CS 188: Artificial Intelligence

Markov Decision Processes



Instructors: Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

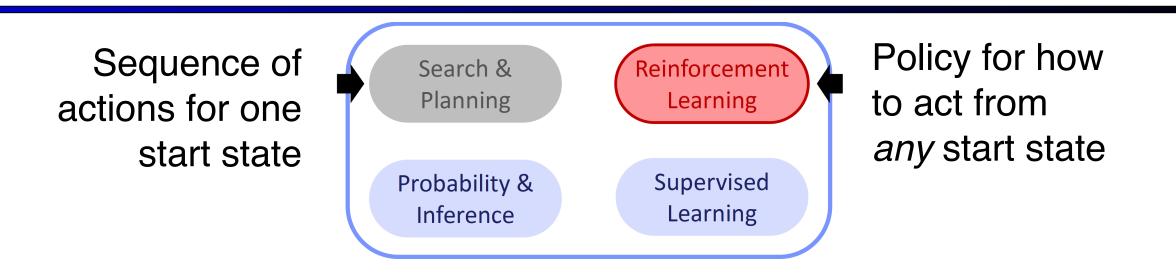
Announcements

- HW2 is due Thursday, July 3, 11:59 PM PT
- HW3 is due Tuesday, July 8, 11:59 PM PT
- HW4 is due Thursday, July 10, 11:59 PM PT
- Project 1 is extended to Monday, July 7, 11:59 PM PT (bonus credit if you get it done by Friday July 4, 11:59 PM PT)
- Project 2 is due Friday, July 11, 11:59 PM PT
- Midterm is Wednesday July 23, 7-9 PM PT

Example: Human Rationality?

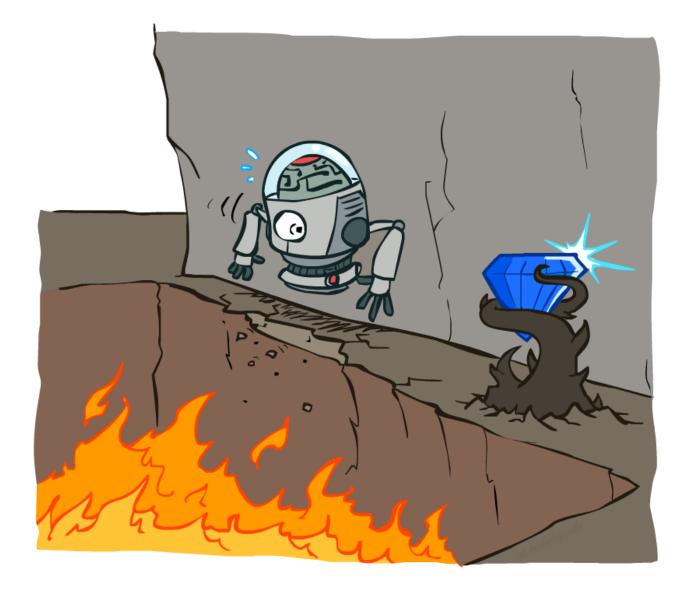
- Famous example of Allais (1953)
 - A: [0.8, \$4k; 0.2, \$0] <
 - B: [1.0, \$3k; 0.0, \$0]
 - C: [0.2, \$4k; 0.8, \$0]
 - D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - B > A ⇒ U(\$3k) > 0.8 U(\$4k)
 - C > D ⇒ 0.8 U(\$4k) > U(\$3k)

Preview of next 4 lectures



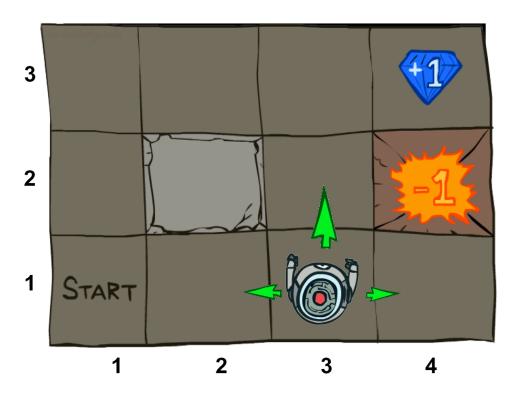
- MDPs: pre-compute policies
 - Know the model of the world
- Reinforcement Learning: learn policies from trial and error
 - Learn only from interactions with the world

Non-Deterministic Search

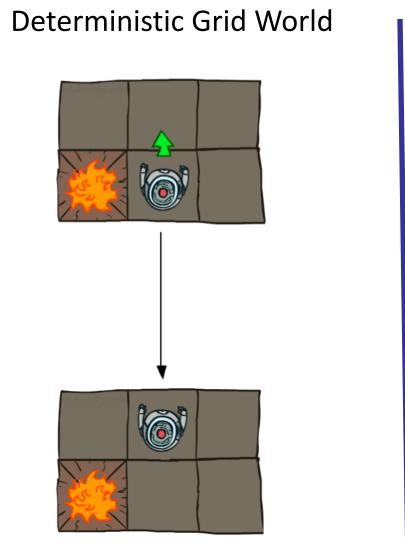


Example: Grid World

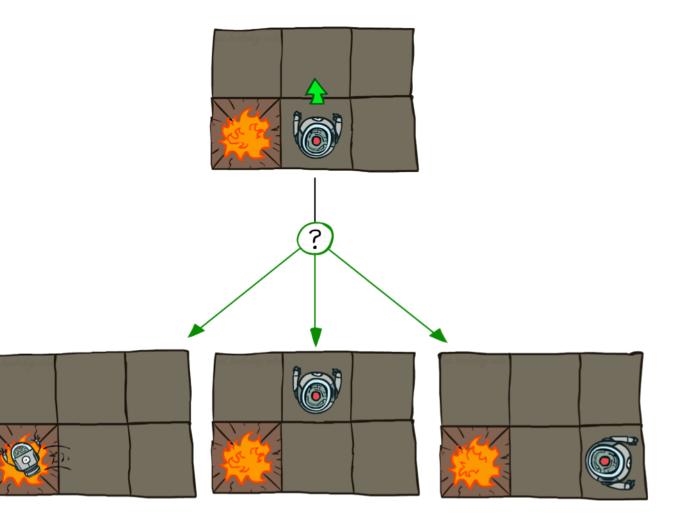
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



