

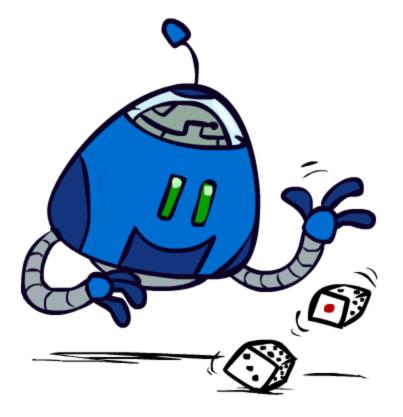
University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

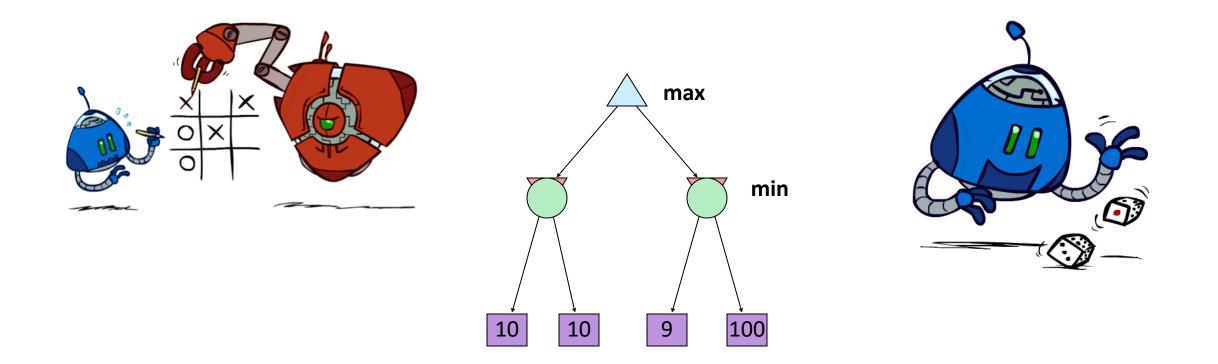
Announcements

- HW2 is due Thursday, July 3, 11:59 PM PT
- HW3 is due Tuesday, July 8, 11:59 PM PT
- HW4 is due Thursday, July 10, 11:59 PM PT
- Project 1 is extended to Monday, July 7, 11:59 PM PT (bonus credit if you get it done by Friday July 4, 11:59 PM PT)
- Project 2 is due Friday, July 11, 11:59 PM PT
- Midterm is Wednesday July 23, 7-9 PM PT

Uncertain Outcomes



Worst-Case vs. Average Case

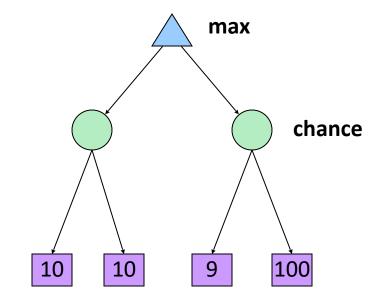


Idea: Uncertain outcomes controlled by chance, not an adversary!

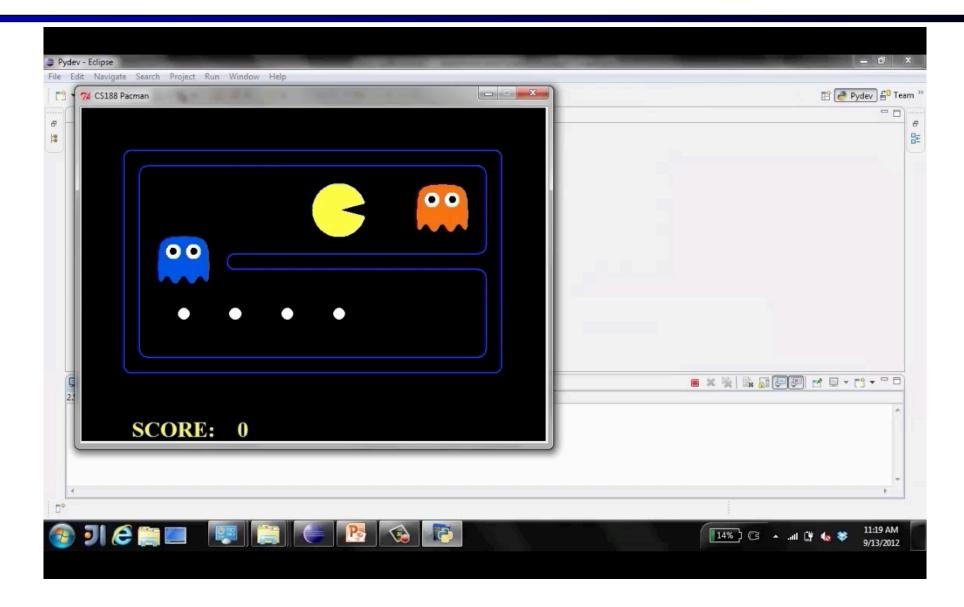
Expectimax Search

Why wouldn't we know what the result of an action will be?

- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes



Video of Demo Minimax vs Expectimax (Min)



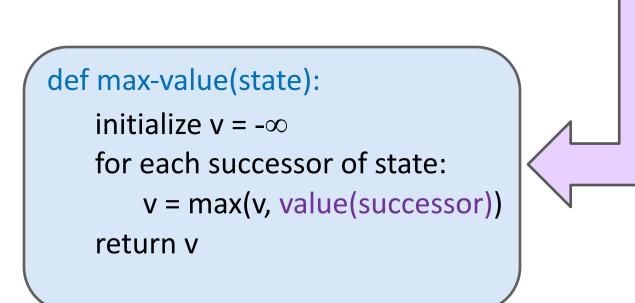
Video of Demo Minimax vs Expectimax (Exp)

dit Navigate Search Project Run Window Help	
• 🔄 🗎 🎄 • 💽 • 💁 • 📴 • 🖗 • 🖓 • 🔂 • 🖓 • 🖏 • 🖓 • 🗘 •	🖺 📑 Pydev
	E
Console 🛛	
terminated> 2.5 acman died! Score: -501	

Expectimax Pseudocode

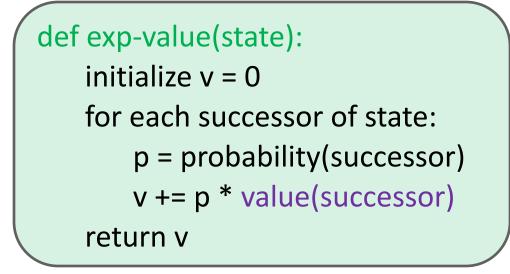
def value(state):

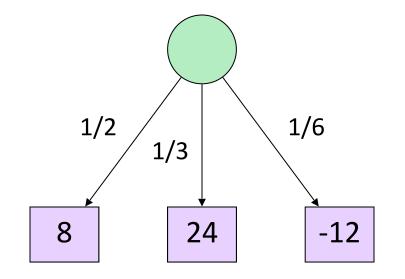
if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)



