CS 188: Artificial Intelligence

Bayes’ Nets: Inference

Instructors: Oliver Grillmeyer and Charlie Snell — University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Announcements

HWG6 is due Thursday, July 17, 11:59 PM PT

Project 3 is due Friday, July 18, 11:59 PM PT

Midterm is Wednesday July 23, 7-9 PM PT

Look at Exam info under Policies link on CS 188 website



Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values
P(X|ay...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together:
n

P(wl, o, .. :Un) = H P(:cz-\,oarents(XZ-))
=1




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | - 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +te | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e -a 0.999

[Demo: BN Applet]



Example: Alarm Network

B | P(B) E | P(E)

+b | 0.001 +e | 0.002

b | 0.999 e | 0.998
Al J | PUIA) ° Al M |PMIA)
+a | 4 0.9 +a | +m 0.7 ° : A PAIBE)
@l 5 | 01 va| -m | 03 tb | +te)ta] 095
a | 4 | 005 a | +m | 0.01 th | e | 0.05
a | 5 | 095 a | -m | 0.99 th | e | +a 0.94

+b | -e -a 0.06

+e | +a 0.29
+e | -a 0.71
-e | +a 0.001
-e | -a 0.999

P(Iba ealaa_ja_l_m):
P(+b)P(—e)P(+a|l + b, —e)P(—j| + a)P(+m|+a) =

I I I I
| O | OC| T




Example: Alarm Network

B P(B) E P(E)

+b | 0.001 +e | 0.002

-b | 0.999 -e | 0.998
Al ) | PUIA) ° Al M |PM|A)
+a | +j 0.9 +a | +m 0.7 ° : A PAIBE)
| o 01 va | -m 03 +b | +e | +a 0.95
a | 4] 0.05 3 | +m 0.01 +tb | +e | -a 0.05
a | 5 | 095 a | -m | 0.99 ) e[t 04

+b | -e -a 0.06

+e | +a 0.29
+e | -a 0.71
-e | +a 0.001
-e | -a 0.999

P(+b, —e,4+a,—j,+m) =
P(+b)P(—e)P(+a|l + b, —e)P(—j| + a)P(+m|+a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7

I I I I
O| O )| OC| O




Bayes’ Nets

JRepresentation
¢ Conditional Independences

s Probabilistic Inference

= Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data



Inference

= Inference: calculating some useful = Examples:
guantity from a joint probability _ .
distribution = Posterior probability

P(Q|E1 =e1,... B, = ¢g)

= Most likely explanation:
argmax, P(Q =q|E1 =eq...)




= General case:

Evidence variables:

Inference by Enumeration

= Query* variable: Q
Hidden variables: Hy...Hy
Step 1: Select the
entries consistent
with the evidence
Ped
0.05
0.25 .
o |
0.2 |
S
0.01 w

P(Q,e1...e;) = >, P(@7hl'

Fi...E,=e1...¢e

X1, X0o,..
All variables

. Xn

Step 2: Sum out H to get joint
of Query and evidence

hl...hr

. hryeq1...ep)

_/

~

X1, Xo,..

. Xn

* Works fine with
multiple query
variables, too

P(Qley . ..ex)

= We want:

= Step 3: Normalize

1
><_
A

Z =Y PQ,e1 e
q

P(Qler -+ ex) = 7 P(Quer-cx)



Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+ j,+m) g P(B,+j,+m) 0
—ZP (B,e,a,+7,+m)
= ZP P(a|B,e)P(+jla)P(+m|a)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration?




Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? » ldea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Example: Traffic Domain

= Random Variables
= R: Raining
s T: Traffic
» L: Late for class!

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+|

0.1

-t

0.9




Inference by Enumeration: Procedural Outline

= Track objects called factors
= Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -| 0.7

-r +t | 0.1 -t + 0.1
-r -t |1 0.9 -t -1 0.9

= Any known values are selected
» E.g.ifweknow [, = 4/, theinitial factors are

P(R) P(T|R)  P(+4T)
+r 0.1 +r | +t | 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + [ 0.1
-r -t | 09

s Procedure: Join all factors, eliminate all hidden variables, normalize



Operation 1: Join Factors

= First basic operation: joining factors
= Combining factors:
= Just like a database joi =
ust like a database join % =
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: JoinonR

P(R) x P(T|R) =—=> P(RT)

+r 0.1 +r | +t | 0.8 +r | +t | 0.08
-r 0.9 +r | -t 10.2 +r | -t | 0.02
@ -r | +t |0.1 0.09

-or |+t
-r | -t 0.9 -r | -t | 0.81

= Computation for each entry: pointwise products vr,t . P(r,t) = P(r) - P(t|r)



Example: Multiple Joins f.‘».