Grid World Actions



Stochastic Grid World

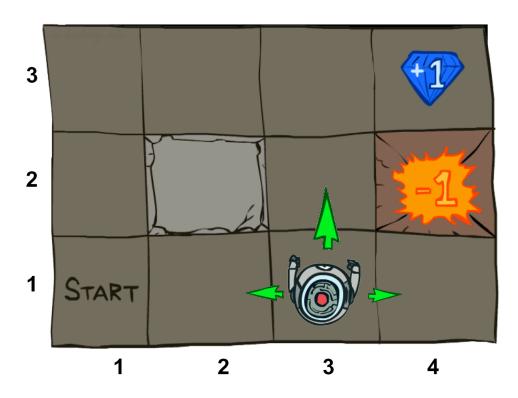


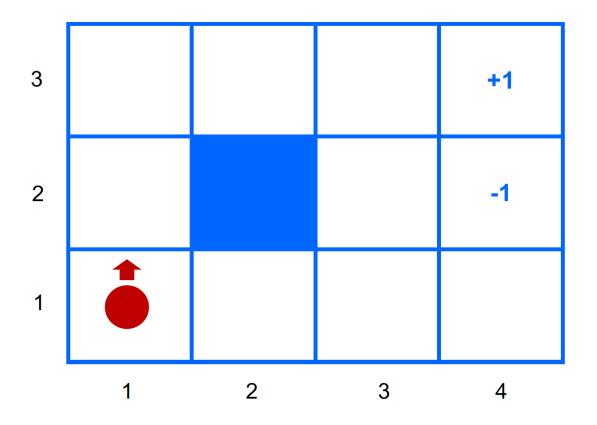
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon

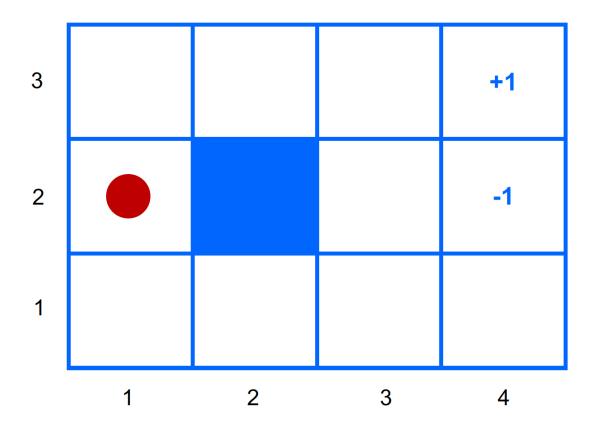




S	а	s'	R
(1,1)	north		

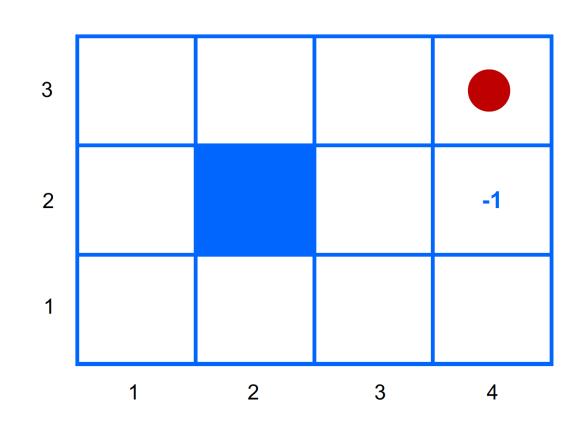
T(s, a, s'):

- T((1,1), north, (2,1)) = 0.8
- T((1,1), north, (1,2)) = 0.1
- T((1,1), north, (1,1)) = 0.1



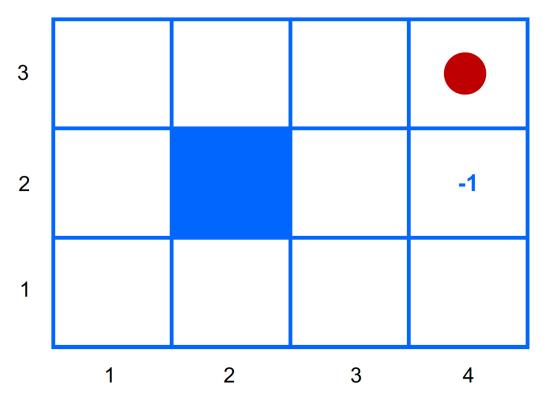
S	а	s'	R
(1,1)	north	(2,1)	-0.1

R(s, a, s'): R((1,1), north, (2,1)) = -0.1



S	а	S'	R
(1,1)	north	(2,1)	-0.1
(1,1)	north	(1,2)	-0.1
(2,1)	north	(3,1)	-0.1
(1,2)	west	(1,1)	-0.1
(3,1)	east	(2,1)	-0.1
(3,1)	east	(3,2)	-0.1
(3,2)	east	(3,3)	-0.1
(1,3)	west	(1,2)	-0.1
(1,3)	west	(2,3)	-0.1
(2,3)	west	(1,3)	-0.1
(2,3)	west	(3,3)	-0.1
(1,4)	south	(1,3)	-0.1
(3,3)	east	(3,4)	-0.1
(3,3)	east	(2,3)	-0.1
(3,4)	exit	gameover	1.0

