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Announcements

▪ HW2 is due Thursday, July 3, 11:59 PM PT 

▪ HW3 is due Tuesday, July 8, 11:59 PM PT 

▪ HW4 is due Thursday, July 10, 11:59 PM PT 

▪ Project 1 is extended to Monday, July 7, 11:59 PM PT 
(bonus credit if you get it done by Friday July 4, 11:59 PM PT) 

▪ Project 2 is due Friday, July 11, 11:59 PM PT 

▪ Midterm is Wednesday July 23, 7-9 PM PT



Example: Human Rationality?

▪ Famous example of Allais (1953) 

▪ A: [0.8, $4k;    0.2, $0] 
▪ B: [1.0, $3k;    0.0, $0] 

▪ C: [0.2, $4k;    0.8, $0] 
▪ D: [0.25, $3k;    0.75, $0] 

▪ Most people prefer B > A, C > D 

▪ But if U($0) = 0, then 
▪ B > A ⇒ U($3k) > 0.8 U($4k) 
▪ C > D ⇒ 0.8 U($4k) > U($3k)



Preview of next 4 lectures

Sequence of
actions for one

start state

Policy for how 
to act from 
any start state

• MDPs: pre-compute policies
• Know the model of the world

• Reinforcement Learning: learn policies from trial and error
• Learn only from interactions with the world



Non-Deterministic Search



Example: Grid World

▪ A maze-like problem 
▪ The agent lives in a grid 

▪ Walls block the agent’s path 

▪ Noisy movement: actions do not always go as planned 
▪ 80% of the time, the action North takes the agent North  

(if there is no wall there) 

▪ 10% of the time, North takes the agent West; 10% East 

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put 

▪ The agent receives rewards each time step 
▪ Small “living” reward each step (can be negative) 

▪ Big rewards come at the end (good or bad) 

▪ Goal: maximize sum of rewards



Grid World Actions
Deterministic Grid World Stochastic Grid World



Markov Decision Processes

▪ An MDP is defined by: 
▪ A set of states s ∈ S 
▪ A set of actions a ∈ A 
▪ A transition function T(s, a, s’) 

▪ Probability that a from s leads to s’, i.e., P(s’| s, a) 
▪ Also called the model or the dynamics 

▪ A reward function R(s, a, s’)  
▪ Sometimes just R(s) or R(s’) 

▪ A start state 
▪ Maybe a terminal state 

▪ MDPs are non-deterministic search problems 
▪ One way to solve them is with expectimax search 
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Grid World Example



Grid World Example



Grid World Example
s a s’ R

(1,1) north (2,1) -0.1
(1,1) north (1,2) -0.1
(2,1) north (3,1) -0.1
(1,2) west (1,1) -0.1
(3,1) east (2,1) -0.1
(3,1) east (3,2) -0.1
(3,2) east (3,3) -0.1
(1,3) west (1,2) -0.1
(1,3) west (2,3) -0.1
(2,3) west (1,3) -0.1
(2,3) west (3,3) -0.1
(1,4) south (1,3) -0.1
(3,3) east (3,4) -0.1
(3,3) east (2,3) -0.1
(3,4) exit gameover 1.0

Q: What’s missing from the state transition table?



Grid World Example

s a s’ R

(1,1) north (1,1) -0.1

(2,1) north (2,1) -0.1

(1,2) west (1,2) -0.1

(3,1) east (3,1) -0.1

(3,2) east (3,2) -0.1

(1,3) west (1,3) -0.1

(2,3) west (2,3) -0.1

(1,4) south (1,4) -0.1

(3,3) east (3,3) -0.1A: All the same-state transitions



Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and 
the past are independent 

▪ For Markov decision processes, “Markov” means action outcomes 
depend only on the current state 

▪ This is just like search, where the successor function could only depend 
on the current state (not the history)

Andrey Markov 
(1856-1922) 



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, we 
wanted an optimal plan, or sequence of actions, 
from start to a goal 

▪ For MDPs, we want an optimal policy π*: S → A 
▪ A policy π gives an action for each state 
▪ An optimal policy is one that maximizes        expected 

utility if followed 
▪ An explicit policy defines a reflex agent 

▪ Expectimax didn’t compute entire policies 
▪ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing
▪ A robot car wants to travel far, quickly 
▪ Three states: Cool, Warm, Overheated 
▪ Two actions: Slow, Fast 
▪ Going faster gets double reward
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Warm
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Slow
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Racing Search Tree



MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition 

T(s,a,s’) = P(s’|s,a) 

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a 
q-state



Utilities of Sequences



Utilities of Sequences

▪ What preferences should an agent have over reward sequences? 

