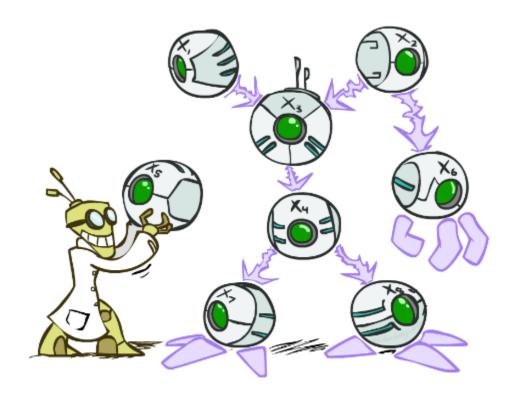
CS 188: Artificial Intelligence

Bayes' Nets



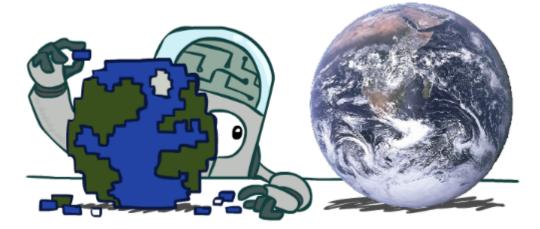
Instructor: Oliver Grillmeyer — University of California, Berkeley

Announcements

- HW5 is due **Tuesday, July 15**, 11:59 PM PT
- HW6 is due Thursday, July 17, 11:59 PM PT
- Project 3 is due Friday, July 18, 11:59 PM PT
- Midterm is Wednesday July 23, 7-9 PM PT
- Look at Exam info under Policies link on CS 188 website

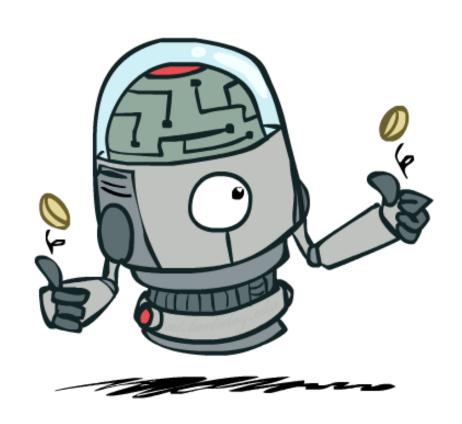
Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box



- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence



Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

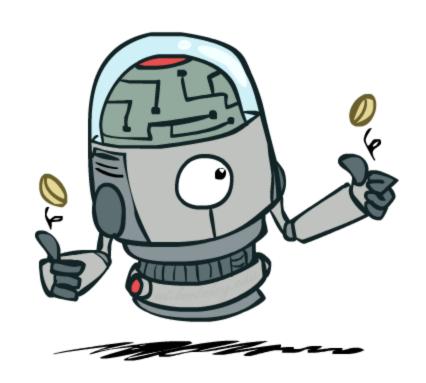
- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

We write:

$$X \perp \!\!\! \perp Y$$

- Independence is a simplifying modeling assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P_{1}	(T,	W)
* 1	ι,	** /

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

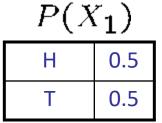
W	Р
sun	0.6
rain	0.4

$P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

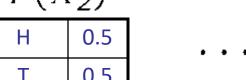
Example: Independence

N fair, independent coin flips:



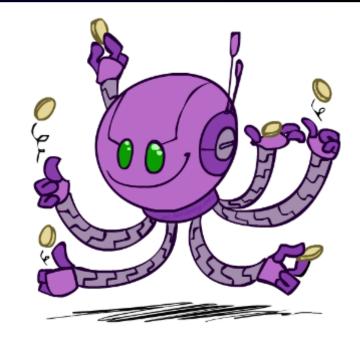
$P(X_2)$		
Н	0.5	
Т	0.5	

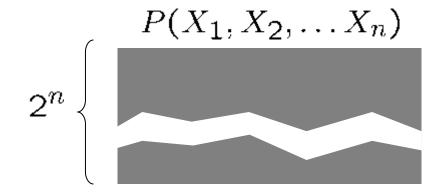
D/32

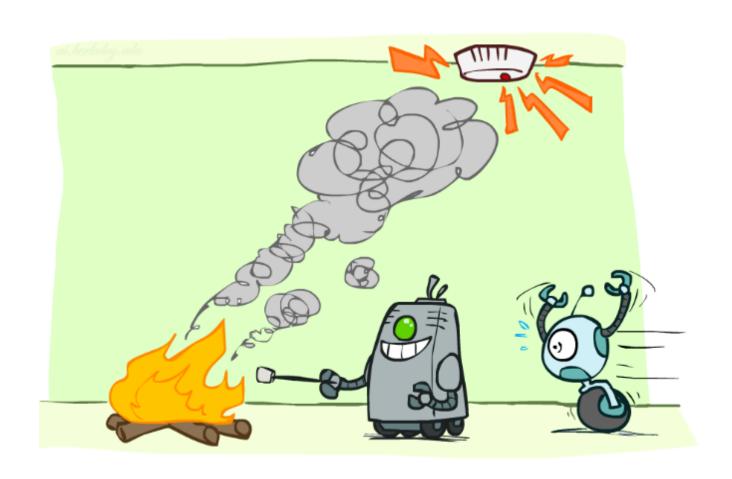


$P(\Lambda_n)$		
Н	0.5	
Т	0.5	

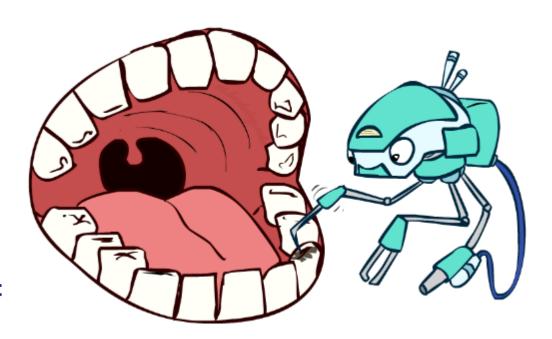
D(V)







- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

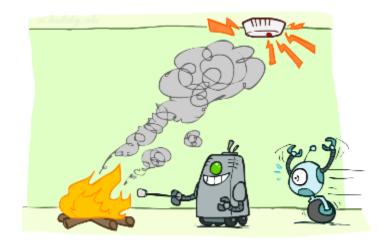
$$X \perp \!\!\! \perp Y | Z$$

```
if and only if: \forall x,y,z: P(x,y|z) = P(x|z)P(y|z) or, equivalently, if and only if \forall x,y,z: P(x|z,y) = P(x|z)
```

- What about this domain:
 - Traffic
 - Umbrella
 - Raining



- What about this domain:
 - Fire
 - Smoke
 - Alarm



Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

With assumption of conditional independence:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain})$$

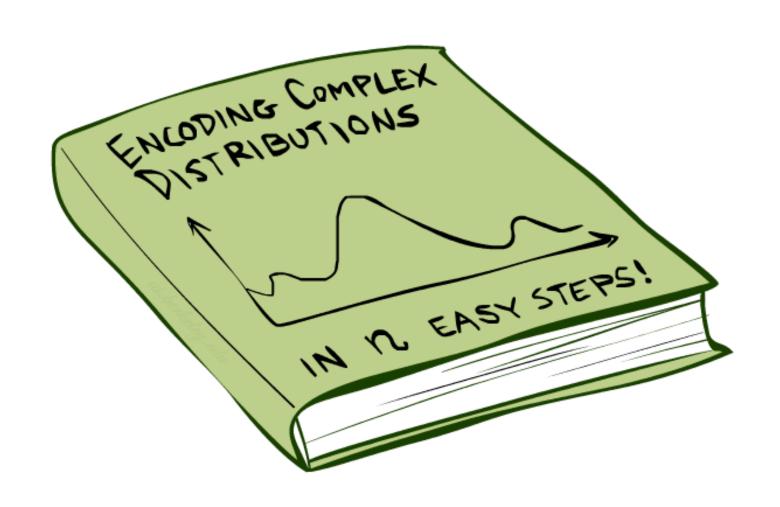
Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is redB: Bottom square is redG: Ghost is in the top
- Givens:

