CS 188: Artificial Intelligence
Midterm Summary

Instructor: Oliver Grillmeyer --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Announcements

Midterm is Wednesday, July 23, 7-9 PM PT in 155 Dwinelle
HW?7 is due Tuesday, July 29, 11:59 PM PT

HWS8 is due Thursday, July 31, 11:59 PM PT

Project 4 is due Friday, August 1, 11:59 PM PT

gnore assessment on HWs part B, but please show your work

Email me topramen@berkeley.edu if you would attend MW 7-8
sections that focused on projects and homework

mailto:topramen@berkeley.edu

CS 188: Artificial Intelligence

Search

Instructor: Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

State Space Graphs vs. Search Trees

/State Space Graph\

o F
=

_ /

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

/7 \
e h r
\ / \ I
r p q f
I ! 7\
f q c G
1\ !
c G a

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= If mis finite, takes time O(bm) b2 nodes
= How much space does the fringe take? m tiers <
= Only has siblings on path to root, so O(bm)
i ?
« Isit complete: bm nodes

= m could be infinite, so only if we prevent that

= Isit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

s Processes all nodes above shallowest solution
= Let depth of shallowest solution be s
= Search takes time O(bs)

How much space does the fringe take?
= Has roughly the last tier, so O(bs)

Is it complete?

= S must be finite if a solution exists, so yes!

Is it optimal?

= Only if costs are all 1 (more on costs later)

s tiers

<

1 node
b nodes

b2 nodes

bs nodes

bm nodes

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

S 0
@ 3 © ® 1
—— |

(o,, (@5 17 ()1 @) 16
B - AN
a W17 p q f

AN | PR

p g (O8 9 ¢ G

| N e|7

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution! e

= |f that solution costs C* and arcs cost at least €, then the “effective depth”

is roughly C*/e
C*/e "tiers” <

= Takes time O(bC*%) (exponential in effective depth)

= How much space does the fringe take?

» Has roughly the last tier, so O(bC*%)

= Isit complete?

O

= Assuming best solution has a finite cost and minimum arc cost is positive,
yes!

= Isit optimal?

= Yes! (Proof next lecture via A*)

CS 188: Artificial Intelligence

Informed Search

Instructor: Oliver Grillmeyer

University of California, Berkeley

Greedy Search

Greedy Search

s Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

8

S h=1
1

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Properties of A*

Uniform-Cost

A*

Admissible Heuristics
» A heuristic /1 is admissible (optimistic) if:

0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

- 4

= Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

= Examples:

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A*: Summary

s A* uses both backward costs and (estimates of) forward costs
» A* is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

,

e

CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Oliver Grillmeyer

University of California, Berkeley

Example: Map Coloring

« Variables: WA, NT, Q, NSW, V, SA, T

= Domains: D = {red, green, blue}

s Constraints: adjacent regions must have different colors

Implicit: \WA = NT

Explicit: (\wWA,NT) € {(red, green), (red, blue), ...}
= Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Constraint Graphs

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to reducing
domains), e.g.:

SA # green

» Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

s Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (WEe'll ignore these until we get to Bayes’ nets)

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assighments are commutative, so fix ordering
= l.e., [WA=red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= l.e. consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

~o

—]

¢ & ¢

i
oy,

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing
assignment

WA NT["Q

NS

WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

T
Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options

= Forward checking: Cross off values that violate a constraint when added to the existing

assignment

%_"H:_"‘_Lb_"pt

A [Nsw

WA NT NSW Vv
ECEETEIN I AETEET N |
P BT EETEETE -
PR =l HE E|ENNE 4
[a [—=

[demo: forward checking]

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

WA NT Q NSW \' SA

—

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT [¢q WA NT Q NSW Vv SA
\‘“LLMNSW 11 [E[mrE] =

3 v

= Important: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment Remember:
= What’s the downside of enforcing arc consistency? Delete from

the tail!

Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):

= Choose the variable with the fewest legal left values in its domain

=S

= Why min rather than max?

s Also called “most constrained variable”

= “Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value

= Given a choice of variable, choose the least ‘
constraining value

= |.e., the one that rules out the fewest values in the ‘
remaining variables

= Note that it may take some computation to determine ‘_L';‘

this! (E.g., rerunning filtering)

= Why least rather than most?

» Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring — backtracking + AC + ordering]

Nearly Tree-Structured CSPs

= (et
O O

@ O,

Conditioning: instantiate a variable, prune its neighbors' domains

@‘:""@ o G

Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

Cutset size c gives runtime O((d¢) (n-c) d2), very fast for small c

Cutset Conditioning

Choose a cutset

/ 2

[Instantiate the cutset] T 4
(all possible ways) ()
S -
S S
[Compute residual CSP]) | (V)
v
()
[] :
O

for each assignment v

Solve the residual CSPs
(tree structured)

A—®
|

v
o ©
©
o

Summary: CSPs

CSPs are a special kind of search problem:
States are partial assignments
Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:

Ordering
Filtering
Structure

Iterative min-conflicts is often effective in practice

Hill Climbing

Simple, general idea:
Start wherever

Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s bad about this approach?

Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

objective function ndlobal maximum

shoulder

\ local maximum

"flat” local maximum

state space
curren

state

CS 188: Artificial Intelligence

Game Trees: Adversarial Search

Instructors: Oliver Grillmeyer
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).
[Updated slides from: Stuart Russell and Dawn Song]

Zero-Sum Games

Zero-Sum Gaknes = General-Sum Games

« Agents havd\opposite utilities|(values on outcomes) » Agents have independent utilities (values on outcomes)

| = Cooperation, indifference, competition, shifting alliances,
and more are all possible

= Pure competiion:

= One maximizes, the other minimizes
= [eam Games

= Common payoff for all team members

Adversarial Game Trees

/\
[__C.@ |

T~ T~
3~ > - ~JN ¢v M €. o

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s') V(s') = min V(s)
s’ €successors(s) sesuccessors(s’)

Terminal States:
V(s) = known

Minimax Example

12

Minimax Pruning

2 14 5 2

The order of generation matters:
more pruning is possible if good moves come first

Evaluation Functions

= Evaluation functions score non-terminals in depth-limited search

1 Wer X 10t @ &
I 2 &z2212(y 2272 [22
12 €2 [[H B N
I Hz:E N I I =W
HzEH:z:H B o 2kl
- H<H F \ e <l

@ B BsBc << y Cm |zEam @y
|—- nw. 4 n o ~ /_'_’:,___\:‘:_ /_'_’:,___\:‘:_ I. .w: .
Black to move _ White to move
White slightly better Black winning

= ldeal function: returns the actual minimax value of the position
= In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

= E.g. f,(s) = (hum white queens — num black queens), etc.
= Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Depth Matters

= Evaluation functions are always .
imperfect w
00 M

= The deeper in the tree the ”
evaluation function is buried, the
less the quality of the evaluation
function matters

= An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Summary

= Games are decision problems with multiple agents

= Huge variety of issues and phenomena depending on details of interactions and payoffs
= For zero-sum games, optimal decisions defined by minimax

= Implementable as a depth-first traversal of the game tree

= Time complexity O(bm), space complexity O(bm)
= Alpha-beta pruning

= Preserves optimal choice at the root

= Alpha/beta values keep track of best obtainable values from any max/min nodes on path
from root to current node

= Time complexity drops to O(b™/2) with ideal node ordering
= Exact solution is impossible even for “small” games like chess

|II

CS 188: Artificial Intelligence

Uncertainty and Utilities

Ay 7

Instructors: Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

Worst-Case vs. Average Case

maxX

min

10 10 9 100

ldea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Pseudocode

/def exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

/

1/3

24

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

1/6

-12

Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Outcomes: T in {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Some laws of probability (more later):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
= P(T=heavy) =0.25, P(T=heavy | Hour=8am) = 0.60
= We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

Reminder: Expectations

= The expected value of a function of a random variable is the

average, weighted by the probability distribution over
outcomes

= Example: How long to get to the airport?

Time: 20 min 30 min 60 min

X + X + X 35 min
Probability: 0.25 0.50 0.25

Mixed Layer Types

= E.g. Backgammon —
s Expectiminimax LII
s Environmentis an \
extra “random |
agent” player that 3 S
moves after each 2

min/max agent

= Each node
computes the
appropriate
combination of its
children

Multi-Agent Utilities

= What if the game is not zero-sum, or has multiple players?

= Generalization of minimax:
= Terminals have utility tuples
= Node values are also utility tuples

= Each player maximizes its own component
= Can give rise to cooperation and
competition dynamically...

y < y y
1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility:

= A rational agent should chose the action that maximizes its expected
utility, given its knowledge

= Questions:
= Where do utilities come from?
= How do we know such utilities even exist?
= How do we know that averaging even makes sense?

= What if our behavior (preferences) can’t be described by utilities?

Preferences

An agent must have preferences among:
= Prizes: A, B, etc.