▪ More or less? 

▪ Now or later?

[1, 2, 2] [2, 3, 4] or

[0, 0, 1] [1, 0, 0] or



Discounting

▪ It’s reasonable to maximize the sum of rewards 

▪ It’s also reasonable to prefer rewards now to rewards later 

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

▪ How to discount? 
▪ Each time we descend a level, we 

multiply in the discount once 

▪ Why discount? 
▪ Sooner rewards probably do have 

higher utility than later rewards 
▪ Also helps our algorithms converge 

▪ Example: discount of 0.5 
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 
▪ U([1,2,3]) < U([3,2,1])



Stationary Preferences

▪ Theorem: if we assume stationary preferences: 

▪ Then: there are only two ways to define utilities 

▪ Additive utility: 

▪ Discounted utility:



Quiz: Discounting

▪ Given: 

▪ Actions: East, West, and Exit (only available in exit states a, e) 
▪ Transitions: deterministic 

▪ Quiz 1: For γ = 1, what is the optimal policy? 

▪ Quiz 2: For γ = 0.1, what is the optimal policy? 

▪ Quiz 3: For which γ are West and East equally good when in state d?



Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite rewards? 

▪ Solutions: 
▪ Finite horizon: (similar to depth-limited search) 

▪ Terminate episodes after a fixed T steps (e.g. life) 
▪ Gives nonstationary policies (π depends on time left) 

▪ Discounting: use 0 < γ < 1 

▪ Smaller γ means smaller “horizon” – shorter term focus 

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)



Recap: Defining MDPs

▪ Markov decision processes: 
▪ Set of states S 
▪ Start state s0 
▪ Set of actions A 
▪ Transitions P(s’|s,a) (or T(s,a,s’)) 
▪ Rewards R(s,a,s’) (and discount γ) 

▪ MDP quantities so far: 
▪ Policy = Choice of action for each state 
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s: 
V*(s) = expected utility starting in s and 

acting optimally 

▪ The value (utility) of a q-state (s,a): 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally 

▪ The optimal policy: 
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a  
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Values of States

▪ Fundamental operation: compute the (expectimax) value of a state 
▪ Expected utility under optimal action 
▪ Average sum of (discounted) rewards 
▪ This is just what expectimax computed! 

▪ Recursive definition of value:

a

s

s, a

s,a,s’
s’



Racing Search Tree



Racing Search Tree



Racing Search Tree

▪ We’re doing way too much work 
with expectimax! 

▪ Problem: States are repeated  
▪ Idea: Only compute needed 

quantities once 

▪ Problem: Tree goes on forever 
▪ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small 

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

▪ Key idea: time-limited values 

▪ Define Vk(s) to be the optimal value of s if the game ends in 
k more time steps 
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=1

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=2

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=3

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=4

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=5

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=6

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=7

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=8

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=9

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=10

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=11

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=12

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=100

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Computing Time-Limited Values



Value Iteration



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero 

▪ Given vector of Vk(s) values, do one ply of expectimax from each state: 

▪ Repeat until convergence 

▪ Complexity of each iteration: O(S2A) 

▪ Theorem: will converge to unique optimal values 
▪ Basic idea: approximations get refined towards optimal values 
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

  0             0             0

  2             1             0

  3.5          2.5          0

Assume no discount!



Convergence*

▪ How do we know the Vk vectors are going to converge? 

▪ Case 1: If the tree has maximum depth M, then VM holds the 
actual untruncated values 

▪ Case 2: If the discount is less than 1 
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees 
▪ The difference is that on the bottom layer, Vk+1 has actual rewards 

while Vk has zeros 
▪ That last layer is at best all RMAX  
▪ It is at worst RMIN  
▪ But everything is discounted by γk that far out 
▪ So Vk and Vk+1 are at most γk max|R| different 
▪ So as k increases, the values converge



Next Time: Policy-Based Methods