def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

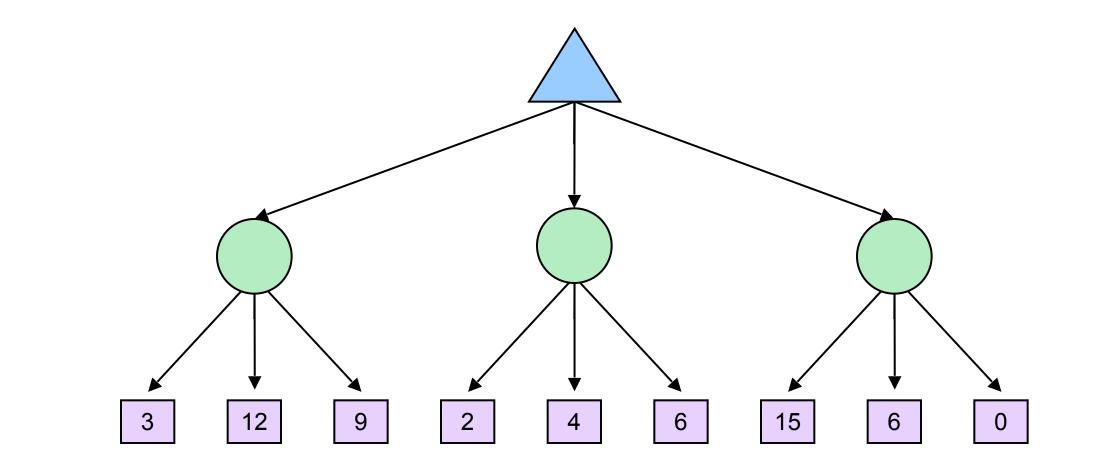
Expectimax Pseudocode



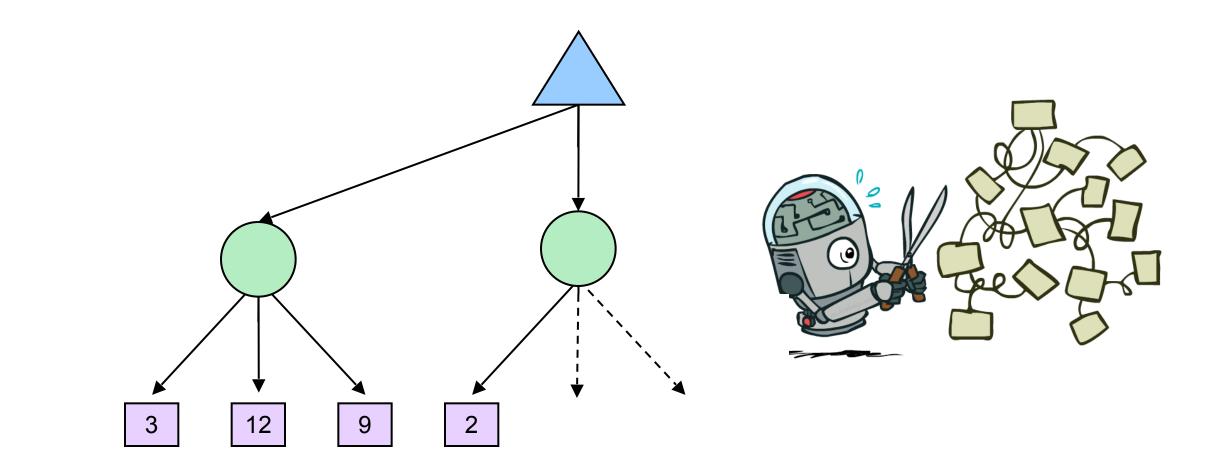


v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

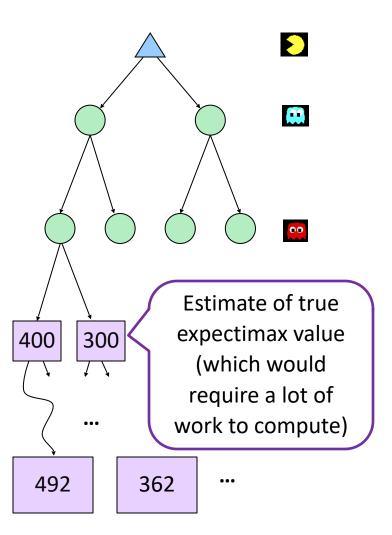
Expectimax Example



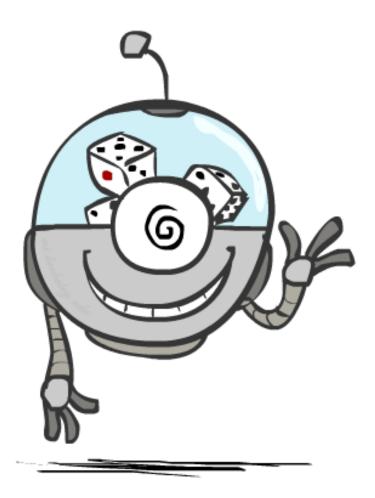
Expectimax Pruning?



Depth-Limited Expectimax

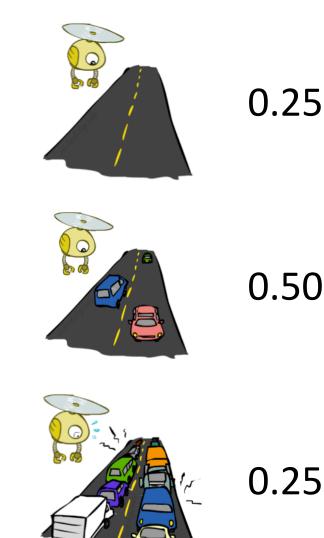


Probabilities



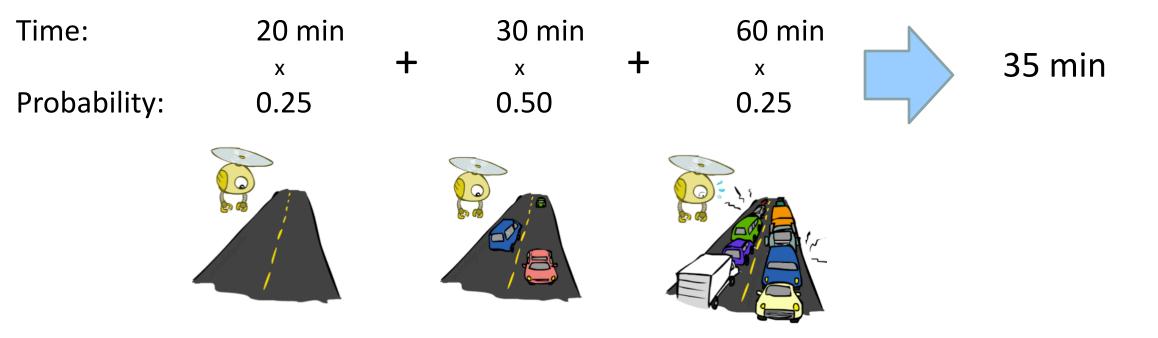
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later



Reminder: Expectations

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?





