
CS 188: Artificial Intelligence
Constraint Satisfaction Problems II

Instructor: Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ HW1 is due Tuesday, July 1, 11:59 PM PT

▪ HW2 is due Thursday, July 3, 11:59 PM PT

▪ HW3 is due Tuesday, July 8, 11:59 PM PT

▪ HW4 is due Thursday, July 10, 11:59 PM PT

▪ Project 1 is due Friday, July 4, 11:59 PM PT

▪ Project 2 is due Friday, July 11, 11:59 PM PT

Today

Efficient Solution of CSPs

Local Search

Filtering

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

Arc Consistency and Beyond

Limitations of Arc Consistency

After enforcing arc consistency:
Can have one solution left
Can have multiple solutions left
Can have no solutions left (and
not know it)

Arc consistency still runs inside
a backtracking search! What went

wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

K-Consistency

K-Consistency
Increasing degrees of consistency

1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

K-Consistency: For each k nodes, any consistent assignment to k-1 can
be extended to the kth node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)

Strong K-Consistency

Strong k-consistency: also k-1, k-2, … 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
Choose any assignment to any variable
Choose a new variable
By 2-consistency, there is a choice consistent with the first
Choose a new variable
By 3-consistency, there is a choice consistent with the first 2
…

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path
consistency)

Ordering

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
Choose the variable with the fewest legal left values in its domain

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering

Ordering: Least Constraining Value

Value Ordering: Least Constraining Value
Given a choice of variable’s value, choose the least
constraining value
I.e., the one that rules out the fewest values in the
remaining variables
Note that it may take some computation to determine
this! (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes
	 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Structure

Problem Structure

Extreme case: independent subproblems
Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

Worst-case solution cost is O((n/c)(dc)), linear in n
E.g., n = 80, d = 2, c =20
280 = 4 billion years at 10 million nodes/sec
(4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
Compare to general CSPs, where worst-case time is O(dn)

This property also applies to probabilistic reasoning (later): an example of the relation between
syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

Algorithm for tree-structured CSPs:
Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2) (why?)

X
X

X

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced
thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

Find the smallest cutset for the graph below.

Tree Decomposition*
▪ Idea: create a tree-structured graph of mega-variables
▪ Each mega-variable encodes part of the original CSP
▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

 {(WA=r,SA=g,NT=b),
 (WA=b,SA=r,NT=g),
 …}

 {(NT=r,SA=g,Q=b),
 (NT=b,SA=g,Q=r),
 …}

Agree: (M1,M2) ∈
 {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

≠
W
A

≠ ≠

Q

SA

≠
NT

≠ ≠

A
gree on shared vars

NS
W

SA

≠
Q

≠ ≠

A
gree on shared vars

V

SA

≠
NS
W

≠ ≠

Iterative Improvement

Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned

To apply to CSPs:
Take an assignment with unsatisfied constraints
Operators reassign variable values
No fringe! Live on the edge.

Algorithm: While not solved,
Variable selection: randomly select any conflicted variable
Value selection: min-conflicts heuristic:

Choose a value that violates the fewest constraints
I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

CSPs are a special kind of search problem:
States are partial assignments
Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
Ordering
Filtering
Structure

Iterative min-conflicts is often effective in practice

Local Search

Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)

Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

Simple, general idea:
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s bad about this approach?
Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?
	
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing
Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on

37

Simulated Annealing

Theoretical guarantee:
Stationary distribution:

If T decreased slowly enough,
	 will converge to optimal state!

Is this an interesting guarantee?

Sounds like magic, but reality is reality:
The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all in a row
People think hard about ridge operators which let you jump
around the space in better ways

Genetic Algorithms

Genetic algorithms use a natural selection metaphor
Keep best N hypotheses at each step (selection) based on a fitness function
Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

Why does crossover make sense here?
When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?

Next Time: Adversarial Search!

