
CS 188: Artificial Intelligence 

Bayes’ Nets: Sampling

Instructor: Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ HW6 is due Thursday, July 17, 11:59 PM PT 
▪ Project 3 is due Friday, July 18, 11:59 PM PT 
▪ Midterm is Wednesday, July 23, 7-9 PM PT in 155 Dwinelle 
▪ Ignore assessment on HWs part B, but please show your work 
▪ Email me topramen@berkeley.edu if you would attend MW 7-8 

sections that focused on projects and homework 

mailto:topramen@berkeley.edu


Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable 

▪ A conditional probability table (CPT) for each node 

▪ A collection of distributions over X, one for each combination of 
parents’ values 

▪ Bayes’ nets implicitly encode joint distributions 

▪ As a product of local conditional distributions 

▪ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:



Variable Elimination

▪ Interleave joining and marginalizing 

▪ dk entries computed for a factor over k 
variables with domain sizes d 

▪ Ordering of elimination of hidden variables 
can affect size of factors generated 

▪ Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling



Sampling

▪ Sampling is a lot like repeated simulation 

▪ Predicting the weather, basketball games, … 

▪ Basic idea 

▪ Draw N samples from a sampling distribution S 
▪ Compute an approximate posterior probability 
▪ Show this converges to the true probability P

▪ Why sample? 
▪ Learning: get samples from a distribution 

you don’t know 
▪ Inference: getting a sample is faster than 

computing the right answer (e.g. with 
variable elimination) 



Sampling

▪ Sampling from given distribution 

▪ Step 1: Get sample u from uniform 
distribution over [0, 1) 
▪ E.g. random() in python 

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of the 
outcome

▪ Example 

▪ If random() returns u = 0.83, 
then our sample is C = blue 

▪ E.g, after sampling 8 times: 

C P(C)
red 0.6

green 0.1
blue 0.3



Sampling in Bayes’ Nets

▪ Prior Sampling 

▪ Rejection Sampling 

▪ Likelihood Weighting 

▪ Gibbs Sampling



Prior Sampling (no evidence)



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

▪ For i = 1, 2, …, n 

▪ Sample xi from P(Xi | Parents(Xi)) 

▪ Return (x1, x2, …, xn)



Prior Sampling

▪ This process generates samples with probability: 

 …i.e. the BN’s joint probability 

▪ Let the number of samples of an event be 

▪ Then 

▪ I.e., the sampling procedure is consistent



Example

▪ We’ll get a bunch of samples from the BN: 
 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

▪ If we want to know P(W) 
▪ We have counts <+w:4, -w:1> 
▪ Normalize to get P(W) = <+w:0.8, -w:0.2> 
▪ This will get closer to the true distribution with more samples 
▪ Can estimate anything else, too 
▪ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)? 
▪ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Reflections on Prior Sampling

Pros: 
▪ Much simpler than enumeration or variable elimination: We only ever need samples 

(scalar values) for each variable, not probabilities.  

▪ Therefore we only ever need k rows from one CPT table to sample a variable  that 
has k possible values. No potentially exponential increase with number of variables.  

▪ Therefore it doesn’t matter as much how sparse the graph is: we still only need k 
rows from each CPT table, regardless of how many rows (how many parents) it has. 

Cons: 
▪ So far we can’t deal with evidence. 
▪ We don’t get exact values, and its expensive to get accurate estimates of small 

probabilities. E.g. estimating a 0.001 probability with 1% relative error requires 
around 107 samples. 

𝑋



Rejection Sampling



 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w

Rejection Sampling

▪ Let’s say we want P(C) 
▪ No point keeping all samples around 
▪ Just tally counts of C as we go 

▪ Let’s say we want P(C | +s) 
▪ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s 
▪ This is called rejection sampling 
▪ It is also consistent for conditional 

probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
▪ Input: evidence instantiation 

▪ For i = 1, 2, …, n 

▪ Sample xi from P(Xi | Parents(Xi)) 

▪ If xi not consistent with evidence 
▪ Reject: return – no sample is generated in this cycle 

▪ Return (x1, x2, …, xn)



Reflections on Rejection Sampling

Pros: 
▪ Inherits all the pros of prior sampling. 
▪ Now we can deal with evidence.  
Cons: 
▪ Dealing with evidence can be very costly. Our rejection rate is 1- the marginal 

probability of the evidence, and getting N good samples requires taking N/p samples 
overall, where p is the marginal probability of the evidence.  

▪ We still don’t get exact values, and its still expensive to get accurate estimates of 
small probabilities. E.g. estimating a 0.001 probability with 1% relative error requires 
around 107 samples, multiplied by 1/marginal probability of the evidence. 



