
CS 188: Artificial Intelligence
Midterm Summary

Instructor: Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ Midterm is Wednesday, July 23, 7-9 PM PT in 155 Dwinelle
▪ HW7 is due Tuesday, July 29, 11:59 PM PT
▪ HW8 is due Thursday, July 31, 11:59 PM PT
▪ Project 4 is due Friday, August 1, 11:59 PM PT
▪ Ignore assessment on HWs part B, but please show your work
▪ Email me topramen@berkeley.edu if you would attend MW 7-8

sections that focused on projects and homework

mailto:topramen@berkeley.edu

CS 188: Artificial Intelligence

Search

Instructor: Oliver Grillmeyer

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent that

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless

of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth”

is roughly C*/ε

▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost is positive,

yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2
c ≤ 1

CS 188: Artificial Intelligence

Informed Search

Instructor: Oliver Grillmeyer

University of California, Berkeley

Greedy Search

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)
▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

S

a

b ed

G

f=0+6

f = 1+5

f = 2+6 f = 4+2

f = 6+0

f = 9+1

Properties of A*

…
b

…
b

Uniform-Cost A*

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

4
15

Comparison

Greedy Uniform Cost A*

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

CS 188: Artificial Intelligence
Constraint Satisfaction Problems

Instructor: Oliver Grillmeyer

University of California, Berkeley

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different colors

▪ Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

Constraint Graphs

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to reducing

domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n ≈ 25

Backtracking Example

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:
▪ Which variable should be assigned next?
▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options
▪ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):
▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value
▪ I.e., the one that rules out the fewest values in the

remaining variables
▪ Note that it may take some computation to determine

this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Summary: CSPs

CSPs are a special kind of search problem:
States are partial assignments
Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
Ordering
Filtering
Structure

Iterative min-conflicts is often effective in practice

Hill Climbing

Simple, general idea:
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s bad about this approach?
Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

CS 188: Artificial Intelligence
Game Trees: Adversarial Search

Instructors: Oliver Grillmeyer
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).
[Updated slides from: Stuart Russell and Dawn Song]

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)
▪ Pure competition:

▪ One maximizes, the other minimizes

▪ General-Sum Games
▪ Agents have independent utilities (values on outcomes)
▪ Cooperation, indifference, competition, shifting alliances,

and more are all possible
▪ Team Games

▪ Common payoff for all team members

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Example

12 8 5 23 2 144 6

v=3

v=3

v=2 v=14v=14 5v=14 5 2

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ E.g. f1(s) = (num white queens – num black queens), etc.
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Depth Matters

▪ Evaluation functions are always
imperfect

▪ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

▪ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Summary

▪ Games are decision problems with multiple agents
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs

▪ For zero-sum games, optimal decisions defined by minimax
▪ Implementable as a depth-first traversal of the game tree
▪ Time complexity O(bm), space complexity O(bm)

▪ Alpha-beta pruning
▪ Preserves optimal choice at the root
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
▪ Time complexity drops to O(bm/2) with ideal node ordering

▪ Exact solution is impossible even for “small” games like chess

CS 188: Artificial Intelligence
Uncertainty and Utilities

Instructors: Oliver Grillmeyer

University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

▪ As we get more evidence, probabilities may change:
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

▪ The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax
▪ Environment is an

extra “random
agent” player that
moves after each
min/max agent

▪ Each node
computes the
appropriate
combination of its
children

Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Maximum Expected Utility

▪ Why should we average utilities? Why not minimax?

▪ Principle of maximum expected utility:
▪ A rational agent should chose the action that maximizes its expected

utility, given its knowledge

▪ Questions:
▪ Where do utilities come from?
▪ How do we know such utilities even exist?
▪ How do we know that averaging even makes sense?
▪ What if our behavior (preferences) can’t be described by utilities?

Preferences

▪ An agent must have preferences among:
▪ Prizes: A, B, etc.
▪ Lotteries: situations with uncertain prizes

▪ Notation:
▪ Preference:
▪ Indifference:

A B

p 1-p

 A Lottery A Prize

A

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

CS 188: Artificial Intelligence
Markov Decision Processes

Instructors: Oliver Grillmeyer and Ademi Adeniji

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s ∈ S
▪ A set of actions a ∈ A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Grid World Example

Grid World Example

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and
the past are independent

▪ For Markov decision processes, “Markov” means action outcomes
depend only on the current state

▪ This is just like search, where the successor function could only depend
on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

▪ For MDPs, we want an optimal policy π*: S → A
▪ A policy π gives an action for each state
▪ An optimal policy is one that maximizes expected

utility if followed
▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a
simple one-step lookahead relationship amongst optimal utility
values

▪ These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π?

▪ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?
▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?
▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

Policy Iteration

▪ Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
▪ Repeat steps until policy converges

▪ This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions

Example: Policy Iteration
Always Go East Improved Policy using Q-Values Improve again – Optimal!

Q-Values for the above policies

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):
▪ A set of states s ∈ S
▪ A set of actions (per state) A
▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy π(s)

▪ New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do
▪ Must actually try out actions and states to learn

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards
▪ Agent’s utility is defined by the reward function
▪ Must (learn to) act so as to maximize expected rewards
▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Model-Free Reinforcement Learning

Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy π(s)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”
▪ No choice about what actions to take
▪ Just execute the policy and learn from experience
▪ This is NOT offline planning! You actually take actions in the world.