®

P(R) . . »-

+r | 0.1
T 103]  JoinR P(R,T)

JoinT
+r | +t | 0.08
P(T|R) +r | -t [0.02

> [T+ T009 >

+r | +t [0.8

Fr|t]02 r]t]0sl R, T P(R,T,L)

r |+t (0.1 +r +t + | 0.024

r|-t]|0.09 +r | +t | - | 0.056
<f> r | t | + |0.002

P(L|T) P(L|T) +r -t -1 | 0.018

. 03 -r +t + 0.027

+t | -1 0.7 +t| -l ]0.7 e g'ggi

T | +1]0.1 t | +]0.1 1 +|I 0.729

X109 T 1109 a ——




Operation 2: Eliminate

= Second basic operation: marginalization

s Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation

= Example:

P(R,T)
wT+loo0s] Sum R P(T)

+r | -t | 0.02 :D +t
-r | +t | 0.09 -t

-r| -t ]0.81




P(R,T,L)

Multiple Elimination

Lo

+r

+t

+l

0.024

+r

+t

0.056

+r

+l

0.002

+r

0.018

+t

+l

0.027

+t

0.063

1 1 1 1
- - - -

+l

0.081

0.729

Sum
out R

Sum
P(T,L) outT
+t | +l | 0.051
+t | -l | 0.119 ,—:>
-t | +| | 0.083
-t | -1 | 0.747

®

P(L)

+ 10.134

-l 10.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Q

(



Marginalizing Early (= Variable Elimination)




DG

Traffic Domain

P(L) = ?

= Inference by Enumeration = Variable Elimination

—ZZP LIt)P(r)P(t|r) —ZP Lt) ZP P(t|r)

[ -
Joinonr Joinonr
. Joinont Eliminate r
Eliminatet L Eliminate r Eliminatet & Joinont



O

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+l

0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

R, T

®

P(L|T)

+l

0.3

0.7

+l

0.1

0.9

Sum out R

—>

P(T)

+t | 0.17

-t | 0.83

%
®

P(L|T)

+t | +1 |0.3

0.7

-t | +l [0.1

0.9

JoinT

—>

Sumout T

>

P(T, L)

—>

+l

0.051

0.119

+l

0.083

0.747

®

P(L)

+]

0.134

0.866




Evidence

= If evidence, start with factors that select that evidence

= With no evidence, these are the initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -1 0.7

-r +t | 0.1 -t + 0.1
-r -t | 0.9 -t -1 0.9

= For computing. P(L| —+ 7“), the initial factors become:

P(+r) P(T|+r)  P(LIT)

. +t + | 0.3

+r -t | 0.2 +t -1 0.7
-t +| 0.1

-t | 0.9

= We eliminate all vars other than query + evidence



Evidence I

= Result will be a selected joint of query and evidence

= E.g.for P(L | +r), we would end up with:

P(+r,L) Normalize P(L|+r)

+r | +l | 0.026 +| | 0.26
+r| 1] 0.074 > 11074

= T0 get our answer, just normalize this!

= That’s it!



General Variable Elimination

Query:  P(Q|E] = eq, ... Ep = e}) ==

Start with initial factors: ! .
= Local CPTs (but instantiated by evidence) oo |

While there are still hidden variables (not Q or l
evidence): . . m(\\\“““ ,

» Pick a hidden variable H,

=« Join all factors mentioning H.

« Eliminate (sum out) H.

