CS 188: Artificial Intelligence

Game Trees: Adversarial Search

Instructors: Oliver Grillmeyer
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).
[Updated slides from: Stuart Russell and Dawn Song]

Announcements

s HW1 is due Tuesday, July 1, 11:59 PM PT

s« HW2 is due Thursday, July 3, 11:59 PM PT
s HW3 is due Tuesday, July 8, 11:59 PM PT

= HW4 is due Thursday, July 10, 11:59 PM PT

ject 1is due Friday, July 4, 11:59 PM PT
ject 2 is due Friday, July 11, 11:59 PM PT

term is Wednesday July 23, 7-9 PM PT

Outline

History / Overview
Minimax for Zero-Sum Games
o-B Pruning

Finite lookahead and evaluation

Game Playing State of the Art

Checkers:
= 1950: First computer player
= 1959: Samuel’s self-taught program
= 1995: First computer world champion beat 40 year champion Marion

Tinsley * '
= 2007: Checkers solved! SoLVED! T
Chess:

s 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
= 1960-1996: gradual improvements

= 1997: Deep Blue defeats human champion Garry Kasparov EXPERT ~
= 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

Go:
= 1968: Zobrist’s program plays legal Go, barely (b>300!)
= 1968-2005: various ad hoc approaches tried, novice level HUMAN 1=

= 2005-2014: Monte Carlo tree search -> strong amateur
s 2016-2017: AlphaGo defeats human world champions
= 2022: Human exploits NN weakness to defeat top Go programs

Pacman A BR\CK L&

Checkers

Chess

Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

= Pydev - Eclipse

v vy Qv Q- v v v v % v v 5 [Pydev | 59 Team
-] s] o]) —| &
7% C5188 Pacman O -S|

G - Aoy LBM

9/11/2012

Adversarial Games

Types of Games

= Game = task environment with > 1 agent

= Axes:
= Deterministic or stochastic?
s Perfect information (fully observable)?
= Two, three, or more players?

s Teams or individuals?
. . hﬁ
» Turn-taking or simultaneous? = -—

s Zerosum?

= Want algorithms for calculating a strategy (policy) which recommends a move
from every possible state

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s)

= Players: P={1...N} (usually take turns)

» Actions: A (may depend on player/state)
» Transition function:SxA > S

= Terminal test: S = {true, false}

=« Terminal utilities: Sx P - R

= Solution for a player is a policy: S - A

Zero-Sum Games

Zero-Sum Gaknes = General-Sum Games

« Agents havd\opposite utilities|(values on outcomes) » Agents have independent utilities (values on outcomes)

| = Cooperation, indifference, competition, shifting alliances,
and more are all possible

= Pure competiion:

= One maximizes, the other minimizes
= [eam Games

= Common payoff for all team members

Adversarial Search

Single-Agent Trees

Value of a State

(" Value of a state: Non-Terminal States:
The best achievable
outcome (utility)

from that state
) _— 4%
_ -!

E- € - -n
Terminal States:
V(s) = known

max V(s')
s’ €children(s)

Adversarial Game Trees

/\
[__C.@ |

T~ T~
3~ > - ~JN ¢v M €. o

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s') V(s') = min V(s)
s’ €successors(s) sesuccessors(s’)

Terminal States:
V(s) = known

Tic-Tac-Toe Game Tree

MAX (X)
X X X
MIN (0) X X X
X X X
x]o x| o] [Xx
MAX (X) 0
xJo[x] [x[o X0
MIN (0) X X
|
xJo[x] [x[o[x] [x[o]x
TERMINAL o|x| [o]o[x X
0 X[x[o| [X[o|o
Utility -1 0 +1

Adversarial Search (Minimax)

= Deterministic, zero-sum games:
= Tic-tac-toe, chess, checkers
= One player maximizes result

s The other minimizes result

= Minimax search:
= A state-space search tree

= Players alternate turns

= Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

Minimax values:
computed recursively

4)

maxX

i ™
ANVA

Terminal values:
part of the game

Minimax Implementation

(4

ef max-value(state):

~

initialize v = -0
for each successor of state:
v = max(v, min-value(successor))

(4

ef min-value(state):

~

initialize v = +oo
for each successor of state:
v = min(v, max-value(successor))

\ return v

_/

Vis) =

max

V(s')

s’ Esuccessors(s)

\ return v

_/

V(s =

s€successors(s’)

min

Vi(s)

Minimax Implementation (Dispatch)

def value(state):

U

if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

N

4

/def max-value(state): \
initialize v = -o0
for each successor of state:

v = max(v, value(successor))

\ return v J

4

4

/def min-value(state): \
initialize v = +o0
for each successor of state:

v = min(v, value(successor))

\ return v J

Minimax Example

Minimax Properties

maxX

min

10 10 9 100

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

= Pydev - Eclipse

7 — ™y . v
Y 74 CS188 Pacman =.]| — - 9 [Pydev | £° Team

G o« a0 ® 11:43 AM

9/11/2012

Minimax Efficiency

I
@

= How efficient is minimax?
= Just like (exhaustive) DFS
= Time: O(bm)
= Space: O(bm)

s Example: For chess, b =35, m= 100

= Exact solution is completely infeasible

= But, do we need to explore the whole
tree?