Likelihood Weighting



▪ Idea: fix evidence variables and sample the 
rest 
▪ Problem: sample distribution not consistent! 
▪ Solution: weight by probability of evidence given 

parents

Likelihood Weighting

▪ Problem with rejection sampling: 
▪ If evidence is unlikely, rejects lots of samples 
▪ Evidence not exploited as you sample 
▪ Consider P( Shape | blue )

Shape ColorShape Color

 pyramid,  green 
 pyramid,  red 
 sphere,     blue 
 cube,         red 
 sphere,      green

 pyramid,  blue 
 pyramid,  blue 
 sphere,     blue 
 cube,         blue 
 sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
▪ Input: evidence instantiation 

▪ w = 1.0 

▪ for i = 1, 2, …, n 

▪ if Xi is an evidence variable 
▪ Xi = observation xi for Xi 
▪ Set w = w * P(xi | Parents(Xi)) 

▪ else 
▪ Sample xi from P(Xi | Parents(Xi)) 

▪ return (x1, x2, …, xn), w



Likelihood Weighting

▪ Sampling distribution if z sampled and e fixed evidence 

▪ Now, samples have weights 

▪ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting

▪ Likelihood weighting is good 
▪ We have taken evidence into account as we generate 

the sample 
▪ E.g. here, W’s value will get picked based on the 

evidence values of S, R 
▪ More of our samples will reflect the state of the world 

suggested by the evidence 
 

▪ Likelihood weighting doesn’t solve all our 
problems 
▪ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence) 

▪ We would like to consider evidence when we 
sample every variable (leads to Gibbs sampling)

S R

W

C



Reflections on Likelihood Weighting

Pros: 
▪ Inherits all the pros of Rejection Sampling, including dealing with evidence.  
Cons: 
▪ Dealing with evidence is more efficient, but can still be costly.  
▪ We still don’t get exact values, and it may still be expensive to get accurate estimates 

of small probabilities (although typically better than rejection sampling). We don’t 
reject samples anymore, but if some samples have much higher weight than others, 
the variance of estimates we make from those samples will be dominated by the 
high-weight samples. In bad cases, this can be as inefficient as rejection sampling. 
Consider the Meningitis example…



Gibbs Sampling



Gibbs Sampling

▪ Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable at 
a time, conditioned on all the rest, but keep evidence fixed.  Keep repeating 
this for a long time. 

▪ Property: in the limit of repeating this infinitely many times the resulting 
samples come from the correct distribution (i.e. conditioned on evidence). 

▪ Rationale: both upstream and downstream variables condition on 
evidence. 

  

▪ In contrast: likelihood weighting only conditions on upstream evidence, and 
hence weights obtained in likelihood weighting can sometimes be very 
small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so we want high weight.



▪ Step 2: Initialize other variables  
▪ Randomly

Gibbs Sampling Example: P( S | +r)

▪ Step 1: Fix evidence 
▪ R = +r 

▪ Steps 3: Repeat 
▪ Choose a non-evidence variable X 
▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C



Efficient Resampling of One Variable

▪  Sample from P(S | +c, +r, -w)  

▪ Many things cancel out – only CPTs with S remain! 

▪ More generally: only CPTs that have resampled variable need to be considered, and joined 
together

S +r

W

C



Gibbs Sampling: Conditioning Variables

▪ Each node’s probability is conditioned only on a subset of nearby nodes. We 
could start with the parents and children of the node to be sampled. Is that 
enough?  

Note: a gray node here doesn’t mean evidence, it just means that the node has 
been sampled and has a fixed value. 

B E

A

J M

??



Gibbs Sampling: Conditioning Variables

▪ No! Remember that the node equations for children depend on their other 
parents. The complete set is called the Markov Blanket of the node, and 
includes the other parents of the sampled node’s children (orange):



Gibbs Sampling: Node probability

▪ To sample, we first compute a factor that includes all node CPTs that depend on A. 

▪ Then we normalize it to get a conditional probability for A.  

▪ Finally we sample to get a new value for A.  

                                                               multiply CPTs with A:       

                                                                   which is the factor:       
                                                                   normalize (sum over A and divide):   

                                                                                                     

                                                                    divide: 

                                                                                     

                                                                     take a sample of A from this distribution.

𝑝(𝐴 𝑏, 𝑐) 𝑝(𝑓 𝐴, 𝑑) 𝑝(𝑔 |𝐴, 𝑒)

𝑝(𝐴, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑍 = ∑
𝑎

𝑃 (𝑎, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑝(𝐴 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) = 𝑝(𝐴, 𝑓, 𝑔 𝑏, 𝑐, 𝑑, 𝑒)/𝑍

B C

D E

F G



Reflections on Gibbs Sampling
Pros: 

▪ Similar to other sampling methods: Only needs k rows from each CPT table for a 
variable X with k values.  

▪ It also doesn’t matter how sparse the graph is, in fact Gibbs sampling typically 
converges faster on denser graphs, because its mixes faster.  

▪ Samples are unweighted, and come from the exact posterior probability conditioned on 
the evidence (eventually). So estimates can be fairly fast (modulo mixing).  

Cons: 

▪ There is a “warm-up” period for the sampler to reach the final distribution.  

▪ Because samples are correlated, need more of them to get estimates at a given 
accuracy compared to other sampling methods.  

▪ Both of the above depend on “mixing time,” for which smaller is better.  

▪ There is much theory and many techniques to improve Gibbs sampling.



Bayes’ Net Sampling Summary
▪ Prior Sampling  P( Q ) 

▪ Likelihood Weighting  P( Q | e)

▪ Rejection Sampling  P( Q | e ) 

▪ Gibbs Sampling  P( Q | e )



Further Reading on Gibbs Sampling*

▪ Gibbs sampling produces sample from the query distribution P( Q | e ) 
in limit of re-sampling infinitely often 

▪ Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods  

▪ Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings)  

▪ You may read about Monte Carlo methods – they’re just sampling