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	500	0.16
+t	<u></u>	50	0.24
+t	<u>0</u>	500	0.04
-t	+b	5 0	0.04
-t	b	500	0.24
-t	<u></u>	5 0	0.06
-t	-b	50	0.06

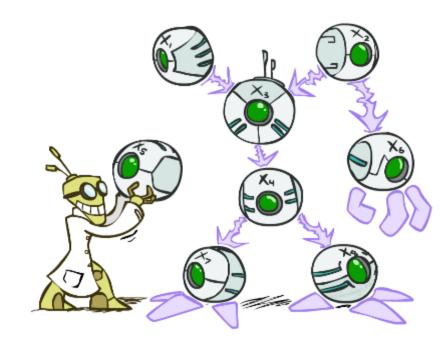
Bayes' Nets: Big Picture



Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

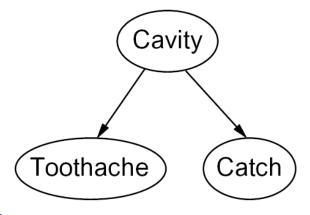


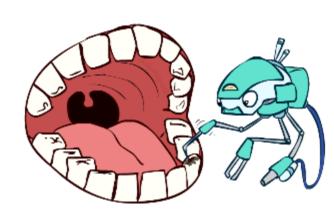


Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

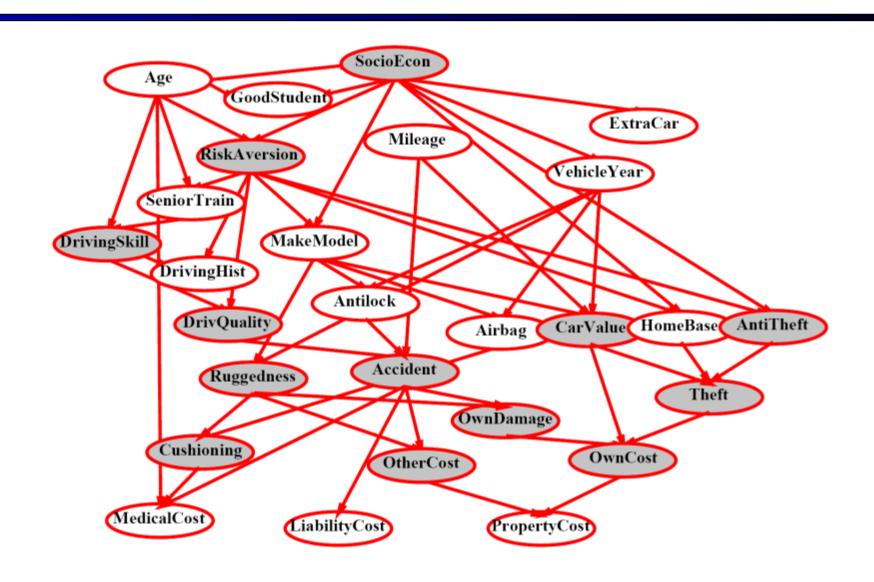
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)