Resource Limits

Game Tree Pruning

12

Minimax Pruning

2 14 5 2

The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

= General case (pruning children of MIN node)

We’re computing the MIN-VALUE at some node n
We’re looping over n’s children

n’s estimate of the childrens’ min is dropping
Who cares about n’s value? MAX

Let a be the best value that MAX can get so far at any
choice point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

s Pruning children of MAX node is symmetric

Let B be the best value that MIN can get so far at any
choice point along the current path from the root

MAX

MIN

MAX

MIN

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

~

/def max-value(state, a, B):

initialize v = -o0

for each successor of state:
v = max(v, value(successor, a, B))
ifv>preturnv
a = max(a, v)

\ return v /

¢

ef min-value(state, a, B):

~

initialize v = +o0

for each successor of state:
v = min(v, value(successor, a, B))
if v<areturnv

B =min(p, v)

\ return v /

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
= Important: children of the root may have the wrong value max
= So the most naive version won’t let you do action selection

Good child ordering improves effectiveness of pruning min

With “perfect ordering”:
= Time complexity drops to O(bm/2)
= Doubles solvable depth! 10 10 0
= Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

10

50

Alpha-Beta Quiz 2

Y Y

b s i I

ZANRRVANELVANSR/AN

10 100 20

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves! max

Solution: Depth-limited search

= Instead, search only to a limited depth in the tree : i

= Replace terminal utilities with an evaluation function for non-terminal -
positions

min

Example:
= Suppose we have 100 seconds, can explore 10K nodes / sec

= So can check 1M nodes per move /\< >/\
= 0-f3 reaches about depth 8 — decent chess program

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

<

Video of Demo Thrashing (d=2)

= Pydev - Eclipse

»
74 CS188 Pacman

S

G - a@pe 20OM

9/11/2012

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

v=8

v=8

= A danger of replanning agents!
=« He knows his score will go up by eating the dot now (west, east)
= He knows his score will go up just as much by eating the dot later (east, west)
= There are no point-scoring opportunities after eating the dot (within the horizon, two here)
= Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of
replanning!

Evaluation Functions

Evaluation Functions

= Evaluation functions score non-terminals in depth-limited search

1 Wer X 10t @ &
I 2 &z2212(y 2272 [22
12 €2 [[H B N
I Hz:E N I I =W
HzEH:z:H B o 2kl
- H<H F \ e <l

@ B BsBc << y Cm |zEam @y
|—- nw. 4 n o ~ /_'_’:,___\:‘:_ /_'_’:,___\:‘:_ I. .w: .
Black to move _ White to move
White slightly better Black winning

= ldeal function: returns the actual minimax value of the position
= In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

= E.g. f,(s) = (hum white queens — num black queens), etc.
= Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Evaluation for Pacman

L L L L * L L L

*

]

{nln)

*

» JON-- I
. 4
. * » OCOO””

®
L
L L L L * L L L *
*
*
L
*
*
*

@ *+ » + &+ + + » »

*

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Smart Ghosts (Coordination)

= Pydev - Eclipse

6 —— Y
Y 74 C5188 Pacman — [

A"
z

S

G - a@pe 2Z°M

9/11/2012

Depth Matters

= Evaluation functions are always .
imperfect w
00 M

= The deeper in the tree the ”
evaluation function is buried, the
less the quality of the evaluation
function matters

= An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

= Pydev - Eclipse

4 74 C5188 Pacman

—
SN B R 11:49 AM

9/11/2012

Video of Demo Limited Depth (10)

SCORE: -505

G « a0 e 20M

9/11/2012

Synergies between Evaluation Function and Alpha-Beta?

= Alpha-Beta: amount of pruning depends on expansion ordering

= Evaluation function can provide guidance to expand most promising nodes first (which
later makes it more likely there is already a good alternative on the path to the root)
= (somewhat similar to role of A* heuristic, CSPs filtering)

s Alpha-Beta: (similar for roles of min-max swapped)
=« Value at a min-node will only keep going down
= Once value of min-node lower than better option for max along path to root, can prune

= Hence: IF evaluation function provides upper-bound on value at min-node, and upper-

bound already lower than better option for max along path to root
THEN can prune

Summary

= Games are decision problems with multiple agents

= Huge variety of issues and phenomena depending on details of interactions and payoffs
= For zero-sum games, optimal decisions defined by minimax

= Implementable as a depth-first traversal of the game tree

= Time complexity O(bm), space complexity O(bm)
= Alpha-beta pruning

= Preserves optimal choice at the root

= Alpha/beta values keep track of best obtainable values from any max/min nodes on path
from root to current node

= Time complexity drops to O(b™/2) with ideal node ordering
= Exact solution is impossible even for “small” games like chess

|II

Next Time: Uncertainty!