Problems with Direct Evaluation

▪ What’s good about direct evaluation?
▪ It’s easy to understand
▪ It doesn’t require any knowledge of T, R
▪ It eventually computes the correct average values,

using just sample transitions

▪ What’s bad about it?
▪ It wastes information about state connections
▪ Each state must be learned separately
▪ So, it takes a long time to learn

Output Values

 A

 B C D

 E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)
▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!
▪ Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go
▪ Receive a sample (s,a,s’,r)
▪ Consider your old estimate:
▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:
▪ You have to explore enough
▪ You have to eventually make the learning rate
 small enough
▪ … but not decrease it too quickly
▪ Basically, in the limit, it doesn’t matter how you select actions (!)

How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (ε-greedy)
▪ Every time step, flip a coin
▪With (small) probability ε, act randomly
▪With (large) probability 1-ε, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done
▪ One solution: lower ε over time
▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions
▪ When to explore?

▪ Random actions: explore a fixed amount
▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

▪ Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:
Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Feature-Based Representations

▪ Solution: describe a state using a vector of features
(properties)
▪ Features are functions from states to real numbers (often

0/1) that capture important properties of the state
▪ Example features:

▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2
▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: disprefer

all states with that state’s features

▪ Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best
▪ Q-learning’s priority: get Q-values close (modeling)
▪ Action selection priority: get ordering of Q-values right (prediction)
▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies π that maximize rewards, not the Q values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search
▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function
▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:
▪ How do we tell the policy got better?
▪ Need to run many sample episodes!
▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change multiple
parameters…
▪ Policy Gradient, Proximal Policy Optimization (PPO) are examples

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

Compute V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning

CS 188: Artificial Intelligence

Probability

Instructors: Oliver Grillmeyer and Ademi Adeniji --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Random Variables

▪ A random variable is some aspect of the world about which we
(may) have uncertainty

▪ R = Is it raining?
▪ T = Is it hot or cold?
▪ D = How long will it take to drive to work?
▪ L = Where is the ghost?

▪ We denote random variables with capital letters

▪ Like variables in a CSP, random variables have domains

▪ R in {true, false} (often write as {+r, -r})
▪ T in {hot, cold}
▪ D in [0, ∞)
▪ L in possible locations, maybe {(0,0), (0,1), …}

Probability Distributions

▪ Associate a probability with each value of that random variable

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather:

𝑃 (𝑊)
𝑃 (𝑇)

Probabilistic Models

▪ A probabilistic model is a joint distribution
over a set of random variables

▪ Probabilistic models:
▪ (Random) variables with domains
▪ Assignments are called outcomes
▪ Joint distributions: say whether assignments

(outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly interact

▪ Constraint satisfaction problems:
▪ Variables with domains
▪ Constraints: state whether assignments are

possible
▪ Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun T
hot rain F
cold sun F
cold rain T

Distribution over T,W

Constraint over T,W

Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate random variables
▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

𝑃 (𝑡) = ∑
𝑤

𝑃 (𝑡, 𝑤)

𝑃 (𝑤) = ∑
𝑡

𝑃 (𝑡, 𝑤)

𝑃 (𝑇, 𝑊)
𝑃 (𝑇)

𝑃 (𝑊)

𝑃(𝑋1 = 𝑥1) = ∑
𝑥2

𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2)

hidden (unobserved) variables

Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)evidence

query = (proportion of b where a holds)

SELECT the joint
probabilities
matching the

evidence

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the
selection

(make it sum to one)

Inference by Enumeration
▪ General case:

▪ Evidence variables:
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with
multiple query
variables, too

▪ We want:

▪ Step 1: Select the
entries consistent
with the evidence

▪ Step 2: Sum out H to get joint
of Query and evidence

▪ Step 3: Normalize

Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:

▪ Example:
▪ M: meningitis, S: stiff neck

Example
givens

 P(+m | +s) ≅ 0.008

CS 188: Artificial Intelligence

Bayes’ Nets

Instructor: Oliver Grillmeyer — University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

▪ Two variables are independent if:

▪ This says that their joint distribution factors into a product two simpler
distributions

▪ Another form:

▪ We write:

▪ Independence is a simplifying modeling assumption

▪ Empirical joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence

Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)

▪ Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

▪ X is conditionally independent of Y given Z

 if and only if:

 or, equivalently, if and only if

Example: Coin Flips

▪ N independent coin flips

▪ No interactions between variables: absolute independence

X1 X2 Xn

Example: Alarm Network

▪ Variables
▪ B: Burglary
▪ A: Alarm goes off
▪ M: Mary calls
▪ J: John calls
▪ E: Earthquake!

B

A

MJ

E

Example: Alarm Network

Burglary Earthqk

Alarm

John
calls

Mary
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ

Conditional Independence

▪ X and Y are independent if

▪ X and Y are conditionally independent given Z

▪ (Conditional) independence is a property of a distribution

▪ Example:

Active / Inactive Paths

▪ Question: Are X and Y conditionally independent given
evidence variables {Z}?

▪ Yes, if X and Y “d-separated” by Z
▪ Consider all (undirected) paths from X to Y

▪ No active paths = independence!

▪ A path is active if each triple is active:
▪ Causal chain A → B → C where B is unobserved (either direction)
▪ Common cause A ← B → C where B is unobserved
▪ Common effect (aka v-structure)
 A → B ← C where B or one of its descendants is observed

▪ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples

▪ Query:

▪ Check all (undirected!) paths between and

▪ If one or more active, then independence not guaranteed

▪ Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

D-Separation

?

Example

Yes R

T

B

T’

Example

R

T

B

D

L

T’

Yes

Yes

Yes

Example

▪ Variables:
▪ R: Raining

▪ T: Traffic

▪ D: Roof drips

▪ S: I’m sad

▪ Questions:

T

S

D

R

Yes

