CS 188: Artificial Intelligence

Bayes’ Nets

Instructor: Oliver Grillmeyer — University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Announcements

= HW5 is due Tuesday, July 15, 11:59 PM PT

= HW6 is due Thursday, July 17, 11:59 PM PT

= Project 3 is due Friday, July 18, 11:59 PM PT

= Midterm is Wednesday July 23, 7-9 PM PT

= Look at Exam info under Policies link on CS 188 website




Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:
Vo,y: P(x,y) = P(z)P(y)

= This says that their joint distribution factors into a product two simpler
distributions

= Another form:

Va,y : Plxly) = P(x)

= We write:

X 1Y

= Independence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P1(T,W)

T w P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

Py (T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xp)

H 0.5 H 0.5 . H 0.5

T 0.5 T 0.5 T 0.5
“_ i,

—




Conditional Independence
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Conditional Independence

= P(Toothache, Cavity, Catch)

= If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

» P(+catch | +toothache, +cavity) = P(+catch | +cavity)

= The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

= Catch is conditionally independent of Toothache given Cavity:
» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

=« Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xis conditionally independent of Y given Z X—“—Y‘Z

if and only if:
Vo, y, z 1 P(x,y|z) = P(z|2)P(y|z)

or, equivalently, if and only if
Vz,y,z : P(z|z,y) = P(a|2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= What about this domain:

s Fire
= Smoke
= Alarm




Conditional Independence and the Chain Rule

= Chain rule: P(X1, Xp,...Xn) = P(X)P(Xo| X 1) P(X3] X1, X2) ...

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:
P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

Each sensor depends only
on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)

That means, the two sensors are T B G P(T,B,G)

conditionally independent, given the
ghost position

+t +b +g 0.16
+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(+g)=0.5 t | +b | -g 0.24
P( -g)=0.5

-t -b +g 0.06
-t -b -g 0.06

P(+t | +g)=0.8
P(+t | -g)=0.4
P(+b | +g)=0.4
P(+b | -g)=0.8




Bayes’ Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as our
probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

s Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these interactions are
specified




Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

= Arcs: interactions
= Similar to CSP constraints
= Indicate “direct influence” between variables
= Formally: encode conditional independence

(more later)
Toothache @

= For now: imagine that arrows mean direct
causation (in general, they don’t!)




Example Bayes’ Net: Insurance




Example Bayes’ Net: Car

fanbelt
broken broke

starter
blockec broke



Example Bayes’ Net: Medical Diaghosis

_ ? ? O Toxic hepatitis (O Reactive hepatitis
® nemisuey ®  EEIHIEEE O Carcinoma present 3.93 present 2.43
present 9.59 present  4.21 / — absent 96:07 = absent 97.57' 7
absent 90.41 W] absent 95.79 - present 6.

- absent 93.59 Y]
/ O Functional
(O  Chronic hepatitis O Cirrhosis ® 9% hyperbilirubinemia
2 active  12.90 decompensa... 5.39 | |present 7.24
persistent 5.17 <compensate 236 present 38.48 absent 92.76 W] =
absent  81.93 e absent 92.25 W absent 61.52 T :
?
?
? ? ? 2 2 ?
2 ?
o
? ? ?
? ? ?
? ?
? > ?
? ) —
? 2 [
? ?
? 2 ?
? ?
2 ' ?
? ?
? ?
?

https://demo.bayesfusion.com/bayesbox.html



Example: Coin Flips

= N independent coin flips

= No interactions between variables: absolute independence



Example: Traffic

» Variables: ST

= R:Itrains
= 1:There is traffic

= Model 1: independence
= Why is an agent using model 2 better? @

= Model 2: rain causes traffic



Example: Traffic I

= Let’s build a causal graphical model!

= Variables

s T: Traffic
s R:Itrains

= L:Low pressure
= D: Roof drips

= B: Ballgame

= C: Cavity



Example: Alarm Network

= Variables

A
B: Burglary K —
A: Alarm goes off VJ—?‘;; =

-
-

= M: Mary calls

-

. ,
0 @ P },’,

3%

J: John calls
E: Earthquake!




Bayes’ Net Semantics




Bayes’ Net Semantics 100

= A set of nodes, one per variable X
= A directed, acyclic graph @ @

= A conditional distribution for each node

» A collection of distributions over X, one for each
combination of parents’ values

P(X|as .. .an) P(X|Aq. ..

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs =8

= Q-_/l@

= Bayes’ nets implicitly encode joint distributions
» As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

(1)
P(z1,z2,...2n) = [] P(zi|parents(X;))

Toothache @

P(+cavity, +catch, -toothache)
P(+cavity) * P(+catch | +cavity) * P(-toothache | +cavity)

= Example:




Probabilities in BNs 100

= Why are we guaranteed that setting

T
P(z1,22,...20) = || P(=z;|parents(X;))
=1
results in a proper joint distribution?

n
= Chain rule (valid for all distributions): Pz, 20,...2n) = H P(wi|xl e Ti—1)
=1
= Assume conditional independences: P(x;|lx1, ... 2s_1) = P(xz|parents(X;))
T
- Consequence: P(z1,20,...2n) = || P(zi|parents(X;))
=1
= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X3) P(Xn)
h 0.5 h 0.5 o h 0.5
t 0.5 t 0.5 t 0.5

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes’ net with no arcs.



(=)

Example: Traffic

P(Xp X5, .. ,xn) = H P(x; | parents(X,-))

P(R) =1
W P(+r,—t)= PHPP(—t|+7)
-r 3/4
1 1 1
P(T|R) = — % — = —
4 4 16
+r +t 3/4
-t 1/4
+t 1/2
-t 1/2




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | - 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002 J[Eé.]
-e | 0.998 |
B E A P(A|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e | -a 0.06

-b | +e | +a 0.29

b | +e | -a 0.71

-b | -e | +a 0.001

b | -e | -a 0.999




®

s Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T,R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

= Reverse causality? 7 ;\
L | ] I . .
J g F
P(T) ~
+t | 9/16 |
-t 7/16 P(T, R)
P(R’T) +r +t 3/16
+r -t 1/16
+t +r 1/3
P 23 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially if
variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure

= Topology really encodes conditional independence
P(x;|x1, ... 24-1) = P(xz|parents(X;))



Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:

= First assembled BNs using an intuitive notion of conditional
independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)



