
CS 188: Artificial Intelligence 
Midterm Summary 

Instructor: Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ Midterm is Wednesday, July 23, 7-9 PM PT in 155 Dwinelle 
▪ HW7 is due Tuesday, July 29, 11:59 PM PT 
▪ HW8 is due Thursday, July 31, 11:59 PM PT 
▪ Project 4 is due Friday, August 1, 11:59 PM PT 
▪ Ignore assessment on HWs part B, but please show your work 
▪ Email me topramen@berkeley.edu if you would attend MW 7-8 

sections that focused on projects and homework 

mailto:topramen@berkeley.edu


CS 188: Artificial Intelligence 

Search

Instructor: Oliver Grillmeyer 

University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]



State Space Graphs vs. Search Trees
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We construct both 
on demand – and 
we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Depth-First Search



Depth-First Search
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack



Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand? 
▪ Some left prefix of the tree. 
▪ Could process the whole tree! 
▪ If m is finite, takes time O(bm) 

▪ How much space does the fringe take? 
▪ Only has siblings on path to root, so O(bm) 

▪ Is it complete? 
▪ m could be infinite, so only if we prevent that 

▪ Is it optimal? 
▪ No, it finds the “leftmost” solution, regardless 

of depth or cost



Breadth-First Search



Breadth-First Search
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Search 

Tiers

Strategy: expand a 
shallowest node first 

Implementation: Fringe 
is a FIFO queue



Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand? 
▪ Processes all nodes above shallowest solution 
▪ Let depth of shallowest solution be s 
▪ Search takes time O(bs) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bs) 

▪ Is it complete? 
▪ s must be finite if a solution exists, so yes! 

▪ Is it optimal? 
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand? 
▪ Processes all nodes with cost less than cheapest solution! 
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth” 

is roughly C*/ε 

▪ Takes time O(bC*/ε) (exponential in effective depth) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bC*/ε) 

▪ Is it complete? 
▪ Assuming best solution has a finite cost and minimum arc cost is positive, 

yes! 

▪ Is it optimal? 
▪ Yes!  (Proof next lecture via A*)

b

C*/ε  “tiers”
c ≤ 3

c ≤ 2
c ≤ 1



CS 188: Artificial Intelligence 

Informed Search

Instructor: Oliver Grillmeyer 
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Greedy Search



Greedy Search

▪ Strategy: expand a node that you think is 
closest to a goal state 
▪ Heuristic: estimate of distance to nearest goal for 

each state 

▪ A common case: 
▪ Best-first takes you straight to the (wrong) goal 

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]  
[Demo: contours greedy pacman small maze (L3D4)]



A* Search



Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n) 
▪ Greedy orders by goal proximity, or forward cost  h(n) 

▪ A* Search orders by the sum: f(n) = g(n) + h(n)
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Properties of A*

…
b

…
b

Uniform-Cost A*



Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if: 

 where               is the true cost to a nearest goal 

▪ Examples: 

▪ Coming up with admissible heuristics is most of what’s involved in using 
A* in practice.

4
15



Comparison

Greedy Uniform Cost A*



A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs 

▪ A* is optimal with admissible / consistent heuristics 

▪ Heuristic design is key: often use relaxed problems



CS 188: Artificial Intelligence 
Constraint Satisfaction Problems

Instructor: Oliver Grillmeyer 

University of California, Berkeley



Example: Map Coloring

▪ Variables: 

▪ Domains: 

▪ Constraints: adjacent regions must have different colors 

▪ Solutions are assignments satisfying all constraints, e.g.: 

 

Implicit:

Explicit:



Constraint Graphs



Varieties of Constraints

▪ Varieties of Constraints 
▪ Unary constraints involve a single variable (equivalent to reducing 

domains), e.g.: 
  

▪ Binary constraints involve pairs of variables, e.g.: 

▪ Higher-order constraints involve 3 or more variables: 
    e.g., cryptarithmetic column constraints 

▪ Preferences (soft constraints): 
▪ E.g., red is better than green 
▪ Often representable by a cost for each variable assignment 
▪ Gives constrained optimization problems 
▪ (We’ll ignore these until we get to Bayes’ nets) 

 



Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs 

▪ Idea 1: One variable at a time 
▪ Variable assignments are commutative, so fix ordering 
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
▪ Only need to consider assignments to a single variable at each step 

▪ Idea 2: Check constraints as you go 
▪ I.e. consider only values which do not conflict with previous assignments 
▪ Might have to do some computation to check the constraints 
▪ “Incremental goal test” 

▪ Depth-first search with these two improvements 
 is called backtracking search (not the best name) 

▪ Can solve n-queens for n ≈ 25



Backtracking Example



Improving Backtracking

▪ General-purpose ideas give huge gains in speed 

▪ Ordering: 
▪ Which variable should be assigned next? 
▪ In what order should its values be tried? 

