CS 188: Artificial Intelligence

Probability

Instructors: Oliver Grillmeyer and Ademi Adeniji --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

HW4 is due Thursday, July 10, 11:59 PM PT

Project 2 is due Friday, July 11, 11:59 PM PT

HWS5 is due Tuesday, July 15, 11:59 PM PT

HW6 is due Thursday, July 17, 11:59 PM PT

Project 3 is due Friday, July 18, 11:59 PM PT

Midterm is Wednesday, July 23, 7-9 PM PT

lgnore assessment on HWs part B, but please show your work

Oliver won’t have OH Thursday, July 10



CS188 QOutline

= We're done with Part I: Search and Planning!

= Part Il: Probabilistic Reasoning
= Diagnosis
= Speech recognition
= Tracking objects
= Robot mapping
= Genetics
= Error correcting codes
= ... lots more!

= Part lll: Machine Learning



Today

= Probability

= Random Variables

= Joint and Marginal Distributions

= Conditional Distribution

= Product Rule, Chain Rule, Bayes’ Rule
= Inference

= Independence

= You'll need all this stuff A LOT for the nex
few weeks, so make sure you go over it
now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= Onthe ghost: red

= 1o0r2away: orange

= 3 or 4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster — No probability

.
74 ghostbusters

GHOSTS REMAINING:

BUSTS REMAINING:

SCORE :

MESSAGES :
-.-....... TIME+1

Here are the instructions about how to run it: Click the grid to guess and try t
o bust the ghost




Uncertainty

s General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor readings
or symptoms)

= Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for |
managing our beliefs and knowledge




Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

= R=lIsitraining?

= T=Isithotorcold?

= D =How long will it take to drive to work?
= L=Whereis the ghost?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}




= Associate a probability with each value

= [emperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

Probability Distributions

—P(T)— ____P(W)_
T P W P
hot | 0.5 sun 0.6
cold | 0.5 rain 0.1

fog 0.3
meteor 0.0

A distribution is a TABLE of probabilities of values

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) =0
Ve P(X =x2)>0

i

and ZP(X:$)21



Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,...Xn
specifies a real number for each assignment (or outcome):

P(X1=21,X0=1xo,... X, = xn)

P(xq,z5,...27n)

= Must obey:
P(x1,2>,...2n) >0

- P(x1,z0,...2n) = 1

(z1,%2,...Tn)

P(T, W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3

= Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Probabilistic Models

T Distributi TW
A probabilistic model is a joint distribution Istribution over 4,

over a set of random variables T W P

hot sun 0.4
hot rain 0.1

Probabilistic models:
= (Random) variables with domains
= Assignments are called outcomes cold sun 0.2

» Joint distributions: say whether assignments cold rain 0.3
(outcomes) are likely

= Normalized: sum to 1.0
= l|deally: only certain variables directly interact

Constraint over TW

T W P
Constraint satisfaction problems: hot sun T
= Variables with domains .
. _ hot rain F
» Constraints: state whether assignments are
possible COId sun F
= |deally: only certain variables directly interact cold rain T




Events

= An eventis a set E of outcomes

P(EyY= )  P(z1...zn)
(331...&771)6E

= From a joint distribution, we can calculate the
probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are partial
assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




s P(+x, +y) ?

m P(+X) ?

= P(-yOR +x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—)
P(t) =S P(t,s)

——
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=uz1,Xp=u1))

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

>

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

>

P(y) =) P(z,y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P(b)

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

P(W:S|T:C):P(W=8,T:C) :E
P(T = ¢) 0.5

_——

=P(W=s8,T=c¢c)+PW=r,T =c)
=02+4+03 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

s P(+x | +y) ?

m P(-X | +y) ?

] P(-y | +X) ?



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)
W P
T W P
—~ > 0.8 hot sun 0.4
§ rain 0.2 hot rain 0.1
= P(W|T — COld) cold sun 0.2
R, cold rain 0.3
W P
sun 0.4
rain 0.6




Normalization Trick

P(W =s,T = c¢)

P(W =s|T =¢) =

P(T = c¢)
. P(W =s,T = c)
P(T, W) T PW=sT=c)+PW=rT=c)
0.2
T W P =o02+03_ °° P(W|T = ¢)
hot sun 0.4 vy 5
hot rain 0.1 >
sun 0.4
cold sun 0.2
I : POV — T — rain | 0.6
cold rain 0.3 POW = 1T = ¢) = (W=nr,T=c)

P(T = ¢)

. PW =r,T =c¢)

C PW=sT=c¢c)+PW=rT=c)
03
02403

0.6




Normalization Trick

P(W =s,T=c)
P(T'=r¢)
. P(W =s,T=c¢c)
C PW=sT=c)+PW=rT=c)

