CS 188: Artificial Intelligence

Reinforcement Learning I

Instructors: Oliver Grillmeyer & Ademi Adeniji --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Announcements

HW4 is due Thursday, July 10, 11:59 PM PT

Project 2 is due Friday, July 11, 11:59 PM PT

HWS5 is due Tuesday, July 15, 11:59 PM PT

HW6 is due Thursday, July 17, 11:59 PM PT

Project 3 is due Friday, July 18, 11:59 PM PT

Midterm is Wednesday, July 23, 7-9 PM PT

lgnore assessment on HWs part B, but please show your work

Oliver won’t have OH Thursday, July 10

Reinforcement Learning

s We still assume an MDP:
s Asetofstatess&E S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

s Still looking for a policy 7t(s)

= New twist: don’t know T or R, so must try out actions

= Bigidea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

_

Goal
Compute V*, Q*, m*

Evaluate a fixed policy i

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP:

Model-Based

/Goal

Compute V*, Q*, *

Evaluate a fixed policy

-

Technique

VI/PI on approx. MDP

PE on approx. MDP

_/

-

Evaluate a fixed policy i

Unknown MDP: Model-Free
[Goal Technique
Compute V*, Q*, m* Q-learning

Value Learning

_/

Model-Free Learning

» Model-free (temporal difference) learning

= Experience world through episodes

(s,a,r,s,a" ,r', s" a" r" s"...)

» Update estimates each transition (s, a,r, s')

= Over time, updates will mimic Bellman updates

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qt1(s,0) ¢ Y T(s,0,8) | R(s,0.8) + 7 max Qu(s',)
/ a

S
= But can’t compute this update without knowing T, R

» Instead, compute average as we go

= Receive a sample transition (s,a,r,s’)
= This sample suggests

Q(s,a) ~ r +ymaxQ(s, a’)

a

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Qs,a) — (1= 2)Q(s,a) + (@) [r + ymax Q(s,a')

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

& rv’_Pyde-.‘ | &Y Team

0o o

= Pydev - Eclipse
File Edit Navigate Search Project Run Window Help

e 2
WYy

-

aN W S

C Console :2
<terminated> -0.0

O COMPLETE: RETURN WAS -100

BEGINNING EPISODE: 11
11:24 AM
“ e W 9/27/2012

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
S
(o~

How to Explore?

= Several schemes for forcing exploration
s Simplest: random actions (e-greedy)

= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

s Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time

= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Manual Exploration — Bridge Grid

- DX

k CURRENT Q-VALUES

(2 Pydev | SC Team

T

oo
4

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Runl{ Skip 1000000 step || Stop

average speed . -1.0671648197531216

: ‘
eps— || eps++ gam- game++ alpha- || alpha++
N y
T
| = G ol | e B

& Console 3
11:31 AM
ARe®

BotQLearning [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:31:20 AM)

G

Exploration Functions

= When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <o R(s,a,s") +ymaxQ(s’,d
Modified Q-Update: Q(s,a) = R(s,a,s") +~max f(Q(s',a"), N(s,a))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function — Crawler

Applet
Rur Skip 1000000 step Stop Skip 30000 steps Resel speed counter ResetQ = ;
5 | Pydev |5 Team
average speed: 3 3348581034694122 =
-]
o
’
Ly
eps eps++ gam game+ alpha | alpha++
\— Y,
T
& Console 3 O x GE&]E) DS~

BotQLeamningEXP [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:36:12 AM)

2JNcmpm BB < BEDGC - an 6w D2

Regret

= Even if you learn the optimal policy, you
still make mistakes along the way!

= Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

= Minimizing regret goes beyond learning tc
be optimal — it requires optimally learning
to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Video of Demo Q-Learning Pacman — Tiny — Watch All

11:53 AM
9/27/2012

A a % G ¥

Video of Demo Q-Learning Pacman — Tiny — Silent Train

- Pydev - Eclipse

File Edt Navigate Search Project Run Window Help

v v Q- Q- v v v - - - sl p)rde-'!"n" Team

L Console :2 D“ % % | Ex GE[&E]&E) o mj

<terminated> 2.0

11:53 AM
9/27/2012

Video of Demo Q-Learning Pacman — Tricky — Watch All

A"
»
3
|| O

Approximate Q-Learning

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

= |In realistic situations, we cannot possibly learn about

every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

= Instead, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)],[Demo: Q-learning — pacman — tiny — silent train (L11D6)], [Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Feature-Based Representations

= Solution: describe a state using a vector of features
(properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)2
= Is Pacman in a tunnel? (0/1)

= Is it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

= Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CL) — ’UJ]_f]_(S, a)—l—’UJQfQ(S, CL)"- . °+wnf’n(87 a)

= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

s Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
Q(s,a) — Q(s,a) + «a[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on: disprefer
all states with that state’s features

s Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) — 1.0fGST(S,CL)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

) 4
o = NORTH o
r = —500
/ N\

Q(s,NORTH) = +1

Q(Sla) =0

r + v max Q(s',a’) = -500+0
a

[difference = —501 >

wpor — 4.0 + a[-501]0.5
WG ST < —1.0 —|— e [—501] 1.0

Q(S, (l) . 30fDOT(S, CL) — SOfGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

v v Q v Q -) & v v - v v - £ :;_E;J;T\Q—Temn
i A —
74 CS188 Pacman | — = 5
=
o

& Console 3 - n GB(E]E) ¢ O v s~
DirectionalGhost

Beginning 0 episodes of

R c - aee 22N

9/27/2012

Q-Learning and Least Squares

40r

Linear Approximation: Regression™

— o = = = =) = =

20

f1(x)

Prediction: Prediction:

y = wo + wi f1(x) Y; = wo + w1 f1(x) + woafolx)

Optimization: Least Squares®

2
total error =Y (y; — §:)° =3 (yz - Zwkfk(:vi)>
- k

1

Observation Y Error or “residual

Prediction ?’J

0 f1(x))

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(a:))
k
0 egror(w) = — (y — Z’L%fk(@) fm(x)
Wi, k

Wi, <= Wm + (y — Zwkfk(fB)) fm(x)
k
Approximate g update explained:

Wi — wm + o [+7maxQ(s',a) — Q(s,a)] fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize utilities)

aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= WEe’ll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:

= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= If there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

RL: Helicopter Flight

RL: Learning Locomotion

lteration O

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, IMLR 2016]

RL: NASA SUPERDball

[Geng™*, Zhang™*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017] Pieter Abbeel -- UC Berkelev | Gradescope | Covariant.Al
y | pe |

RL: In-Hand Manipulation

Conclusion

= We're done with Part |: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

