
CS 188: Artificial Intelligence
Markov Decision Processes

Instructors: Oliver Grillmeyer

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ HW2 is due Thursday, July 3, 11:59 PM PT

▪ HW3 is due Tuesday, July 8, 11:59 PM PT

▪ HW4 is due Thursday, July 10, 11:59 PM PT

▪ Project 1 is extended to Monday, July 7, 11:59 PM PT
(bonus credit if you get it done by Friday July 4, 11:59 PM PT)

▪ Project 2 is due Friday, July 11, 11:59 PM PT

▪ Midterm is Wednesday July 23, 7-9 PM PT

Example: Human Rationality?

▪ Famous example of Allais (1953)

▪ A: [0.8, $4k; 0.2, $0]
▪ B: [1.0, $3k; 0.0, $0]

▪ C: [0.2, $4k; 0.8, $0]
▪ D: [0.25, $3k; 0.75, $0]

▪ Most people prefer B > A, C > D

▪ But if U($0) = 0, then
▪ B > A ⇒ U($3k) > 0.8 U($4k)
▪ C > D ⇒ 0.8 U($4k) > U($3k)

Preview of next 4 lectures

Sequence of
actions for one

start state

Policy for how
to act from
any start state

• MDPs: pre-compute policies
• Know the model of the world

• Reinforcement Learning: learn policies from trial and error
• Learn only from interactions with the world

Non-Deterministic Search

Example: Grid World

▪ A maze-like problem
▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned
▪ 80% of the time, the action North takes the agent North

(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s ∈ S
▪ A set of actions a ∈ A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Grid World Example

Grid World Example

Grid World Example
s a s’ R

(1,1) north (2,1) -0.1
(1,1) north (1,2) -0.1
(2,1) north (3,1) -0.1
(1,2) west (1,1) -0.1
(3,1) east (2,1) -0.1
(3,1) east (3,2) -0.1
(3,2) east (3,3) -0.1
(1,3) west (1,2) -0.1
(1,3) west (2,3) -0.1
(2,3) west (1,3) -0.1
(2,3) west (3,3) -0.1
(1,4) south (1,3) -0.1
(3,3) east (3,4) -0.1
(3,3) east (2,3) -0.1
(3,4) exit gameover 1.0

Q: What’s missing from the state transition table?

Grid World Example

s a s’ R

(1,1) north (1,1) -0.1

(2,1) north (2,1) -0.1

(1,2) west (1,2) -0.1

(3,1) east (3,1) -0.1

(3,2) east (3,2) -0.1

(1,3) west (1,3) -0.1

(2,3) west (2,3) -0.1

(1,4) south (1,4) -0.1

(3,3) east (3,3) -0.1A: All the same-state transitions

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and
the past are independent

▪ For Markov decision processes, “Markov” means action outcomes
depend only on the current state

▪ This is just like search, where the successor function could only depend
on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

▪ For MDPs, we want an optimal policy π*: S → A
▪ A policy π gives an action for each state
▪ An optimal policy is one that maximizes expected

utility if followed
▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing
▪ A robot car wants to travel far, quickly
▪ Three states: Cool, Warm, Overheated
▪ Two actions: Slow, Fast
▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences

Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

[1, 2, 2] [2, 3, 4] or

[0, 0, 1] [1, 0, 0] or

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

▪ How to discount?
▪ Each time we descend a level, we

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have

higher utility than later rewards
▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
▪ U([1,2,3]) < U([3,2,1])

Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:

Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)
▪ Transitions: deterministic

▪ Quiz 1: For γ = 1, what is the optimal policy?

▪ Quiz 2: For γ = 0.1, what is the optimal policy?

▪ Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

▪ Problem: What if the game lasts forever? Do we get infinite rewards?

▪ Solutions:
▪ Finite horizon: (similar to depth-limited search)

▪ Terminate episodes after a fixed T steps (e.g. life)
▪ Gives nonstationary policies (π depends on time left)

▪ Discounting: use 0 < γ < 1

▪ Smaller γ means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0
▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount γ)

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

▪ Fundamental operation: compute the (expectimax) value of a state
▪ Expected utility under optimal action
▪ Average sum of (discounted) rewards
▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

▪ We’re doing way too much work
with expectimax!

▪ Problem: States are repeated
▪ Idea: Only compute needed

quantities once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

▪ Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends in
k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

 0 0 0

 2 1 0

 3.5 2.5 0

Assume no discount!

Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds the
actual untruncated values

▪ Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
▪ The difference is that on the bottom layer, Vk+1 has actual rewards

while Vk has zeros
▪ That last layer is at best all RMAX
▪ It is at worst RMIN
▪ But everything is discounted by γk that far out
▪ So Vk and Vk+1 are at most γk max|R| different
▪ So as k increases, the values converge

Next Time: Policy-Based Methods