What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

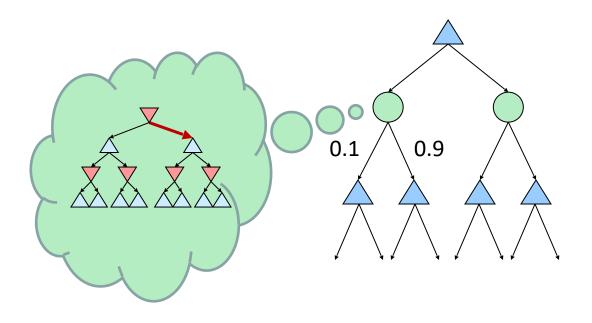
 $\mathbf{\Sigma}$

00

 $\mathbf{\Sigma}$

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

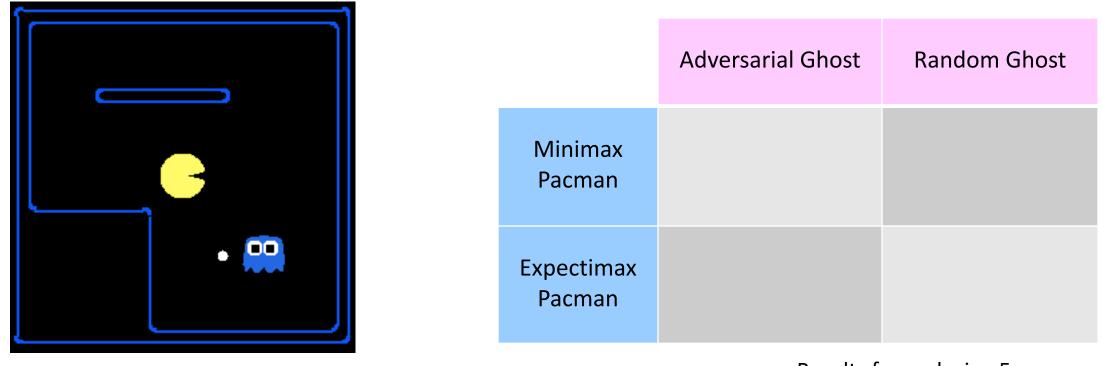
The Dangers of Optimism and Pessimism

Dangerous Optimism Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

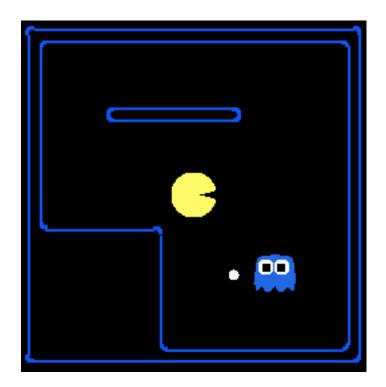


Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Assumptions vs. Reality



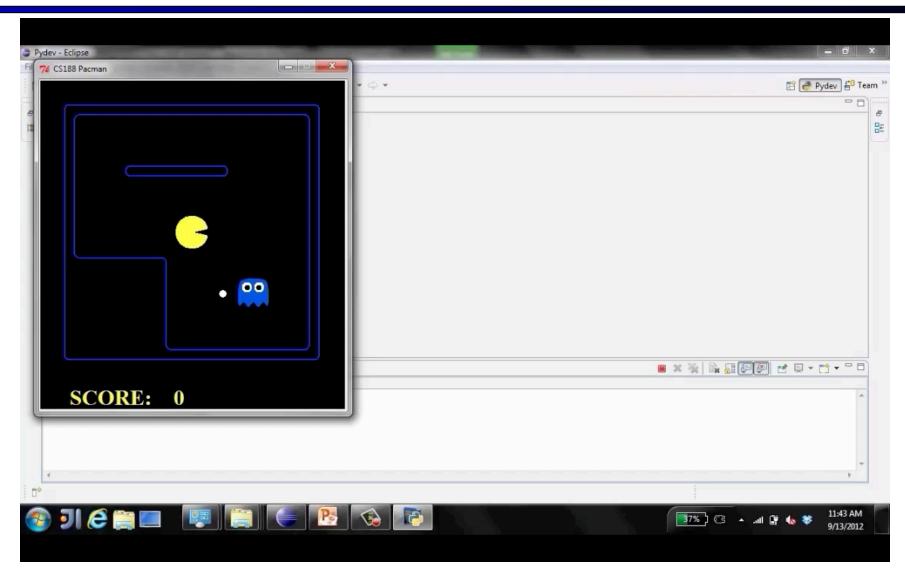
	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