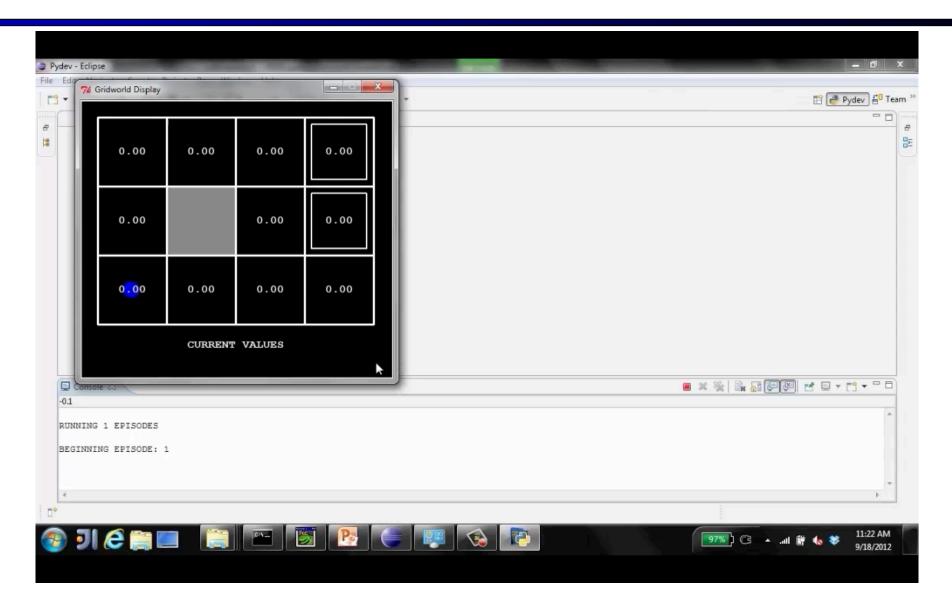
Q: What's missing from the state transition table?



A: All the same-state transitions

s	а	s'	R
(1,1)	north	(1,1)	-0.1
(2,1)	north	(2,1)	-0.1
(1,2)	west	(1,2)	-0.1
(3,1)	east	(3,1)	-0.1
(3,2)	east	(3,2)	-0.1
(1,3)	west	(1,3)	-0.1
(2,3)	west	(2,3)	-0.1
(1,4)	south	(1,4)	-0.1
(3,3)	east	(3,3)	-0.1

Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

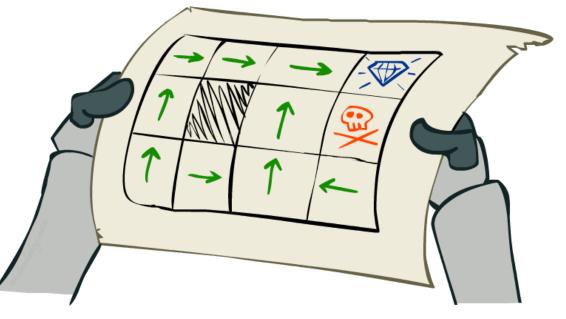
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

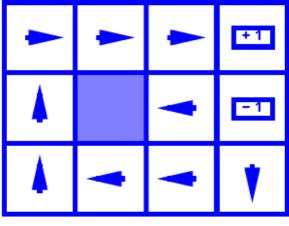
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

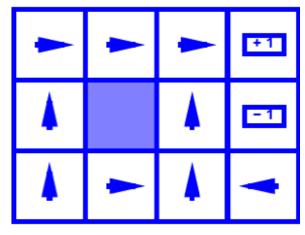


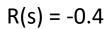
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

