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Announcements

▪ HW1 is due Tuesday, July 1, 11:59 PM PT 

▪ HW2 is due Thursday, July 3, 11:59 PM PT 

▪ HW3 is due Tuesday, July 8, 11:59 PM PT 

▪ HW4 is due Thursday, July 10, 11:59 PM PT 

▪ Project 1 is due Friday, July 4, 11:59 PM PT 

▪ Project 2 is due Friday, July 11, 11:59 PM PT



Today

Efficient Solution of CSPs 

Local Search



Filtering



Video of Demo Coloring – Backtracking with Forward Checking – 
Complex Graph



Video of Demo Coloring – Backtracking with Arc Consistency – 
Complex Graph



Arc Consistency and Beyond



Limitations of Arc Consistency

After enforcing arc consistency: 
Can have one solution left 
Can have multiple solutions left 
Can have no solutions left (and 
not know it) 

Arc consistency still runs inside 
a backtracking search! What went 

wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]



K-Consistency



K-Consistency
Increasing degrees of consistency 

1-Consistency (Node Consistency): Each single node’s domain has a 
value which meets that node’s unary constraints 

2-Consistency (Arc Consistency): For each pair of nodes, any consistent 
assignment to one can be extended to the other 

K-Consistency: For each k nodes, any consistent assignment to k-1 can 
be extended to the kth node. 

Higher k more expensive to compute 

(You need to know the k=2 case: arc consistency)



Strong K-Consistency

Strong k-consistency: also k-1, k-2, … 1 consistent 

Claim: strong n-consistency means we can solve without backtracking! 

Why? 
Choose any assignment to any variable 
Choose a new variable 
By 2-consistency, there is a choice consistent with the first 
Choose a new variable 
By 3-consistency, there is a choice consistent with the first 2 
… 

Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called path 
consistency)



Ordering



Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV): 
Choose the variable with the fewest legal left values in its domain 

Why min rather than max? 
Also called “most constrained variable” 
“Fail-fast” ordering



Ordering: Least Constraining Value

Value Ordering: Least Constraining Value 
Given a choice of variable’s value, choose the least 
constraining value 
I.e., the one that rules out the fewest values in the 
remaining variables 
Note that it may take some computation to determine 
this!  (E.g., rerunning filtering) 

Why least rather than most? 

Combining these ordering ideas makes 
	 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]



Structure



Problem Structure

Extreme case: independent subproblems 
Example: Tasmania and mainland do not interact 

Independent subproblems are identifiable as 
connected components of constraint graph 

Suppose a graph of n variables can be broken into 
subproblems of only c variables: 

Worst-case solution cost is O((n/c)(dc)), linear in n 
E.g., n = 80, d = 2, c =20 
280 = 4 billion years at 10 million nodes/sec 
(4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time 
Compare to general CSPs, where worst-case time is O(dn) 

This property also applies to probabilistic reasoning (later): an example of the relation between 
syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

Algorithm for tree-structured CSPs: 
Order: Choose a root variable, order variables so that parents precede children 

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) 

Runtime: O(n d2)  (why?)

X
X

X



Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent 
Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced 
thereafter (because Y’s children were processed before Y) 

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack 
Proof: Induction on position 

Why doesn’t this algorithm work with cycles in the constraint graph? 

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure



Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains 

Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree 

Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz

Find the smallest cutset for the graph below.



Tree Decomposition*
▪ Idea: create a tree-structured graph of mega-variables 
▪ Each mega-variable encodes part of the original CSP 
▪ Subproblems overlap to ensure consistent solutions 

M1 M2 M3 M4

         {(WA=r,SA=g,NT=b),       
          (WA=b,SA=r,NT=g), 
          …}

         {(NT=r,SA=g,Q=b), 
          (NT=b,SA=g,Q=r), 
          …}

Agree: (M1,M2) ∈ 
        {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}

A
gree on    shared vars
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Iterative Improvement



Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned 

To apply to CSPs: 
Take an assignment with unsatisfied constraints 
Operators reassign variable values 
No fringe!  Live on the edge. 

Algorithm: While not solved, 
Variable selection: randomly select any conflicted variable 
Value selection: min-conflicts heuristic: 

Choose a value that violates the fewest constraints 
I.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states) 
Operators: move queen in column 
Goal test: no attacks 
Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] 
[Demo: coloring – iterative improvement]



Video of Demo Iterative Improvement – n Queens



Video of Demo Iterative Improvement – Coloring



Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n 
with high probability (e.g., n = 10,000,000)! 

The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio



Summary: CSPs

CSPs are a special kind of search problem: 
States are partial assignments 
Goal test defined by constraints 

Basic solution: backtracking search 

Speed-ups: 
Ordering 
Filtering 
Structure 

Iterative min-conflicts is often effective in practice



Local Search



Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness) 

Local search: improve a single option until you can’t make it better (no fringe!) 

New successor function: local changes 

Generally much faster and more memory efficient (but incomplete and suboptimal)



Hill Climbing

Simple, general idea: 
Start wherever 
Repeat: move to the best neighboring state 
If no neighbors better than current, quit 

What’s bad about this approach? 
Complete? 
Optimal? 

What’s good about it?



Hill Climbing Diagram



Hill Climbing Quiz

Starting from X, where do you end up ? 
	  
Starting from Y, where do you end up ? 

Starting from Z, where do you end up ?



Simulated Annealing
Idea:  Escape local maxima by allowing downhill moves 

But make them rarer as time goes on

37



Simulated Annealing

Theoretical guarantee: 
Stationary distribution: 

If T decreased slowly enough, 
	 will converge to optimal state! 

Is this an interesting guarantee? 

Sounds like magic, but reality is reality: 
The more downhill steps you need to escape a local optimum, 
the less likely you are to ever make them all in a row 
People think hard about ridge operators which let you jump 
around the space in better ways



Genetic Algorithms

Genetic algorithms use a natural selection metaphor 
Keep best N hypotheses at each step (selection) based on a fitness function 
Also have pairwise crossover operators, with optional mutation to give variety 

Possibly the most misunderstood, misapplied (and even maligned) technique around



Example: N-Queens

Why does crossover make sense here? 
When wouldn’t it make sense? 
What would mutation be? 
What would a good fitness function be?



Next Time: Adversarial Search!


