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Announcements

▪ HW1 is due Tuesday, July 1, 11:59 PM PT 

▪ HW2 is due Thursday, July 3, 11:59 PM PT 

▪ HW3 is due Tuesday, July 8, 11:59 PM PT 

▪ HW4 is due Thursday, July 10, 11:59 PM PT 

▪ Project 1 is due Friday, July 4, 11:59 PM PT 

▪ Project 2 is due Friday, July 11, 11:59 PM PT 

▪ Midterm is Wednesday July 23, 7-9 PM PT



Outline

▪ History / Overview 

▪ Minimax for Zero-Sum Games 

▪ α-β Pruning  

▪ Finite lookahead and evaluation



Game Playing State of the Art
▪ Checkers:  

▪ 1950: First computer player 
▪ 1959: Samuel’s self-taught program 
▪ 1995: First computer world champion beat 40 year champion Marion 

Tinsley *  
▪ 2007: Checkers solved! 

▪ Chess:  
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.  
▪ 1960-1996: gradual improvements 
▪ 1997: Deep Blue defeats human champion Garry Kasparov 
▪ 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen) 

▪ Go:  
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!) 
▪ 1968-2005: various ad hoc approaches tried, novice level 
▪ 2005-2014: Monte Carlo tree search -> strong amateur 
▪ 2016-2017: AlphaGo defeats human world champions 
▪ 2022: Human exploits NN weakness to defeat top Go programs 

▪ Pacman



Behavior from Computation

[Demo: mystery pacman (L6D1)]



Video of Demo Mystery Pacman



Adversarial Games



▪ Game = task environment with > 1 agent 

▪ Axes: 
▪ Deterministic or stochastic? 
▪ Perfect information (fully observable)? 
▪ Two, three, or more players? 
▪ Teams or individuals? 
▪ Turn-taking or simultaneous? 
▪ Zero sum? 

▪ Want algorithms for calculating a strategy (policy) which recommends a move 
from every possible state

Types of Games



Deterministic Games

▪ Many possible formalizations, one is: 
▪ States: S (start at s0) 
▪ Players: P={1…N} (usually take turns) 
▪ Actions: A (may depend on player/state) 
▪ Transition function: S x A → S 
▪ Terminal test: S → {true, false} 
▪ Terminal utilities: S x P → R 

▪ Solution for a player is a policy: S → A 



Zero-Sum Games

▪ Zero-Sum Games 
▪ Agents have opposite utilities (values on outcomes) 
▪ Pure competition:  

▪ One maximizes, the other minimizes

▪ General-Sum Games 
▪ Agents have independent utilities (values on outcomes) 
▪ Cooperation, indifference, competition, shifting alliances, 

and more are all possible 
▪ Team Games 

▪ Common payoff for all team members



Adversarial Search



Single-Agent Trees

8

2 0 2 6 4 6… …



Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

▪ Deterministic, zero-sum games: 

▪ Tic-tac-toe, chess, checkers 
▪ One player maximizes result 
▪ The other minimizes result 

▪ Minimax search: 

▪ A state-space search tree 
▪ Players alternate turns 
▪ Compute each node’s minimax value: 

the best achievable utility against a 
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values: 
part of the game 

Minimax values: 
computed recursively



Minimax Implementation

def min-value(state): 
initialize v = +∞ 
for each successor of state: 

v = min(v, max-value(successor)) 
return v

def max-value(state): 
initialize v = -∞ 
for each successor of state: 

v = max(v, min-value(successor)) 
return v



Minimax Implementation (Dispatch)

def value(state): 
if the state is a terminal state: return the state’s utility 
if the next agent is MAX: return max-value(state) 
if the next agent is MIN: return min-value(state)

def min-value(state): 
initialize v = +∞ 
for each successor of state: 

v = min(v, value(successor)) 
return v 

def max-value(state): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor)) 
return v



Minimax Example
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Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]



Video of Demo Min vs. Exp (Min)



Video of Demo Min vs. Exp (Exp)



Minimax Efficiency

▪ How efficient is minimax? 
▪ Just like (exhaustive) DFS 
▪ Time: O(bm) 
▪ Space: O(bm) 

▪ Example: For chess, b ≈ 35, m ≈ 100 
▪ Exact solution is completely infeasible 
▪ But, do we need to explore the whole 

tree?