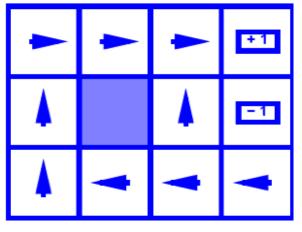
Optimal Policies



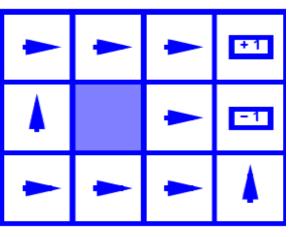
R(s) = -0.01





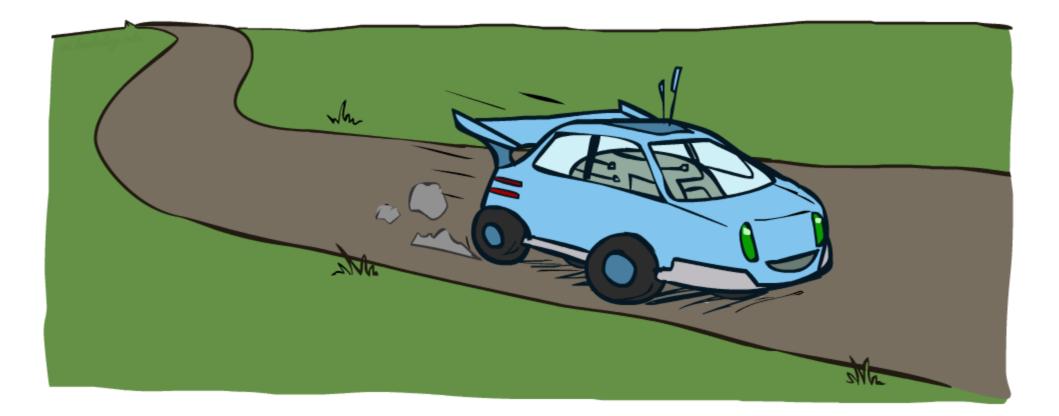


R(s) = -0.03



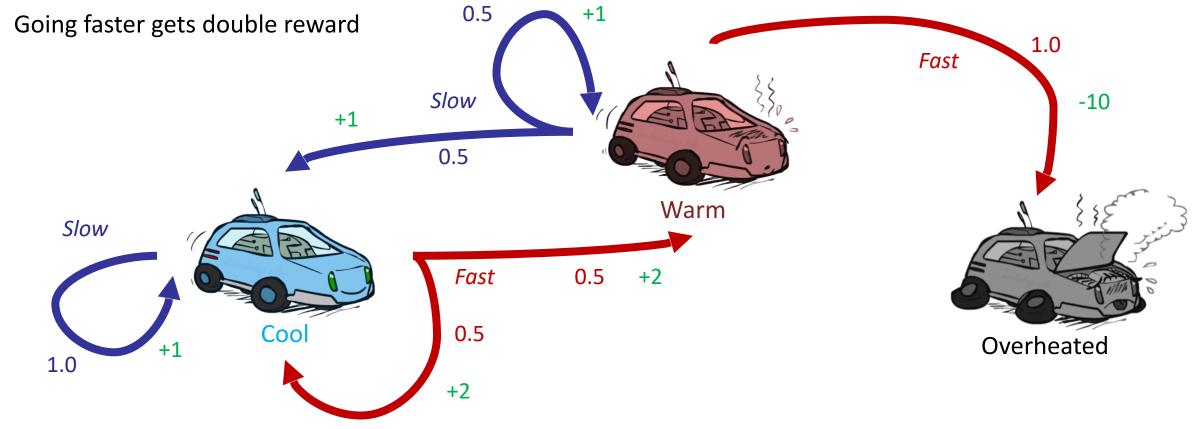
R(s) = -2.0

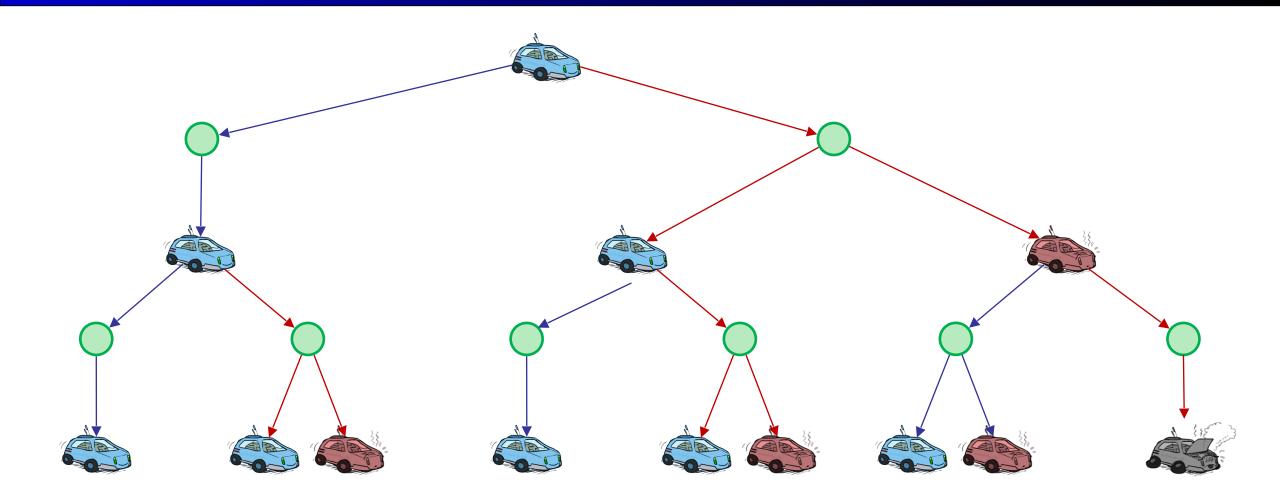
Example: Racing



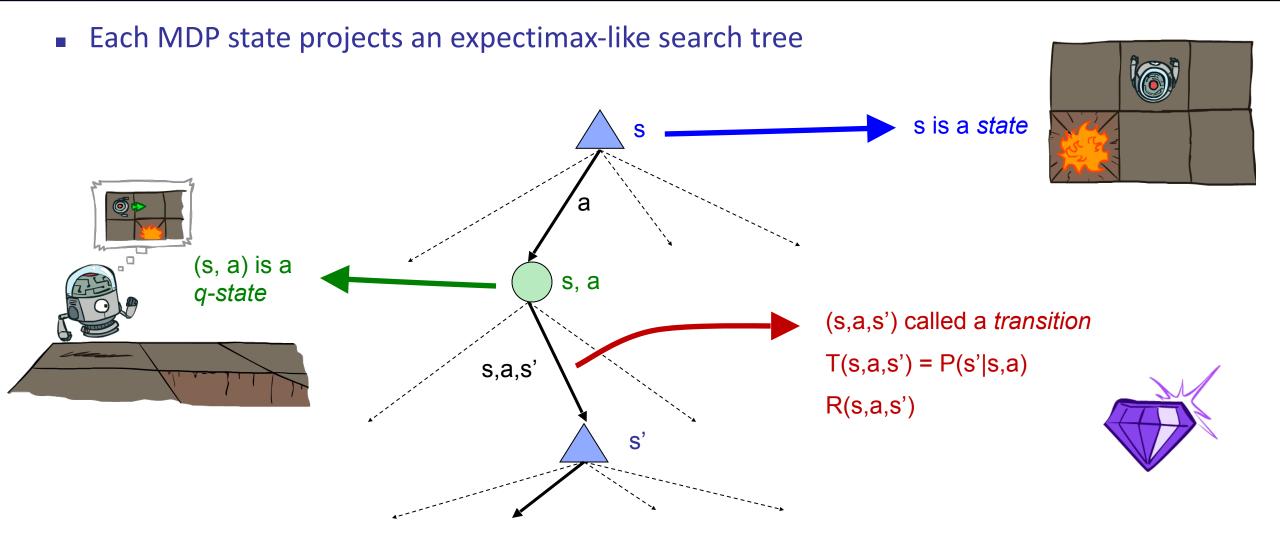
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