Join all remaining factors and normalize 1



Factor Zoo

/ \




Factor Zoo |

P(T,W)
= Joint distribution: P(X,Y)
Entries P(x,y) for all ! W i
= Entries P(x,y) for all x,
y y hot sun 0.4
= Sumstol
hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution
P(cold, W
= Entries P(x,y) for fixed x, all y ( ) )
= Sums to P(x) T W P
cold sun 0.2
= Number of capitals = cold | rain |03
dimensionality of the table




Factor Zoo |l

= Single conditional: P(Y | x)

= Entries Py | x) for fixed x, all y P(W|00ld)
= Sumstol T W P
cold sun 0.4
cold rain | 0.6
= Family of conditionals: P(W|T)
T W P

P(Y | X)

= Multiple conditionals

hot sun 0.8
hot rain 0.2

cold sun 0.4
cold rain 06| [ P(W|COld)

- P(W]hot)

= Entries P(y | x) forall x, y

= Sumsto [X]|




Factor Zoo |l

= Specified family: P(y | X)

= Entries P(y | x) for fixed v,

= Sumsto ... who knows!

but for all x

P(rain|T')

T W P
hot rain 0.2
cold rain 0.6

|

P(rain|hot)
P(rain|cold)




Factor Zoo Summary

« In general, when we write P(Y, ... Yy | X; ... X,)

= Itis a “factor,” a multi-dimensional array

« Itsvaluesare Py, ... yy | X{ .. Xy)

= Any assigned (=lower-case) X or Y is a dimension selected from the array




Example

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(lA)  P(m|A)
Choose A
P(A|B, F)
P(j|A) X > P(j,m,AlB,E) |[¥X > P(j,m|B,FE)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :x > P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

§> P(j,m, B) @P(B!j,m)



Same Example in Equations

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B,E) P@lA)  P(m|A)
P(B|j,m) P(B,j,m)
ZP(B,j,m,e,a)

;P(B)P(e)P(alB, e)P(jla)P(m|a)
i P(B)P(e) ) P(a|B,e)P(jla)P(m|a)
ZG:P(B)P(e)fi(B, e, j,m)
Pe(B) > P(e)fi1(B,e,j,m)

P(B)fo(B, j,m)

marginal obtained from joint by summing out
use Bayes’ net joint distribution expression
use x*(y+z) = xy + xz

joining on a, and then summing out gives f,
use x*(y+z) =xy + xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Query: P(X3|Y1 = y1,Y2 = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:

p(Z)p(X1|2)p(X2| Z)p(X3|Z)p(y1]| X1)p(y2| X2)p(y3| X3)

Eliminate X, this introduces the factor fi(Z,y;) = El_l p(z1|Z)p(y1|z1), and
we are left with:

P(Z) f1(Z,y1)p(X2| Z)p(X3| Z)p(y2| X2)p(y3| X3)

Eliminate Xo, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|z2), and
we are left with:

P(2) f1(Z,y1) fo(Z,y2)p(X3]| Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2, 1) f2(2, y2)p(X3|2),
and we are left:

p(ys|Xs), f3(y1,y2, X3)

No hidden variables left. Join the remaining factors to get:

fa(y1,y2,y3, X3) = P(y3| X3) f3(y1, y2, X3).

Normalizing over X3 gives P(X3|y1,y2,y3)-

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X respectively).



Variable Elimination Ordering

» Forthe query P(X_|y,,...,y,) work through the following two different orderings as done in
previous slide: Z, X, ..., X_;and X, ..., X_,, Z. What is the size of the maximum factor
generated for each of the orderings?

= Answer: 2n+l versus 22 (assuming binary)

= In general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2n vs. 2

= Does there always exist an ordering that only results in small factors?
= Nol!



Worst Case Complexity?

n CSP:

(z1VaoV-xs)A(mxVesVzg)A(xeVxoVeg) A(mxsVozgVozs)A(xeVesVar ) AN(xgVasVeg) AN(—xsVagV-xr)AN(—xsVoxgVer)

P(X;=0)= P(X;=1) = 0.5
Y, = X,V Xo VX5

Ye = =Xs V X V X>

Yl,g =Y AYs

Y78 =Y A Yy

yhar)a

Ys678 =Ys56AYrs

Z =Y1234NY5678

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
s Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes’ Nets

vRepresentation
¢ Conditional Independences

s Probabilistic Inference

VEnumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
Jexponential complexity, often better)

= Inference is NP-complete

fSampIing (approximate)

= Learning Bayes’ Nets from Data