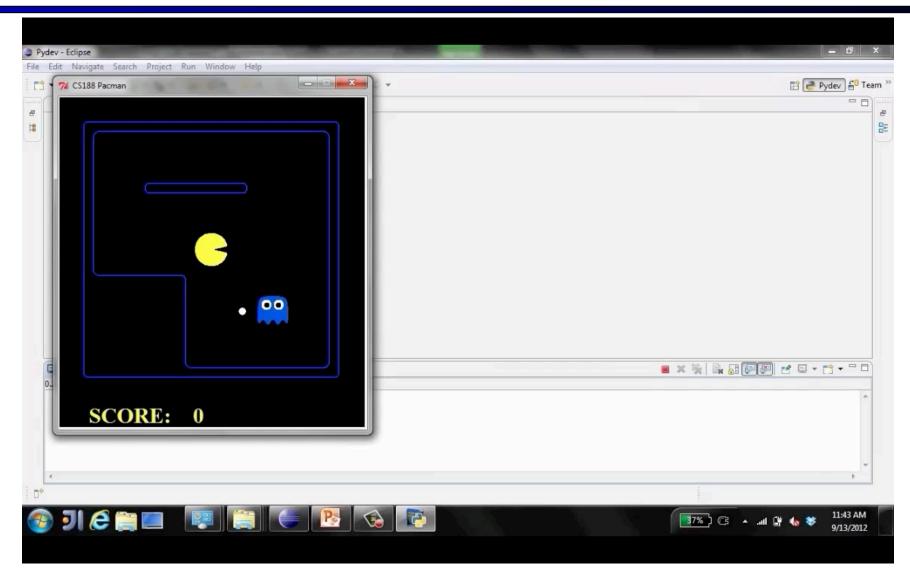
Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

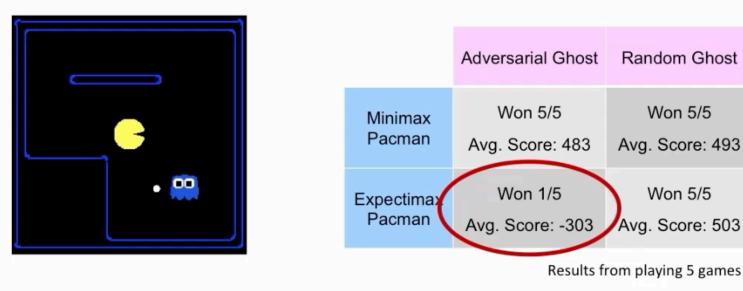


Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Assumptions vs. Reality



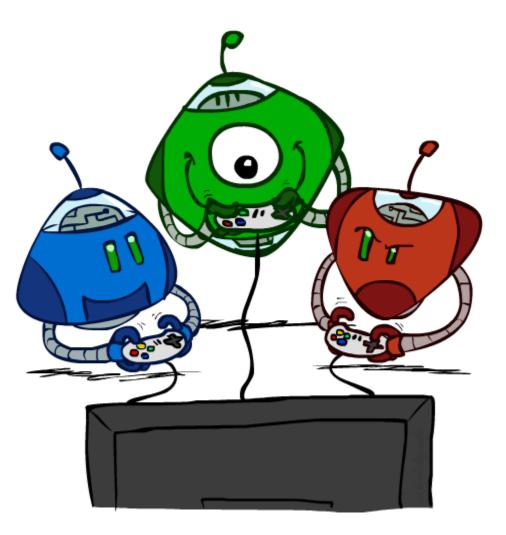
Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[demo: world assumptions]