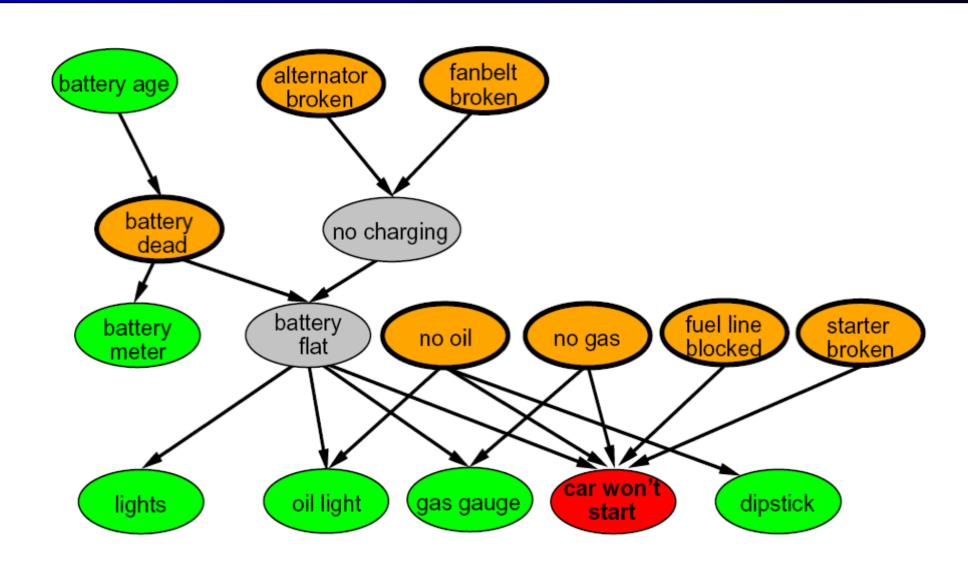


■ For now: imagine that arrows mean direct causation (in general, they don't!)

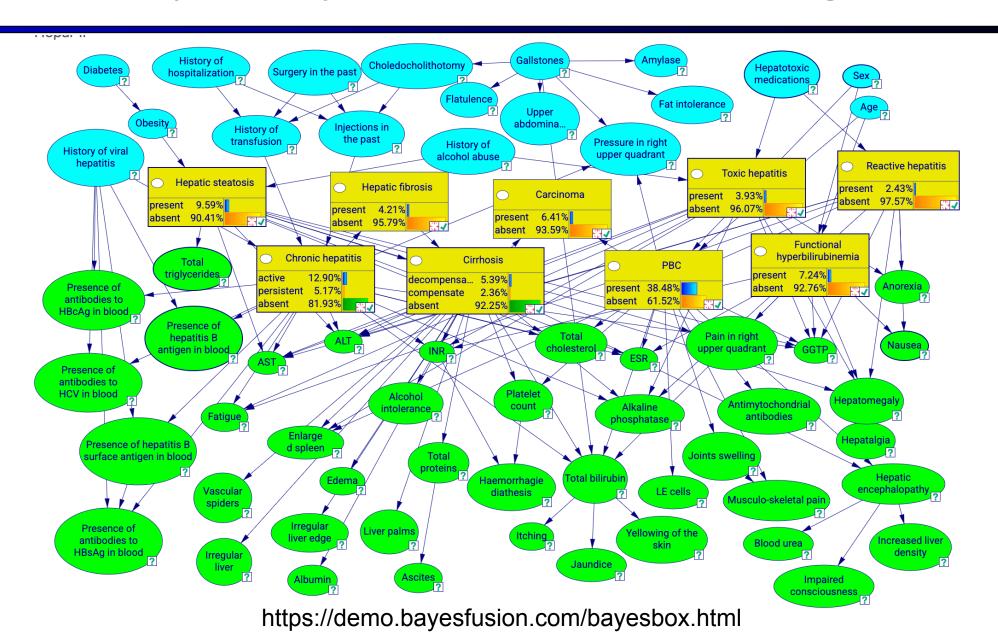
Example Bayes' Net: Insurance



Example Bayes' Net: Car

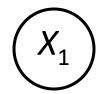


Example Bayes' Net: Medical Diagnosis

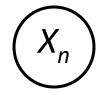


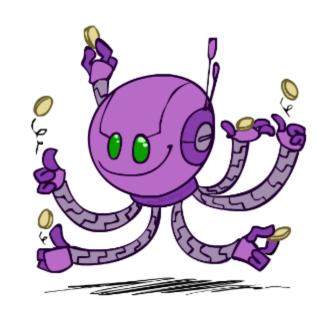
Example: Coin Flips

N independent coin flips



. . .