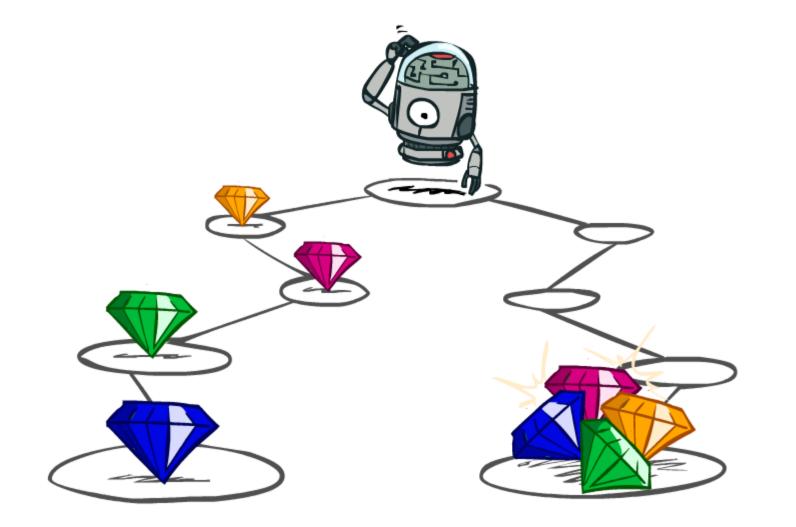




MDP Search Trees

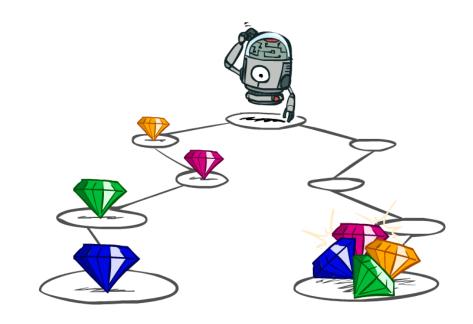


Utilities of Sequences



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

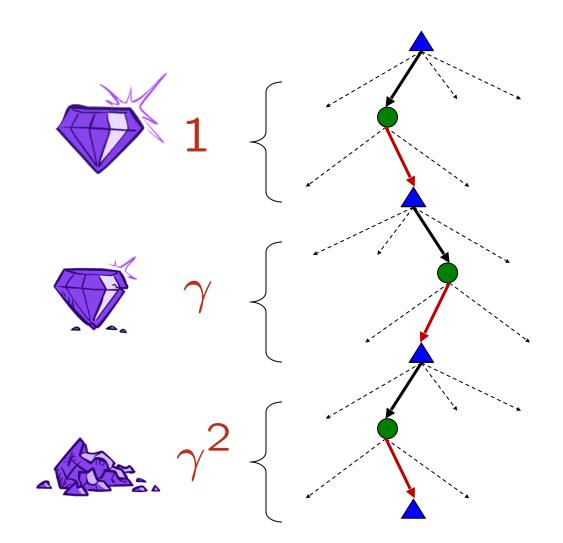


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

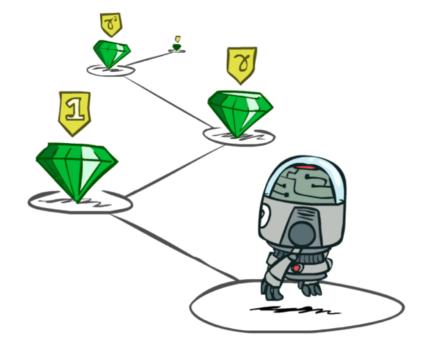


Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
 - Additive utility:

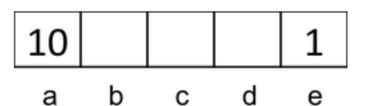
$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

Quiz: Discounting

Given:



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

10				1
----	--	--	--	---

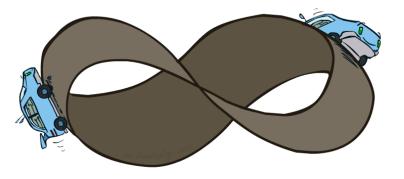
- Quiz 2: For γ = 0.1, what is the optimal policy?
- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

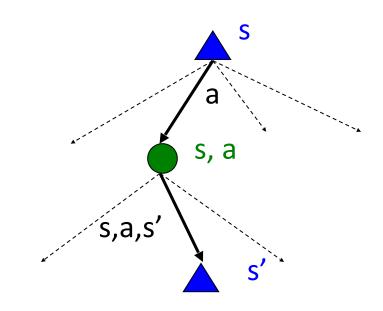
- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



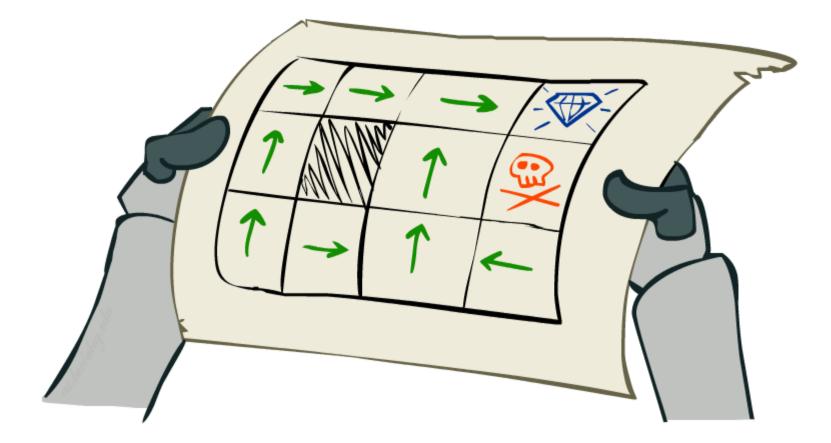
Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