Video of Demo World Assumptions Random Ghost – Minimax Pacman

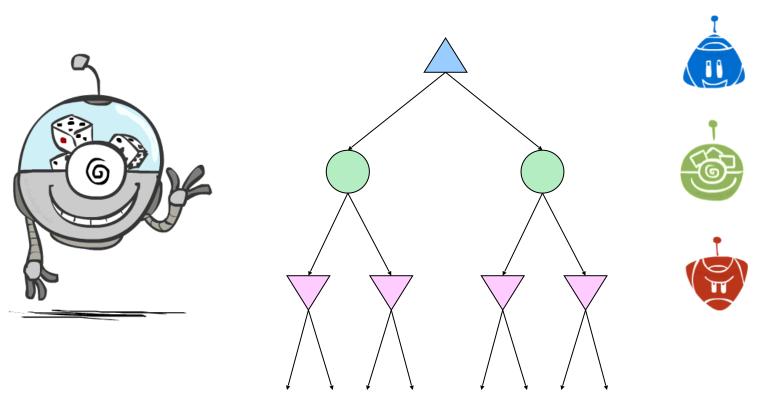
Pydev - Eclipse File Edit Navigate Search Project Run Window Help	_ 0 ×
	🖽 🥐 Pydev 😤 Team
7% CS188 Pacman	
Console	
SCORE: -1	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •
® J & C	■38%) C3 ▲tl 🛱 🌜 🍣 11:44 AM 9/13/2012

Other Game Types



Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children



Example: Backgammon

- Dice rolls increase *b*: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities

What if the game is not zero-sum, or has multiple players?

1,6,6

7,1,2

<mark>6,1,</mark>2

7,2,1

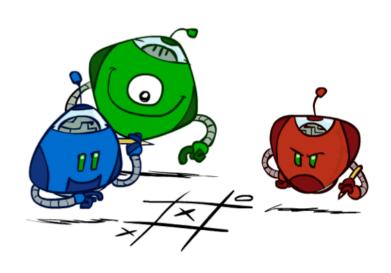
<mark>5,1</mark>,7

1,5,2

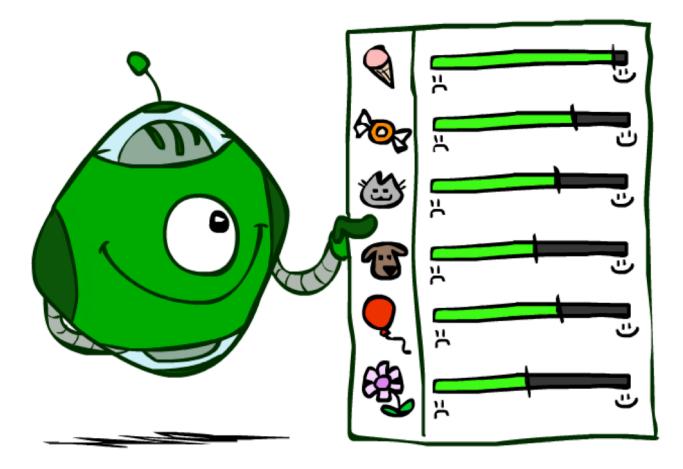
<mark>5,2</mark>,5

7,7,1

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...



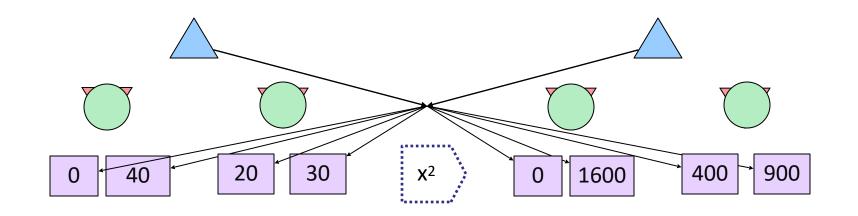
Utilities



Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging even makes sense?
 - What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