▪ Filtering: Can we detect inevitable failure early? 

▪ Structure: Can we exploit the problem structure?



▪ Filtering: Keep track of domains for unassigned variables and cross off bad options 
▪ Forward checking: Cross off values that violate a constraint when added to the existing 

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking



Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be 
assigned without violating a constraint 

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
▪ A simple form of propagation makes sure all arcs are consistent: 

▪ Important: If X loses a value, neighbors of X need to be rechecked! 
▪ Arc consistency detects failure earlier than forward checking 
▪ Can be run as a preprocessor or after each assignment  
▪ What’s the downside of enforcing arc consistency?

Remember: 
Delete from  

the tail!

WA SA

NT Q

NSW

V



Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV): 
▪ Choose the variable with the fewest legal left values in its domain 

▪ Why min rather than max? 

▪ Also called “most constrained variable” 

▪ “Fail-fast” ordering



Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value 
▪ Given a choice of variable, choose the least 

constraining value 
▪ I.e., the one that rules out the fewest values in the 

remaining variables 
▪ Note that it may take some computation to determine 

this!  (E.g., rerunning filtering) 

▪ Why least rather than most? 

▪ Combining these ordering ideas makes 
 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]



Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains 

Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree 

Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Summary: CSPs

CSPs are a special kind of search problem: 
States are partial assignments 
Goal test defined by constraints 

Basic solution: backtracking search 

Speed-ups: 
Ordering 
Filtering 
Structure 

Iterative min-conflicts is often effective in practice



Hill Climbing

Simple, general idea: 
Start wherever 
Repeat: move to the best neighboring state 
If no neighbors better than current, quit 

What’s bad about this approach? 
Complete? 
Optimal? 

What’s good about it?



Hill Climbing Diagram
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Zero-Sum Games

▪ Zero-Sum Games 
▪ Agents have opposite utilities (values on outcomes) 
▪ Pure competition:  

▪ One maximizes, the other minimizes

▪ General-Sum Games 
▪ Agents have independent utilities (values on outcomes) 
▪ Cooperation, indifference, competition, shifting alliances, 

and more are all possible 
▪ Team Games 

▪ Common payoff for all team members



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Minimax Example

12 8 5 23 2 144 6

v=3

v=3

v=2 v=14v=14 5v=14 5 2



Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters: 
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search 

▪ Ideal function: returns the actual minimax value of the position 
▪ In practice: typically weighted linear sum of features: 

 

▪ E.g.  f1(s) = (num white queens – num black queens), etc. 
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL



Depth Matters

▪ Evaluation functions are always 
imperfect 

▪ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters 

▪ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Summary

▪ Games are decision problems with multiple agents 
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs 

▪ For zero-sum games, optimal decisions defined by minimax 
▪ Implementable as a depth-first traversal of the game tree 
▪ Time complexity O(bm), space complexity O(bm) 

▪ Alpha-beta pruning 
▪ Preserves optimal choice at the root 
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path 

from root to current node 
▪ Time complexity drops to O(bm/2) with ideal node ordering  

▪ Exact solution is impossible even for “small” games like chess



CS 188: Artificial Intelligence 
Uncertainty and Utilities

Instructors: Oliver Grillmeyer 

University of California, Berkeley 
[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]



Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!