= Lotteries: situations with uncertain prizes

L =[p,A; (1—p),B]

Notation:
= Preference: A > B
= Indifference: A~ B

A Prize

A Lottery

-

Rational Preferences

The Axioms of Rationality

[Orderability

(A-=B)V(B»=A)V(A~DB)
Transitivity

(A-B)AN(B>=C)=(A=C)
Continuity

A=-B>=C=3dp[p,A; 1—-—p,C]~ B
Substitutability

A~B=[p,A; 1—p,C]~|[p,B;1—p,C]
Monotonicity

A> B =

> A 1—-p,Bl>=[q,A; 1—q. B
_ (p>q<p p, B] = [q q])/

%\

N

/—=z==.=_%_‘\

Theorem: Rational preferences imply behavior describable as maximization of expected utility

CS 188: Artificial Intelligence

Markov Decision Processes

Instructors: Oliver Grillmeyer and Ademi Adeniji

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Markov Decision Processes

An MDP is defined by:
= Asetof statess& S
= Asetofactionsa&E A
= A transition function T(s, a, ')
= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state
Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Grid World Example

(1,1) north

-1 T(s, a, s’):
* T((1,1), north, (2,1)) = 0.8

* T((1,1), north, (1,2)) = 0.1
* T((1,1), north, (1,1)) = 0.1

Grid World Example

(1,1) north (2,1)
+1

-0.1

1 R(s, a, s’):
R((1,1), north, (2,1)) = -0.1

What is Markov about MDPs?

“Markov” generally means that given the present state, the future and
the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = at) (1856-1922)

This is just like search, where the successor function could only depend
on the current state (not the history)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy t*: S -5 A

= A policy m gives an action for each state

= An optimal policy is one that maximizes expected
utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies

= It computed the action for a single state only

Discounting

= It's reasonable to maximize the sum of rewards
= It's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

o
v\

: Y v

Worth Now Worth Next Step Worth In Two Steps

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

¥ _ els . : sisa
V*(s) = expected utility starting in s and <tate
acting optimally
(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q*(s,a) = expected utility starting out (s,a,5') is a
having taken action a from state s and transition

(thereafter) acting optimally

= The optimal policy:
nt*(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + ’}/Vk(sl)}

S

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

VALUES AFTER O ITERATIONS N?ise =0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence gives a
simple one-step lookahead relationship amongst optimal utility
values

V*(s) = max Q*(s, a)

Q*(s,a) = S T(s.0,5') [R(s,a,8) + V(")
V*(S) = maaX ZT(S7 a, S,) {R(S, a, S/) 1y V*(S/)}

= These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S,a,, s") {R(s,a, s") + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + nyk(s/)}

S

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Policy Evaluation

How do we calculate the V’s for a fixed policy wt? S

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vkﬁ—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]Z(S,)]

S

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Computing Actions from Values

= Let’s imagine we have the optimal values V*(s) .n.
0.95) 0.98 » 1.00
= How should we act?
4« 0.89 -1.00
= It’s not obvious!
o] 0.92 4« 0.91 0.80
= We need to do a mini-expectimax (one step) _

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WWN
! I | 0.98 1.00
= How should we act? v
« Completely trivial to decide! ! 0-89

= Important lesson: actions are easier to select from g-values than values!

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= It’s still optimal!

= Can converge (much) faster under some conditions

Example: Policy Iteration

Always Go East Improved Policy using Q-Values Improve again — Optimal!

T Eo
S

<

Q-Values for the above policies

Reinforcement Learning

= Still assume a Markov decision process (MDP):
s Asetofstatess&ES
a A set of actions (per state) A
= A model T(s,a,s’)
= A reward function R(s,a,s’)

Overheated

» Still looking for a policy mt(s)

s New twist: don’t know T or R

= l.e. we don’t know which states are good or what the actions do
= Must actually try out actions and states to learn

Reinforcement Learning

\

Agent \

State: s Acti .
Reward: r ctions: a
Environment
s Basicidea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

s Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Model-Free Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluation
= Input: a fixed policy m(s)

= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
» Goal: learn the state values

= In this case:
= Learner is “along for the ride”

= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Problems with Direct Evaluation

= What’s good about direct evaluation? Output Values

= It’s easy to understand

= It doesn’t require any knowledge of T, R

= It eventually computes the correct average values,
using just sample transitions

= What’s bad about it?

= |t wastes information about state connections

If Band E both go to C
under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately

Temporal Difference Learning

= Bigidea: learn from every experience!

S
= Update V(s) each time we experience a transition (s, a, s’, r) 71(s)
= Likely outcomes s’ will contribute updates more often

s, 71(s)
= Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s’

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,7(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V™(s) + (a)sample

Same update: V7T(s) «+ V™(s) 4+ a(sample — V7 (s))

Problems with TD Value Learning

= 1D value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

=« However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(s, a,s’) + ’yV(s’)}

= ldea: learn Q-values, not values

s Makes action selection model-free too!

