A* graph search is optimal

Optimality of A* Graph Search



Optimality

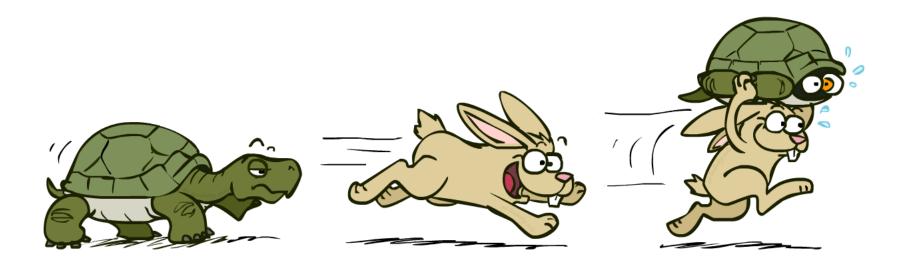
- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← remove-front(fringe)
        if goal-test(problem, state[node]) then return node
        for child-node in expand(state[node], problem) do
            fringe ← insert(child-node, fringe)
        end
        end
end
```

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```