
CS 188: Artificial Intelligence
Game Trees: Adversarial Search

Instructors: Oliver Grillmeyer
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).
[Updated slides from: Stuart Russell and Dawn Song]

Announcements

▪ HW1 is due Tuesday, July 1, 11:59 PM PT

▪ HW2 is due Thursday, July 3, 11:59 PM PT

▪ HW3 is due Tuesday, July 8, 11:59 PM PT

▪ HW4 is due Thursday, July 10, 11:59 PM PT

▪ Project 1 is due Friday, July 4, 11:59 PM PT

▪ Project 2 is due Friday, July 11, 11:59 PM PT

▪ Midterm is Wednesday July 23, 7-9 PM PT

Outline

▪ History / Overview

▪ Minimax for Zero-Sum Games

▪ α-β Pruning

▪ Finite lookahead and evaluation

Game Playing State of the Art
▪ Checkers:

▪ 1950: First computer player
▪ 1959: Samuel’s self-taught program
▪ 1995: First computer world champion beat 40 year champion Marion

Tinsley *
▪ 2007: Checkers solved!

▪ Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
▪ 1960-1996: gradual improvements
▪ 1997: Deep Blue defeats human champion Garry Kasparov
▪ 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

▪ Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)
▪ 1968-2005: various ad hoc approaches tried, novice level
▪ 2005-2014: Monte Carlo tree search -> strong amateur
▪ 2016-2017: AlphaGo defeats human world champions
▪ 2022: Human exploits NN weakness to defeat top Go programs

▪ Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Adversarial Games

▪ Game = task environment with > 1 agent

▪ Axes:
▪ Deterministic or stochastic?
▪ Perfect information (fully observable)?
▪ Two, three, or more players?
▪ Teams or individuals?
▪ Turn-taking or simultaneous?
▪ Zero sum?

▪ Want algorithms for calculating a strategy (policy) which recommends a move
from every possible state

Types of Games

Deterministic Games

▪ Many possible formalizations, one is:
▪ States: S (start at s0)
▪ Players: P={1…N} (usually take turns)
▪ Actions: A (may depend on player/state)
▪ Transition function: S x A → S
▪ Terminal test: S → {true, false}
▪ Terminal utilities: S x P → R

▪ Solution for a player is a policy: S → A

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)
▪ Pure competition:

▪ One maximizes, the other minimizes

▪ General-Sum Games
▪ Agents have independent utilities (values on outcomes)
▪ Cooperation, indifference, competition, shifting alliances,

and more are all possible
▪ Team Games

▪ Common payoff for all team members

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers
▪ One player maximizes result
▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree
▪ Players alternate turns
▪ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

v=3

v=3

v=2 v=14v=14 5v=14 5 2

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS
▪ Time: O(bm)
▪ Space: O(bm)

▪ Example: For chess, b ≈ 35, m ≈ 100
▪ Exact solution is completely infeasible
▪ But, do we need to explore the whole

tree?

Resource Limits

Game Tree Pruning

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2

Alpha-Beta Pruning

▪ General case (pruning children of MIN node)
▪ We’re computing the MIN-VALUE at some node n
▪ We’re looping over n’s children
▪ n’s estimate of the childrens’ min is dropping
▪ Who cares about n’s value? MAX
▪ Let α be the best value that MAX can get so far at any

choice point along the current path from the root
▪ If n becomes worse than α, MAX will avoid it, so we can

prune n’s other children (it’s already bad enough that it
won’t be played)

▪ Pruning children of MAX node is symmetric
▪ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for the root!

▪ Values of intermediate nodes might be wrong
▪ Important: children of the root may have the wrong value
▪ So the most naïve version won’t let you do action selection

▪ Good child ordering improves effectiveness of pruning

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)
▪ Doubles solvable depth!
▪ Full search of, e.g. chess, is still hopeless…

▪ This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-terminal

positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ α-β reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)
▪ He knows his score will go up just as much by eating the dot later (east, west)
▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)
▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of

replanning!

v=8 v=-2

v=8 v=8

v=8

v=8

Evaluation Functions

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ E.g. f1(s) = (num white queens – num black queens), etc.
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Smart Ghosts (Coordination)

Depth Matters

▪ Evaluation functions are always
imperfect

▪ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

▪ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evaluation Function and Alpha-Beta?

▪ Alpha-Beta: amount of pruning depends on expansion ordering
▪ Evaluation function can provide guidance to expand most promising nodes first (which

later makes it more likely there is already a good alternative on the path to the root)
▪ (somewhat similar to role of A* heuristic, CSPs filtering)

▪ Alpha-Beta: (similar for roles of min-max swapped)
▪ Value at a min-node will only keep going down
▪ Once value of min-node lower than better option for max along path to root, can prune
▪ Hence: IF evaluation function provides upper-bound on value at min-node, and upper-

bound already lower than better option for max along path to root
THEN can prune

Summary

▪ Games are decision problems with multiple agents
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs

▪ For zero-sum games, optimal decisions defined by minimax
▪ Implementable as a depth-first traversal of the game tree
▪ Time complexity O(bm), space complexity O(bm)

▪ Alpha-beta pruning
▪ Preserves optimal choice at the root
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
▪ Time complexity drops to O(bm/2) with ideal node ordering

▪ Exact solution is impossible even for “small” games like chess

Next Time: Uncertainty!