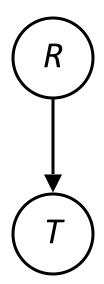
No interactions between variables: absolute independence

Example: Traffic

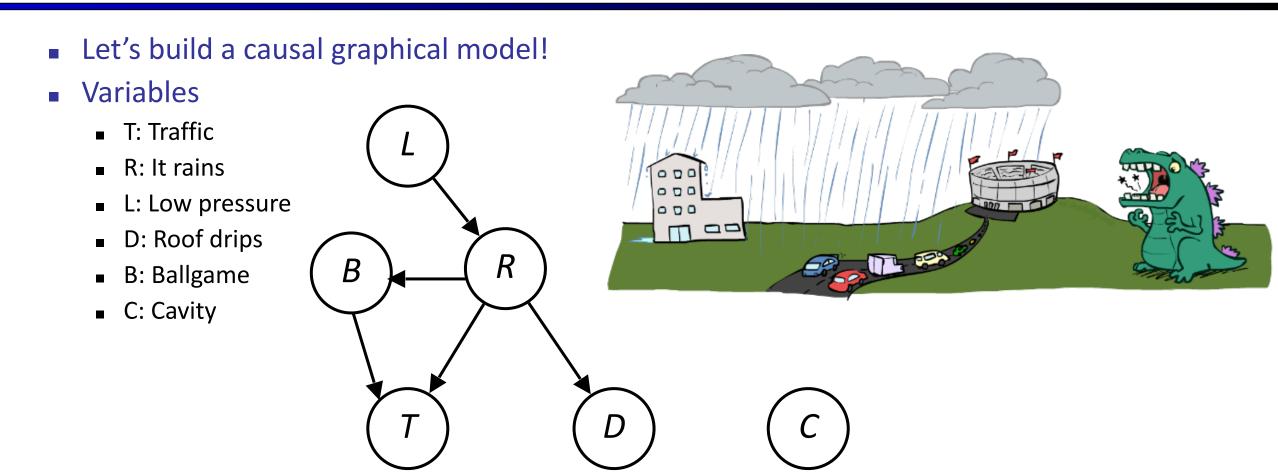
- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Why is an agent using model 2 better?

Model 2: rain causes traffic



Example: Traffic II



Example: Alarm Network

Variables

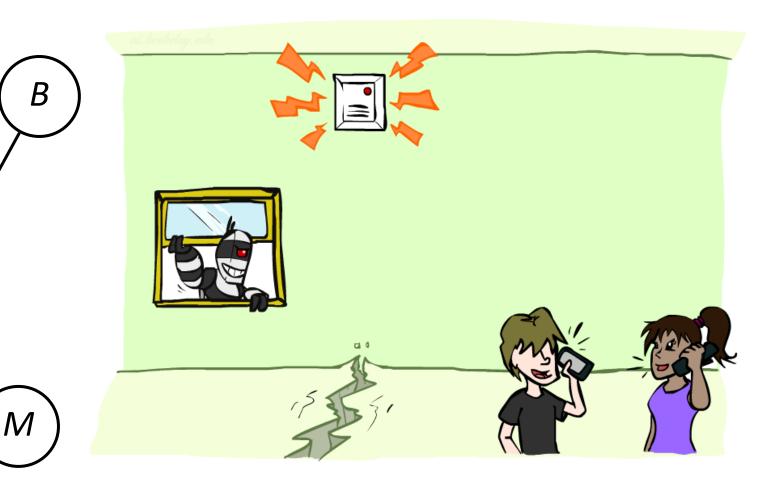
■ B: Burglary

■ A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

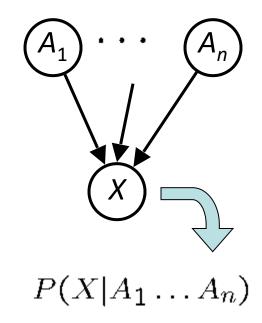


Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$



- CPT: conditional probability table
- Description of a noisy "causal" process

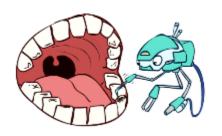
A Bayes net = Topology (graph) + Local Conditional Probabilities

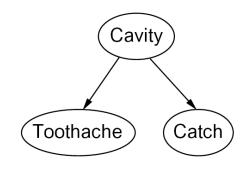
Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:





P(+cavity, +catch, -toothache)

P(+cavity) * P(+catch | +cavity) * P(-toothache | +cavity)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