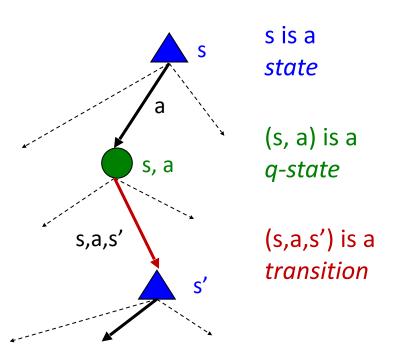


Solving MDPs



Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

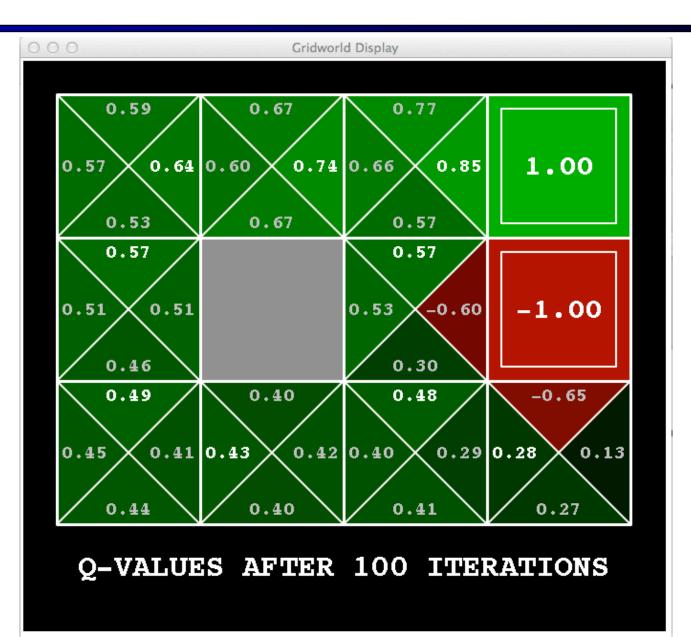


Snapshot of Demo – Gridworld V Values

C C Cridworld Display				
	0.64 →	0.74 →	0.85)	1.00
	• 0.57		• 0.57	-1.00
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Demo – Gridworld Q Values



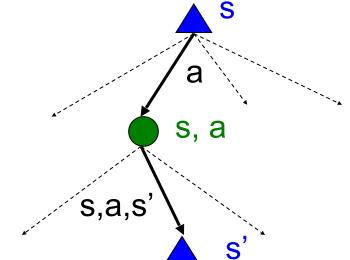
Noise = 0.2 Discount = 0.9 Living reward = 0

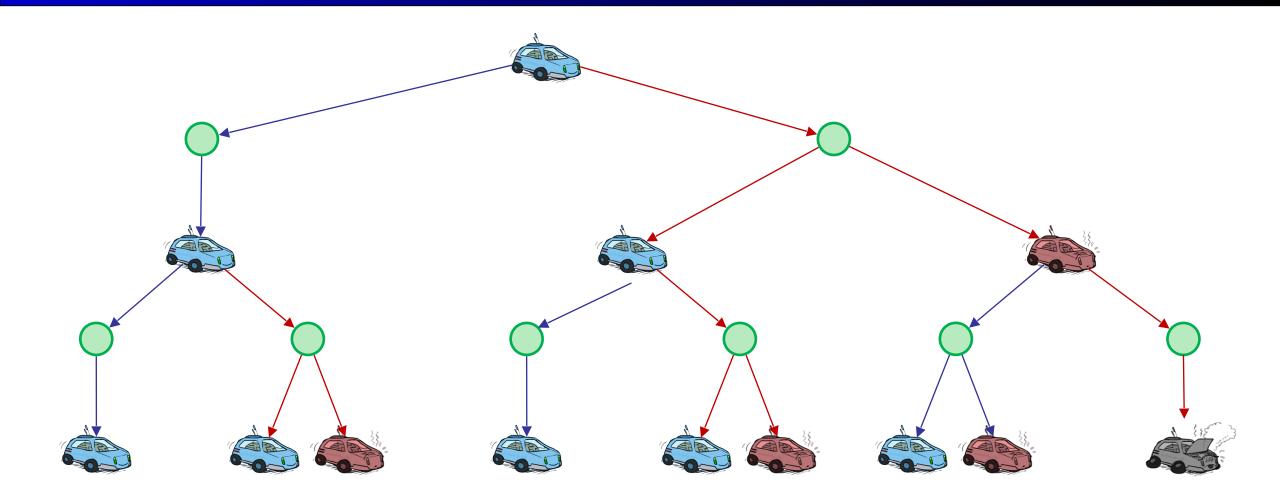
Values of States

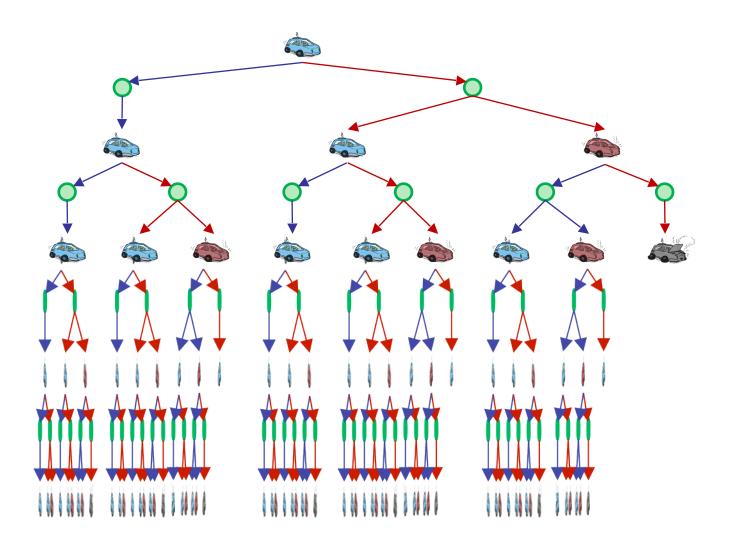
Fundamental operation: compute the (expectimax) value of a state

- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!
- Recursive definition of value:

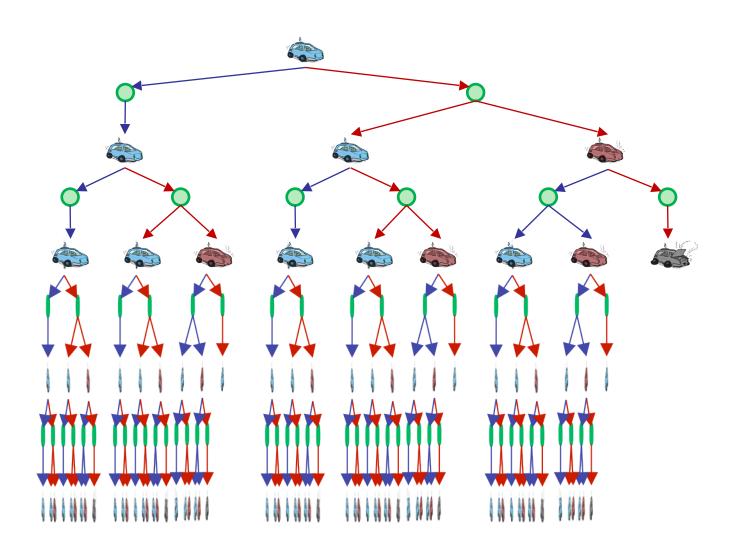
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$





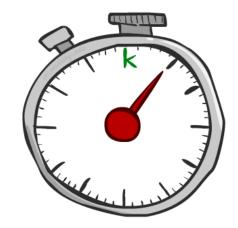


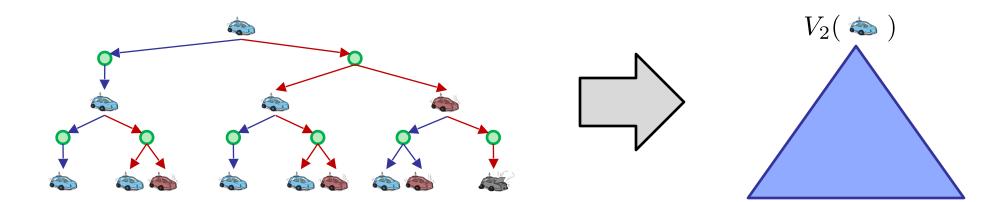
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





0 0	Gridworl	d Display	
•		^	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
•	^	^	^
0.00	0.00	0.00	0.00
VALU	ES AFTER	0 ITERA	

00	0	Gridworl	d Display	_
	0.00	0.00	0.00 →	1.00
	0.00		∢ 0.00	-1.00
		•	^	
	A AA	0 00	A AA	0.00
	0.00	0.00	0.00	0.00
				•
	17 N T - T IT			
	VALUE	AFTER	1 ITERA	FIONS

k=2

00	Gridworl	d Display	
•	0.00 >	0.72 →	1.00
•		• 0.00	-1.00
•	•	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

k=3

0 0	0	Gridworl	d Display	
	0.00 >	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUE	S AFTER	3 ITERA	LIONS

k=4

00	0	Gridworl	d Display	_
	0.37 ▶	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

k=5

000		Gridworl	d Display	
	0.51)	0.72)	0.84)	1.00
	▲ 0.27		• 0.55	-1.00
	• 0.00	0.22 →	• 0.37	∢ 0.13
	VALUE	S AFTER	5 ITERA	FIONS

k=6

000		Gridworl	d Display	
	0.59 →	0.73 →	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
	VALUE	S AFTER	6 ITERA	FIONS

0 0	0	Gridworl	d Display	_
	0.62)	0.74)	0.85)	1.00
	• 0.50		• 0.57	-1.00
	• 0.34	0.36)	▲ 0.45	∢ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

k=8

00	0	Gridworl	d Display	
	0.63 →	0.74 →	0.85 →	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

k=9

000	Gridworl	d Display	
0.64 →	0.74 →	0.85)	1.00
0.55		• 0.57	-1.00
• 0.46	0.40 →	• 0.47	∢ 0.27
VALUE	S AFTER	9 ITERAT	CIONS

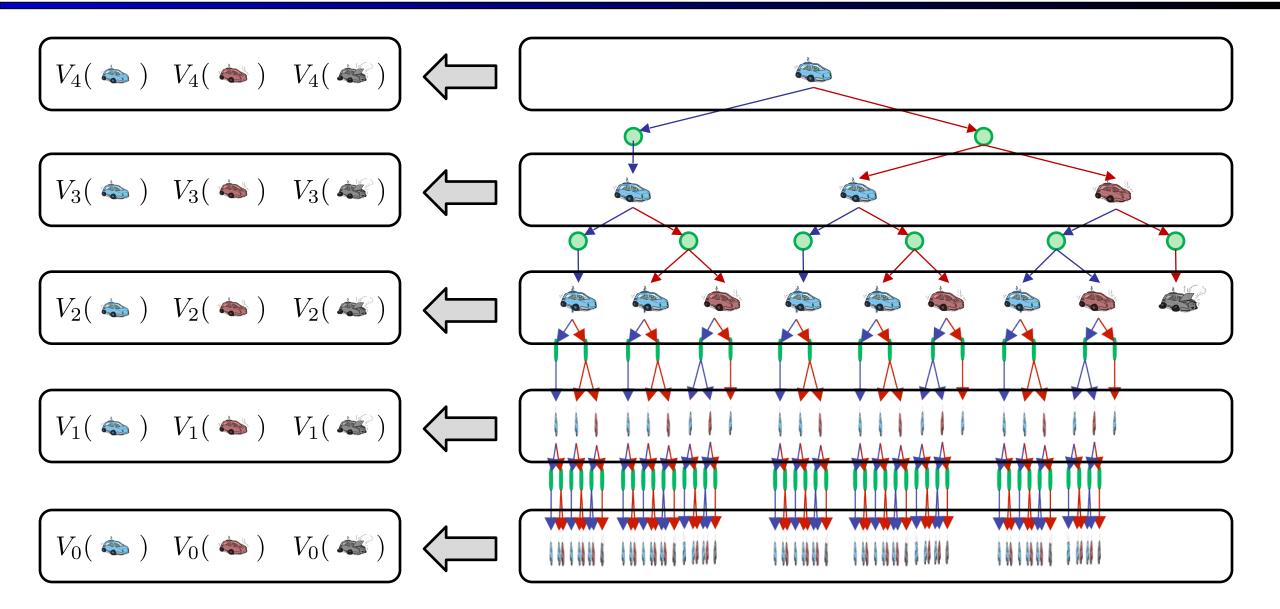
00	0	Gridwork	d Display	-
	0.64 →	0.74 ▸	0.85)	1.00
	• 0.56		• 0.57	-1.00
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27
	VALUE	S AFTER	10 ITERA	TIONS