Resource Limits



Game Tree Pruning



Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters: 
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2



Alpha-Beta Pruning

▪ General case (pruning children of MIN node) 
▪ We’re computing the MIN-VALUE at some node n 
▪ We’re looping over n’s children 
▪ n’s estimate of the childrens’ min is dropping 
▪ Who cares about n’s value?  MAX 
▪ Let α be the best value that MAX can get so far at any 

choice point along the current path from the root 
▪ If n becomes worse than α, MAX will avoid it, so we can 

prune n’s other children (it’s already bad enough that it 
won’t be played) 

▪ Pruning children of MAX node is symmetric 
▪ Let β be the best value that MIN can get so far at any 

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n



Alpha-Beta Implementation

def min-value(state , α, β): 
initialize v = +∞ 
for each successor of state: 

v = min(v, value(successor, α, β)) 
if v ≤ α return v 
β = min(β, v) 

return v

def max-value(state, α, β): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor, α, β)) 
if v ≥ β return v 
α = max(α, v) 

return v

α: MAX’s best option on path to root 
β: MIN’s best option on path to root



Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for the root! 

▪ Values of intermediate nodes might be wrong 
▪ Important: children of the root may have the wrong value 
▪ So the most naïve version won’t let you do action selection 

▪ Good child ordering improves effectiveness of pruning 

▪ With “perfect ordering”: 
▪ Time complexity drops to O(bm/2) 
▪ Doubles solvable depth! 
▪ Full search of, e.g. chess, is still hopeless… 

▪ This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Resource Limits



Resource Limits

▪ Problem: In realistic games, cannot search to leaves! 

▪ Solution: Depth-limited search 
▪ Instead, search only to a limited depth in the tree 
▪ Replace terminal utilities with an evaluation function for non-terminal 

positions 

▪ Example: 
▪ Suppose we have 100 seconds, can explore 10K nodes / sec 
▪ So can check 1M nodes per move 
▪ α-β reaches about depth 8 – decent chess program 

▪ Guarantee of optimal play is gone 

▪ More plies makes a BIG difference 

▪ Use iterative deepening for an anytime algorithm
? ? ? ?
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Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]



Why Pacman Starves

▪ A danger of replanning agents! 
▪ He knows his score will go up by eating the dot now (west, east) 
▪ He knows his score will go up just as much by eating the dot later (east, west) 
▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here) 
▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of 

replanning!

v=8 v=-2

v=8 v=8

v=8

v=8



Evaluation Functions



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search 

▪ Ideal function: returns the actual minimax value of the position 
▪ In practice: typically weighted linear sum of features: 

 

▪ E.g.  f1(s) = (num white queens – num black queens), etc. 
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL



Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]



Video of Demo Smart Ghosts (Coordination)



Depth Matters

▪ Evaluation functions are always 
imperfect 

▪ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters 

▪ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10)



Synergies between Evaluation Function and Alpha-Beta?

▪ Alpha-Beta: amount of pruning depends on expansion ordering 
▪ Evaluation function can provide guidance to expand most promising nodes first (which 

later makes it more likely there is already a good alternative on the path to the root) 
▪ (somewhat similar to role of A* heuristic,  CSPs filtering) 

▪ Alpha-Beta:  (similar for roles of min-max swapped) 
▪ Value at a min-node will only keep going down 
▪ Once value of min-node lower than better option for max along path to root, can prune 
▪ Hence: IF evaluation function provides upper-bound on value at min-node, and upper-

bound already lower than better option for max along path to root  
THEN can prune



Summary

▪ Games are decision problems with multiple agents 
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs 

▪ For zero-sum games, optimal decisions defined by minimax 
▪ Implementable as a depth-first traversal of the game tree 
▪ Time complexity O(bm), space complexity O(bm) 

▪ Alpha-beta pruning 
▪ Preserves optimal choice at the root 
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path 

from root to current node 
▪ Time complexity drops to O(bm/2) with ideal node ordering  

▪ Exact solution is impossible even for “small” games like chess



Next Time: Uncertainty!