Chain rule (valid for all distributions):
$$P(x_1,x_2,\ldots x_n) = \prod_{i=1}^n P(x_i|x_1\ldots x_{i-1})$$

• Assume conditional independences: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

$$\rightarrow$$
 Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$X_n$$

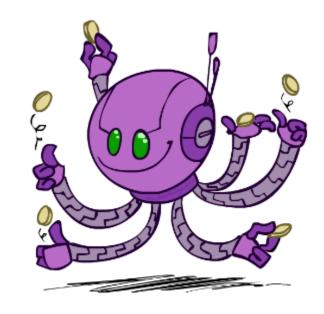
$$P(X_1)$$

h	0.5
t	0.5

T	1	37	•	٦
P	[X	\sim	- 1
-	`	-	_	,

h	0.5
t	0.5

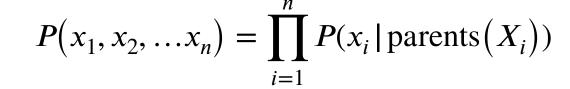
$$P(X_n)$$
h 0.5
t 0.5

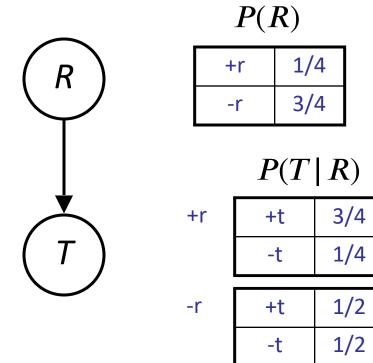


$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

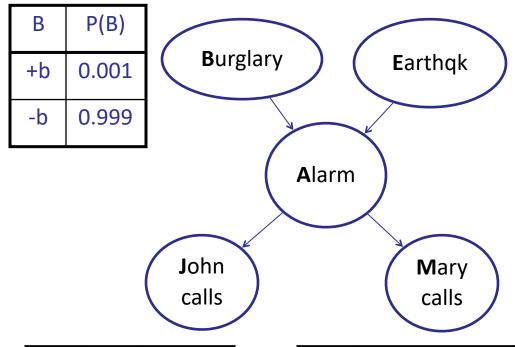




$$P(+r, -t) = P(+r)P(-t|+r)$$

$$= \frac{1}{4} * \frac{1}{4} = \frac{1}{16}$$

Example: Alarm Network



Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

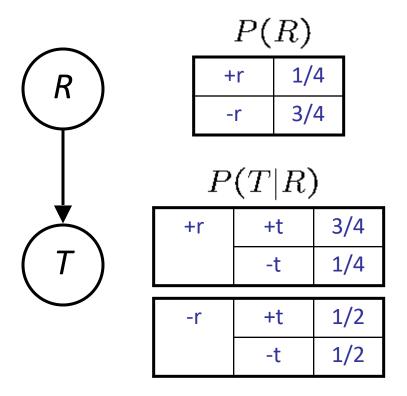
Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

ш	P(E)	
+e	0.002	
-e	0.998	

В	Е	A	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Traffic

Causal direction



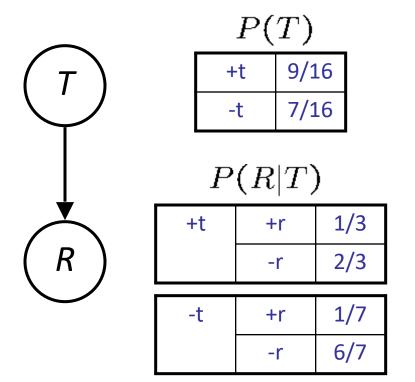


P^{\prime}	T	1	F	3)
-	\ -	7	•	\mathbf{v}_{J}

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

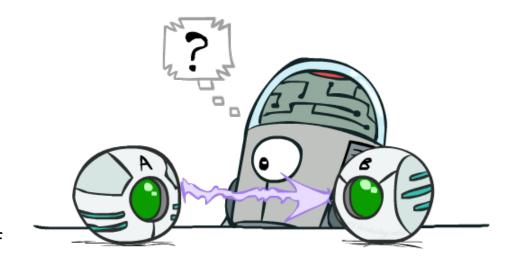


P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$



Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

