CS 188: Artificial Intelligence

Markov Decision Processes

Instructors: Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

s HW2 is due Thursday, July 3, 11:59 PM PT
s« HW3 is due Tuesday, July 8, 11:59 PM PT
s HW4 is due Thursday, July 10, 11:59 PM PT

s Project 1is extended to Monday, July 7, 11:59 PM PT
(bonus credit if you get it done by Friday July 4, 11:59 PM PT)

s Project 2 is due Friday, July 11, 11:59 PM PT
= Midterm is Wednesday July 23, 7-9 PM PT

Example: Human Rationality?

s Famous example of Allais (1953)

. A:[0.8 $4k: 0.2, %0] <=
« B:[1.0, $3k: 0.0, $0

« C:[0.2,S4k; 0.8, SO]
« D:[0.25,S3k; 0.75, SO]

= Most people preferB>A,C>D

= Butif U(SO) =0, then
« B>A= U($3k) > 0.8 U($4k)
= C>D = 0.8 U($4k) > U($3k)

Preview of next 4 lectures

Sequence of » Search & Ceinforceme@« PO“Cy for how

actions for one Planning Learning to act from
start state any start state
Probability & Supervised
Inference Learning

 MDPs: pre-compute policies
* Know the model of the world

* Reinforcement Learning: learn policies from trial and error
* Learn only from interactions with the world

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step

= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:
= Asetof statess& S
= Asetofactionsa&E A
= A transition function T(s, a, ')
= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state
Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Grid World Example

(1,1) north

-1 T(s, a, s’):
* T((1,1), north, (2,1)) = 0.8

* T((1,1), north, (1,2)) = 0.1
* T((1,1), north, (1,1)) = 0.1

Grid World Example

(1,1) north (2,1)
+1

-0.1

1 R(s, a, s’):
R((1,1), north, (2,1)) = -0.1

Grid World Example

S a s’

(1,1) north (2,1)

(1,1) north (1,2)

(2,1) north (3,1)

3 ‘ (1,2) west (1,1)

(3,1) east (2,1)

(3,1) east (3,2)

2 -1 (3,2) east (3,3)

(1,3) west (1,2)

(1,3) west (2,3)

1 (2,3) west (1,3)

(2,3) west (3,3)

’ 5 3 4 (1,4) south (1,3)

(3,3) east (3,4)

Q: What’s missing from the state transition table? (3.3) east (2,3)
(3,4) exit gameover

Grid World Example

1 2 3 4

A: All the same-state transitions

s a s’ R
(1,1) north (1,1) -0.1
(2,1) north (2,1) -0.1
(1,2) west (1,2) -0.1
(3.1) east (3,1) -0.1
(3.2) east (3,2) -0.1
(1,3) west (1,3) -0.1
(2,3) west (2,3) -0.1
(1,4) south (1,4) -0.1
(3.3) cast (3.3) -0.1

Video of Demo Gridworld Manual Intro

= Pydev - Eclipse

4 : I) ﬂ
74 Gridworld Display (21— = -

—
SR B 11:22 AM

9/18/2012

What is Markov about MDPs?

“Markov” generally means that given the present state, the future and
the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = at) (1856-1922)

This is just like search, where the successor function could only depend
on the current state (not the history)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy t*: S -5 A

= A policy m gives an action for each state

= An optimal policy is one that maximizes expected
utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies

= It computed the action for a single state only

Optimal Policies

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

Slow

Overheated
1.0

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As —_—el S iS a state

(s,a,s’) called a transition
T(s,a,s’) = P(s'[s,a)
R(s,a,s’)

Utilities of Sequences

Utilities of Sequences

= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now orlater? [0,0,1] or [1,0,0]

Discounting

= It's reasonable to maximize the sum of rewards
= It's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

o
v\

: Y v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

» Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
« U([1,2,3])=1*1+0.5*2 +0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

= Theorem: if we assume stationary preferences: :
;<§@_>

[al,ag, .] ~— [bl,bg, -]

0

[Tv ay1,dz, ..] >~ [T, bl,bg, ..]

= Then: there are only two ways to define utilities

» Additive utility:
U([T07r17T2,--.]) — TO ——’r'l —I—’]"2 —I— o« o o

= Discounted utility: 5
U([TC))T].) T2, ..]) — o T 771 _I_ YT

Quiz: Discounting

Given: 10 1

a b C d o
= Actions: East, West, and Exit (only available in exit states a, e)

s [ransitions: deterministic

Quiz 1: Fory =1, what is the optimal policy? 10

Quiz 2: Fory =0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (;t depends on time left)

= Discounting:use0<y<1

@)
U(lro,...roc]) = > viry < Rmax/(1 —)
t=0
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Recap: Defining MDPs

s Markov decision processes:
= Set of states S
» Start state s

= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’)))
» Rewards R(s,a,s’) (and discount v) /,/S,a,s

s MDP quantities so far:
= Policy = Choice of action for each state
» Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

¥ _ els . : sisa
V*(s) = expected utility starting in s and <tate
acting optimally
(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q*(s,a) = expected utility starting out (s,a,5') is a
having taken action a from state s and transition

(thereafter) acting optimally

= The optimal policy:
nt*(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Values of States

» Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

s Recursive definition of value:

V*i(s) = max Q*(s,a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

mm mmm
i

THITRIT L TR TR LL THTIRLLL

Racing Search Tree

s We're doing way too much work
with expectimax!

s Problem: States are repeated

= Idea: Only compute needed
guantities once

s Problem: Tree goes on forever

= ldea: Do a depth-limited

L e e e
computation, but with increasing L - - - -
depths until change is small
= Note: deep parts of the tree

eventually don't matter if y < 1 IR I T T TR I]

Time-Limited Values

= Key idea: time-limited values

« Define V,(s) to be the optimal value of s if the game ends in
k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

é Va(@)
(vP‘)\
| 4 ,
2 2 =
T A 7T A X 7

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS N?ise =0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

’x
B .A A 'A .A A AN

NN A NN

VT T T O O i VT T O O O o VO O Y |

llIIIIll I "I |‘I|lllxll| - llllllll . lllllljl Illll' - lll'llxl I lxIl'

AL IRUEIIIE CDE LN L

—
—
=
—
—

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + ’}/Vk(sl)}

S

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

1.0

Fast

Overheated

Assume no discount!

0 0 0
" [] Vip1(8) — max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S

Convergence®

How do we know the V, vectors are going to converge?

Vi(s Vi S
Case 1: If the tree has maximum depth M, then V,, holds the k() k+1 ()
actual untruncated values

Case 2: If the discount is less than 1
« Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V, ., has actual rewards

k+1
while V, has zeros

« Thatlast layeris at best all R,

s ltisat worst RMIN

= But everything is discounted by yk that far out / \ /

« SoV,andV,,, are at most yk max|R| different

k+1
= So as k increases, the values converge

Next Time: Policy-Based Methods