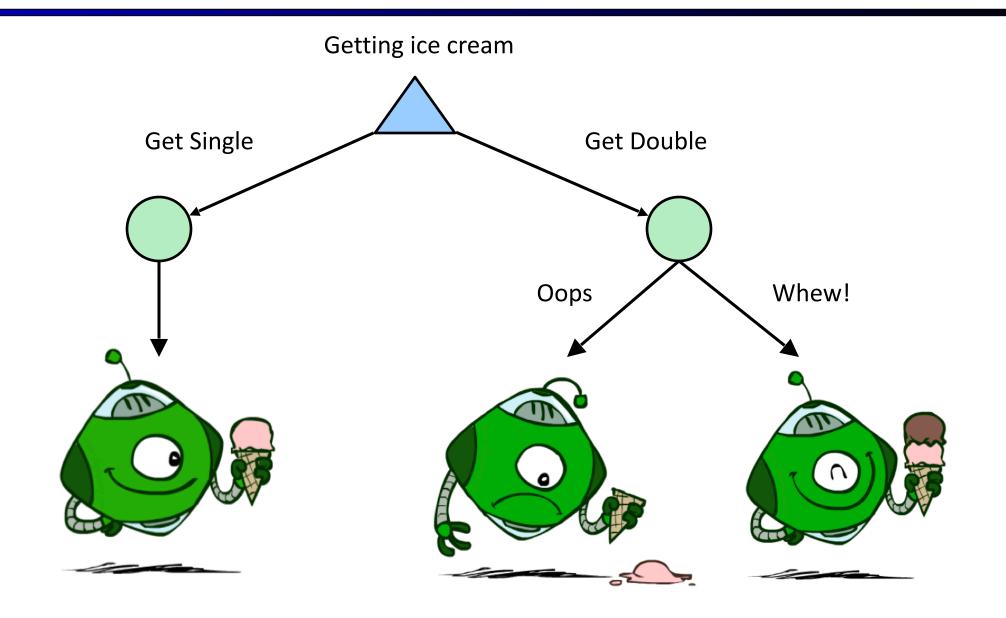


- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don't we let agents pick utilities?
 - Why don't we prescribe behaviors?

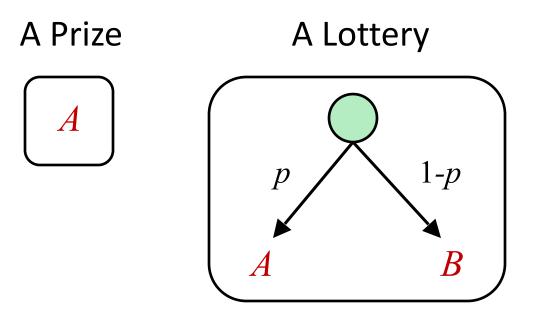
Utilities: Uncertain Outcomes



Preferences

- An agent must have preferences among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes

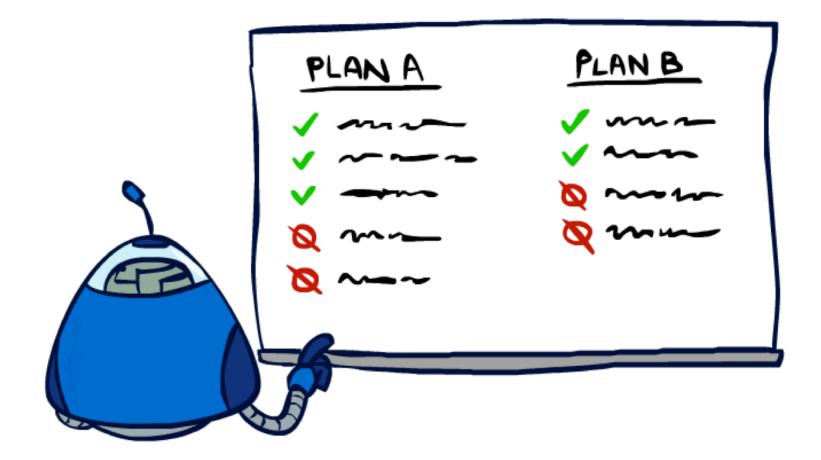
L = [p, A; (1 - p), B]



Notation:

- Preference: $A \succ B$
- Indifference: $A \sim B$

Rationality

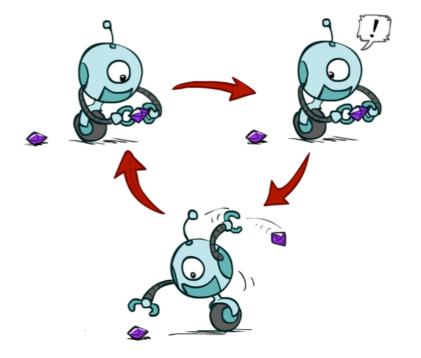


Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C



Rational Preferences

The Axioms of Rationality

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

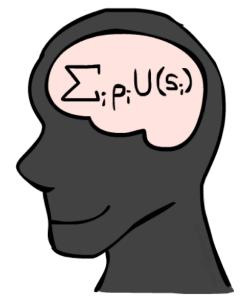
Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