Detour: Q-Value lteration

= Value iteration: find successive (depth-limited) values
« Start with V4(s) =0, which we know is right

« GivenV,, calculate the depth k+1 values for all states:

Viet1(s) mC?XZT(s, a,s) {R(s,a, s + nyk(s’)]

= But Q-values are more useful, so compute them instead
« Start with Qg(s,a) = 0, which we know is right
« Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.a,5) +7 maxQy(s',a)

S

Q-Learning

s Q-Learning: sample-based Q-value iteration

a

» Learn Q(s,a) values as you go vvv
» Receive a sample (s,a,s’,r) >Q4>54Q
= Consider your old estimate: Q(s,a)

S % HE
= Consider your new sample estimate: A A

sample = R(s,a,s') +ymaxQ(s', ') MX

= Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Qit1(s,0) « Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
IDemo: O-learnine — crawler (1 10D3)]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

How to Explore?

= Several schemes for forcing exploration
s Simplest: random actions (e-greedy)

= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

s Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time

= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Exploration Functions

= When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <o R(s,a,s") +ymaxQ(s’,d
Modified Q-Update: Q(s,a) = R(s,a,s") +~max f(Q(s',a"), N(s,a))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Feature-Based Representations

= Solution: describe a state using a vector of features
(properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)2
= Is Pacman in a tunnel? (0/1)

= Is it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

= Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CL) — ’UJ]_f]_(S, a)—l—’UJQfQ(S, CL)"- . °+wnf’n(87 a)

= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

s Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + «[difference] ExactQs

w; «+— w; + « [difference] f;(s, a) Approximate Q’s

= Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on: disprefer
all states with that state’s features

= Formaljustification: online least squares, gradient descent

Policy Search

Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best

= Q-learning’s priority: get Q-values close (modeling)

= Action selection priority: get ordering of Q-values right (prediction)

= WEe’ll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the Q values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

s Problems:

= How do we tell the policy got better?
= Need to run many sample episodes!
= If there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

= Policy Gradient, Proximal Policy Optimization (PPO) are examples

The Story So Far: MDPs and RL

Known MDP: Offline Solution

_

Goal
Compute V*, Q*, m*

Evaluate a fixed policy i

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP:

Model-Based

/Goal

Compute V*, Q*, *

Evaluate a fixed policy

-

Technique

VI/PI on approx. MDP

PE on approx. MDP

_/

-

Evaluate a fixed policy i

Unknown MDP: Model-Free
[Goal Technique
Compute V*, Q*, m* Q-learning

Value Learning

_/

CS 188: Artificial Intelligence

Probability

Instructors: Oliver Grillmeyer and Ademi Adeniji --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

= R=lIsitraining?

= T =Isithotorcold?

= D =How long will it take to drive to work?
= L=Whereis the ghost?

= We denote random variables with capital letters

m Like variables in a CSP, random variables have domains

s Rin{true, false} (often write as {+r, -r})

= Tin{hot, cold}

= Din [0, x)

= Lin possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

= Associate a probability with each value of that random variable

= [emperature:

P(T)

T P
hot 0.5
cold 0.5

= Weather:

P(W)

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Probabilistic Models

T Distributi TW
A probabilistic model is a joint distribution Istribution over 4,

over a set of random variables T W P

hot sun 0.4
hot rain 0.1

Probabilistic models:
= (Random) variables with domains
= Assignments are called outcomes cold sun 0.2

» Joint distributions: say whether assignments cold rain 0.3
(outcomes) are likely

= Normalized: sum to 1.0
= l|deally: only certain variables directly interact

Constraint over TW

T W P
Constraint satisfaction problems: hot sun T
= Variables with domains .
. _ hot rain F
» Constraints: state whether assignments are
possible COId sun F
= |deally: only certain variables directly interact cold rain T

Marginal Distributions

= Marginal distributions are sub-tables which eliminate random variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) P() = Z P, w) - >
w
) hot 0.5
! W i Id 0.5
hot sun 0.4 <0 :
hot | rain | 0.1 P(w) = Z P(t, w) P(W)
cold sun 0.2 ¢ W >
cold rain 0.3 — sun 0.6
rain 0.4

P(X,=x)=) P(X, =x, X,=1x,)

X9

% hidden (unobserved) variables

Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

evidence
" P(a,b
P(alb) = (a,b)
s P(b)
query = (proportion of b where a holds)
P(a)
P(r, W)
! W P P(W=sT=c¢) 0.2
P(W =s|T =c¢) = ’ —
hot su.n 0.4 (|) P(T _ C) 0.5
hot rain 0.1 %
cold >un 0.2 =P(W=s,T=c¢c)+P(W=nr,T =c)
cold rain 0.3