P(W =s|T =c¢) =

=oo+03 04
P(T’ W) SELECT the joint NORMALIZE the
probabilities selection _

T W P matching the P(c, W) (make it sum to one) P(W|T = c)
hot sun 0.4 evidence T W P W P
hot rain 0.1 ——] cold  sun 0.2 —l sun 0.4
cold >un 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=r,T=c¢c)

P(T=¢)
. P(W=rT=c)
C PW=sT=c)+P(W=rT=c)
03
T 02403

P(W =rT=c)=

=0.6




Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection _
T W P matching the P(c,W) (make it sum to one) P(WI|T = c)
hot sun 0.4 evidence T W P W P
hot rain 0.1 — T 02 m— sun | 0.4
cold >un 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3
= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)
P _ P(z1,72) _ P(x1,z2)
(z1|x2) = =
P(x2) >y P(x1,22)




M P(X | Y=-y) ?
P(X,Y)

X Y P

+X +y 0.2

+X -y 0.3

-X +y 0.4

-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

>



= (Dictionary) To bring or restore to a

s Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

_>
Z=0.5

To Normalize

normal condition

W P
sun 0.4
rain 0.6

NN

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

>

Z =250

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired r& <q
probability from other known probabilities (e.g. | ,
conditional from joint) L // ‘é

= We generally compute conditional probabilities

= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:

= P(ontime | no accidents, 5a.m.) =0.95
(ﬁ\\% ‘ A

= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
« Evidencevariables:  F1.--LEp=e1...e X1, Xo,...Xn variables, too
= Query* variable: Q All variables P(Q|€1 .o ek)
= Hidden variables: Hjy...Hy
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1

Ped
0.05 X —
0.25
7
02 |
— T )
0.01 — g’

Z:ZP(Qael'“ek)
q

hl...hfr YT - P(Q|6 6)—1P(Q6 6)
X1, Xo,...Xn 1 k)= g ) &1 k



Inference by Enumeration

i P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
= P(W | winter)? summer | cold | rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

= P(W | winter, hot)?



Inference by Enumeration

= Obvious problems:

= Worst-case time complexity O(dn)

= Space complexity O(dn) to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < rewm="w0

£ N



The Product Rule

P(y)P(z|y) = P(z,y)

= Example:
P(D|W) P(D,W)
P(W) D W P D W
R > wet sun 0.1 wet sun
0.9

sun 0.8 ary el <:> dry il

ain 0.2 wet rain 0.7 wet rain

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,20,...00n) = HP(:UZ-|:121 e Ti—1)
7

= Why is this always true?



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

« Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= In the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 xample
P(—|_3| + m) =08 r givens
P(+s| —m) =0.01_
P(tm| 4 5) = DSl EmIPHm) P(+s|+m)P(+m) B 0.8 x 0.0001
e P(+s) " P(+s|+m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

= Given: PDIW)
P(W) D W P
R D wet sun 0.1
un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain 0.3

s« Whatis P(W | dry) ?



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1

L 0.17 | 0.10 || 0.10
= We can calculate the posterior distribution ..-
P(G|r) over ghost locations given a reading
using Bayes’ rule: 0.17 4 0.10

P(g|r) o< P(r|g)P(g)

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability

T
Ghostbusters, Revisited

= Let’s say we have two distributions: “ 0.11 § 0.11
= Prior distribution over ghost location: P(G)

= Let’s say this is uniform

= Sensor reading model: P(C | G)
= Given: we know what our sensor{

0.11 0.11 0.11

———
Command Prompt - python demo.py =11 — l—-l

™ C= CO|OF measured at (1’1) t:c;;:rl:;:r:hzhghinﬂtrur.tinn: about how to run it: GClick the grid to guess and try t|P

current dir:
u Eg P(C = ye”ow | G:(l,l)) — 01 Traceback (most recent call last):
File “demo.pvy", line 114, in <module>
play{commands [int{inp) 1
File “demo.py", line 26, in play
pud’ D>
>:\Python2?7\1lib\subprocess. ', line 493, in call
return Popen(*popenargs, *<kuar wait()
File ""C:\Python2?7\lib\subproces » line 679, in __init__
er ad, errurite)
File "C:N\Python2?7\lib\subprocess.py', line 896, in _execute_child
startupinfo)
WindowsError: [Error 2] The system cannot find the file specified

C:\Python2?7\new_wvorkspace>python demo.py
Which lecture do you want [1,. 2, 3, 5, 6, 7, 8, 9, 18, 11, 12, 13, 17, 18, 19, 2
11712
Here are all the demos for lec 12
1 : Ghos buster with no probability
2 : Gh buster with probability
: Ghost buster with UPI
Enter any index to play any demo and up to go to the upper menu




Next Time: Bayes’ Nets