000		Gridworl	d Display	
	0.64)	0.74)	0.85)	1.00
	• 0.56		• 0.57	-1.00
	• 0.48	∢ 0.42	• 0.47	∢ 0.27
	VALUE	S AFTER	11 ITERA	TIONS

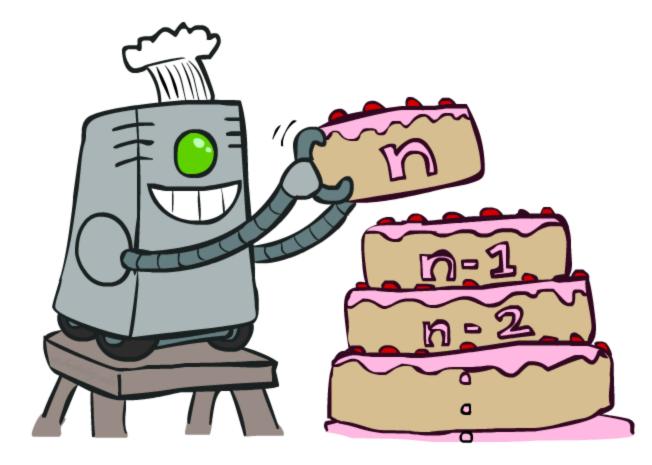
O O O Gridworld Display						
	0.64)	0.74)	0.85)	1.00		
	• 0.57		• 0.57	-1.00		
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS						

C C C Gridworld Display						
	0.64 →	0.74 →	0.85)	1.00		
	• 0.57		• 0.57	-1.00		
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28		
	VALUES AFTER 100 ITERATIONS					

Computing Time-Limited Values



Value Iteration

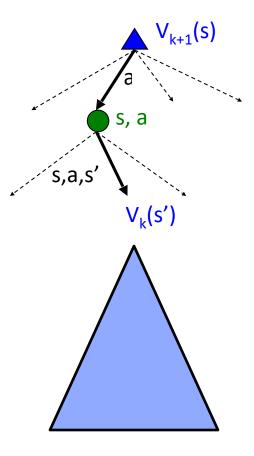


Value Iteration

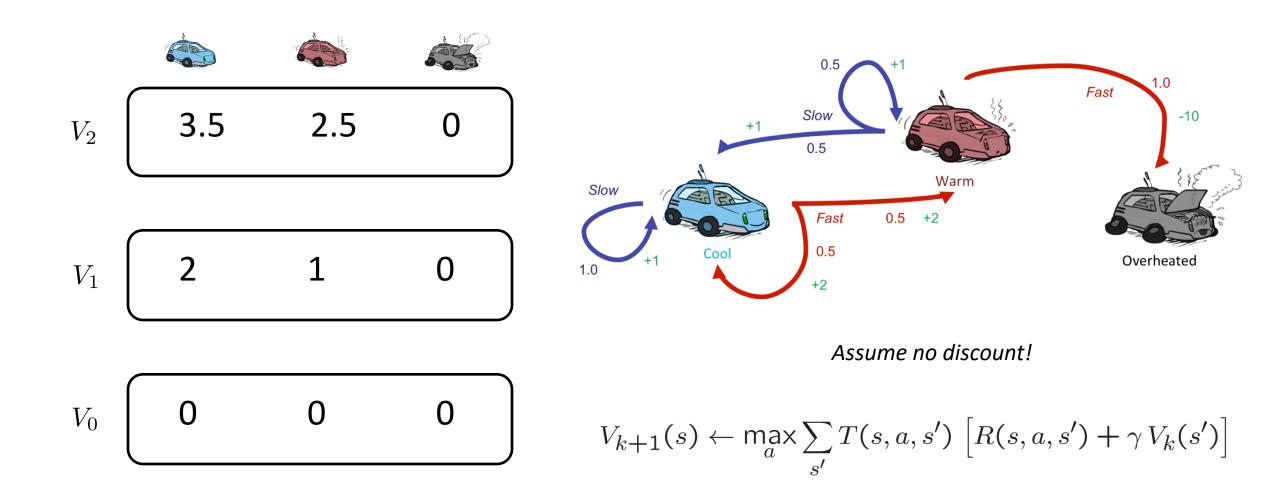
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

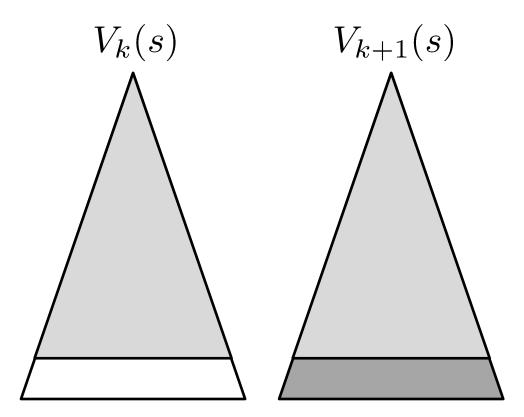


Example: Value Iteration



Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge



Next Time: Policy-Based Methods