=0.24+03 =0.5

= 0.4

Normalization Trick

P(T, W) SELECT the joint NORMALIZE the
T W P rz;?clzﬁibr:gt’lﬁse (make iieslfr(: I’E)onone) P (W|T — C)
hot sun 0.4 evidence T W P W P
hot rain 0.1 —p T oun 102 m— sun | 04
cold >un 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
« Evidencevariables: F1.--LEp=e1...e X1, Xo,...Xn variables, too
= Query* variable: Q All variables P(Q|€1 .o ek)
= Hidden variables: Hjy...Hy
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1

Ped
0.05 X —
0.25
7
02 |
— T)
0.01 — g’

Z:ZP(Qael'“ek)
q

hl...hfr YT - P(Q|6 6)—1P(Q6 6)
X1, Xo,...Xn 1 k)= g) &1 k

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(cffect)

= Example:

= M: meningitis, S: stiff neck

P(+m) = 00001 | _
P(—|_3| + m) =08 r givens
P(+s| —m) =0.01_
P _ P(+s|+m)P(+m) P(+s| +m)P(+m) B 0.8 x 0.0001
(Fm|+5) = P(+s) = P(+s| + m)P(+m) + P(+s| —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

P(+m | +s) = 0.008

CS 188: Artificial Intelligence

Bayes’ Nets

Instructor: Oliver Grillmeyer — University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Independence

= Two variables are independent if:
Vo,y: P(x,y) = P(z)P(y)

= This says that their joint distribution factors into a product two simpler
distributions

= Another form:

Va,y : Plxly) = P(x)

= We write:

X 1Y

= Independence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?

Conditional Independence

= Unconditional (absolute) independence very rare (why?)

=« Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xis conditionally independent of Y given Z X—“—Y‘Z

if and only if:
Vo, y, z 1 P(x,y|z) = P(z|2)P(y|z)

or, equivalently, if and only if
Vz,y,z : P(z|z,y) = P(a|2)

Example: Coin Flips

= N independent coin flips

= No interactions between variables: absolute independence

Example: Alarm Network

= Variables

A o
= B: Burglary e e ® N— W
yiF_ ¢
= A: Alarm goes off e = N
= M: Mary calls 7
= J:John calls

E: Earthquake! °
a @ //)/ >//

Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | - 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002 J[Eé.]
-e | 0.998 |
B E A P(A|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e | -a 0.06

-b | +e | +a 0.29

b | +e | -a 0.71

-b | -e | +a 0.001

b | -e | -a 0.999

Example: Alarm Network

B P(B) E P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
A | J | PUIA) ° Al M |PM|A)
+a | +j 0.9 +a | +m 0.7 ° . A PAIB/E)
+a | -j 0.1 +a | -m 0.3 th | +e | 43 0-95
a | + | 005 a | +m | 0.01 th e | a | 005
a| - | 095 a | -m | 099 th|e |+ 094
+b | -e | -a 0.06
. -b | +e | +a 0.29
P(I b7 €, I a, —7, _I_m) — b | +e | -a 0.71
P(+b)P(—e)P(+a|+b,—e)P(—j| +a)P(+m|+a) =[P ||+ 0001
-b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7

Conditional Independence

= Xand Y are independent if
Ve,y P(z,y) = P(zx)P(y) ---» X1Y
= Xand Y are conditionally independent given Z
Va,y,z P(x,y|z) = P(x|z)P(y|lz) —--=> X 1Y|Z

» (Conditional) independence is a property of a distribution

» Example: Alarm 1L Fire|Smoke

Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples

evidence variables {Z}?

= Yes,if Xand Y “d-separated” by Z O—FO—FO O—FO—FO
= Consider all (undirected) paths from Xto Y
o | %o

= No active paths = independence!

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)

= Common cause A <— B — C where B is unobserved O\ /O O\ /O
= Common effect (aka v-structure) @ ‘Cj

A — B <— C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment

D-Separation

e Query: X, 1L X { Xpy o, X } 7

= Check all (undirected!) paths between X;and X;

= If one or more active, then independence not guaranteed

Xi XX { Xk, ooy Xk, }

=« Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X; X Xy ooy X, }

Example

R B Yes
R 1l B|T

R B|T'

Example

LuT|\T - Yes
I IR Yes
LA B|T

L1 B|T
L1 B|T,R Yes

Example

= Variables:
= R: Raining
a T: Traffic
= D: Roof drips
= S: I'm sad

s Questions:

T1 DR Yes