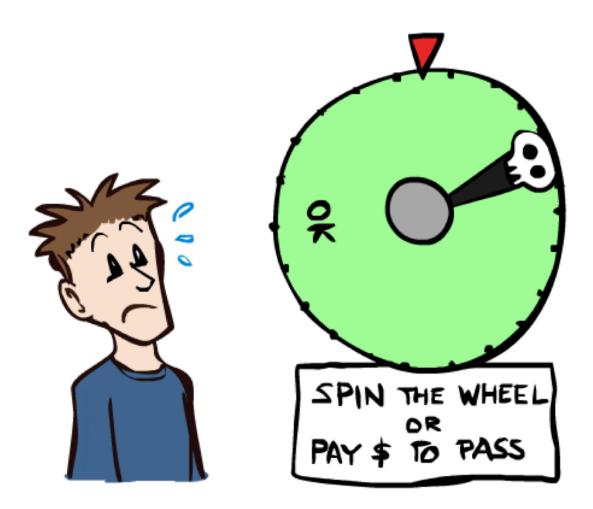
- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

 $U(A) \ge U(B) \iff A \succeq B$ $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner



Human Utilities



Utility Scales

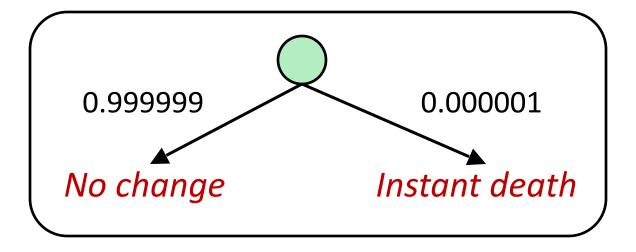
- Normalized utilities: $u_{+} = 1.0$, $u_{-} = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

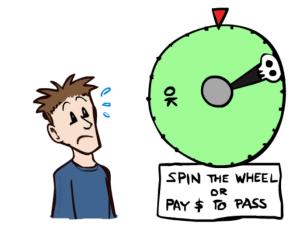
$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

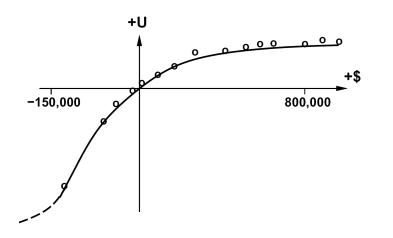
- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - Compare a prize A to a standard lottery L_p between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u_{_} with probability 1-p
 - Adjust lottery probability p until indifference: A ~ L_p
 - Resulting p is a utility in [0,1]





Money

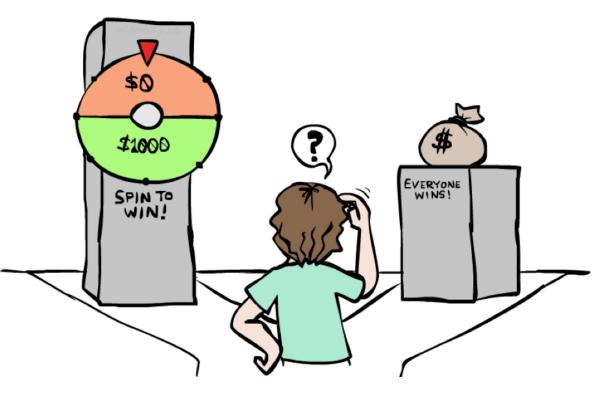
- Money <u>does not</u> behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
 - The expected monetary value EMV(L) is p*X + (1-p)*Y
 - $U(L) = p^*U(\$X) + (1-p)^*U(\$Y)$
 - Typically, U(L) < U(EMV(L))</p>
 - In this sense, people are risk-averse
 - When deep in debt, people are risk-prone



Example: Insurance

Consider the lottery [0.5, \$1000; 0.5, \$0]

- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
- Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
- It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)

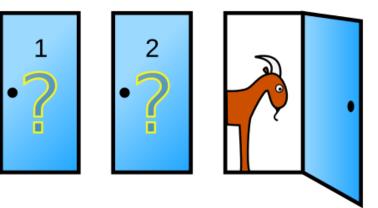


Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8, \$4k; 0.2, \$0] <
 - B: [1.0, \$3k; 0.0, \$0]
 - C: [0.2, \$4k; 0.8, \$0]
 - D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - B > A ⇒ U(\$3k) > 0.8 U(\$4k)
 - C > D ⇒ 0.8 U(\$4k) > U(\$3k)

Example: Monty Hall Problem

- Based on the game Let's Make a Deal, hosted by Monty Hall
 You have three doors to choose from, behind one is a car, behind the other two, goats. You pick a door, but before it is opened, Monty Hall opens a door with a goat, and asks you if you want to change your choice
 - A: [0.33, car; 0.33, goat; 0.33, goat]
 - B: [???, car; ???, goat]



- Most people think the odds of winning the car are the same between the two remaining doors.
- Are they?

Next Time: MDPs!