Expectimax Pseudocode

def exp-value(state): 
initialize v = 0 
for each successor of state: 
 p = probability(successor) 

v += p * value(successor) 
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown 
▪ A probability distribution is an assignment of weights to outcomes 

▪ Example: Traffic on freeway 
▪ Random variable: T = whether there’s traffic 
▪ Outcomes: T in {none, light, heavy} 
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25 

▪ Some laws of probability (more later): 
▪ Probabilities are always non-negative 
▪ Probabilities over all possible outcomes sum to one 

▪ As we get more evidence, probabilities may change: 
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60 
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25



▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes 

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



Mixed Layer Types

▪ E.g. Backgammon 

▪ Expectiminimax 
▪ Environment is an 

extra “random 
agent” player that 
moves after each 
min/max agent 

▪ Each node 
computes the 
appropriate 
combination of its 
children



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players? 

▪ Generalization of minimax: 
▪ Terminals have utility tuples 
▪ Node values are also utility tuples 
▪ Each player maximizes its own component 
▪ Can give rise to cooperation and 
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Maximum Expected Utility

▪ Why should we average utilities?  Why not minimax? 

▪ Principle of maximum expected utility: 
▪ A rational agent should chose the action that maximizes its expected 

utility, given its knowledge 

▪ Questions: 
▪ Where do utilities come from? 
▪ How do we know such utilities even exist? 
▪ How do we know that averaging even makes sense? 
▪ What if our behavior (preferences) can’t be described by utilities?



Preferences

▪ An agent must have preferences among: 
▪ Prizes: A, B, etc. 
▪ Lotteries: situations with uncertain prizes 

▪ Notation: 
▪ Preference: 
▪ Indifference:

A                  B

p                1-p

  A Lottery  A Prize

A



Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality



CS 188: Artificial Intelligence 
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Instructors: Oliver Grillmeyer and Ademi Adeniji 
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Markov Decision Processes

▪ An MDP is defined by: 
▪ A set of states s ∈ S 
▪ A set of actions a ∈ A 
▪ A transition function T(s, a, s’) 

▪ Probability that a from s leads to s’, i.e., P(s’| s, a) 
▪ Also called the model or the dynamics 

▪ A reward function R(s, a, s’)  
▪ Sometimes just R(s) or R(s’) 

▪ A start state 
▪ Maybe a terminal state 

▪ MDPs are non-deterministic search problems 
▪ One way to solve them is with expectimax search 
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Grid World Example



Grid World Example



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and 
the past are independent 

▪ For Markov decision processes, “Markov” means action outcomes 
depend only on the current state 

▪ This is just like search, where the successor function could only depend 
on the current state (not the history)

Andrey Markov 
(1856-1922) 



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, we 
wanted an optimal plan, or sequence of actions, 
from start to a goal 

▪ For MDPs, we want an optimal policy π*: S → A 
▪ A policy π gives an action for each state 
▪ An optimal policy is one that maximizes        expected 

utility if followed 
▪ An explicit policy defines a reflex agent 

▪ Expectimax didn’t compute entire policies 
▪ It computed the action for a single state only



Discounting

▪ It’s reasonable to maximize the sum of rewards 

▪ It’s also reasonable to prefer rewards now to rewards later 

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s: 
V*(s) = expected utility starting in s and 

acting optimally 

▪ The value (utility) of a q-state (s,a): 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally 

▪ The optimal policy: 
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a  
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero 

▪ Given vector of Vk(s) values, do one ply of expectimax from each state: 

▪ Repeat until convergence 

▪ Complexity of each iteration: O(S2A) 

▪ Theorem: will converge to unique optimal values 
▪ Basic idea: approximations get refined towards optimal values 
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



k=0

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=1

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=2

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=3

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=4

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=5

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=6

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=7

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=8

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=9

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=10

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=11

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=12

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=100

Noise = 0.2 
Discount = 0.9 
Living reward = 0



The Bellman Equations

How to be optimal: 

    Step 1: Take correct first action 

    Step 2: Keep being optimal



The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a 
simple one-step lookahead relationship amongst optimal utility 
values 

▪ These are the Bellman equations, and they characterize optimal 
values in a way we’ll use over and over 

 

a

s

s, a

s,a,s’
s’



Value Iteration

▪ Bellman equations characterize the optimal values: 

▪ Value iteration computes them: 

▪ Value iteration is just a fixed point solution method 
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)



Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π? 

▪ Idea 1: Turn recursive Bellman equations into updates 
 (like value iteration) 

▪ Efficiency: O(S2) per iteration 

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system 
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’



Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s) 

▪ How should we act? 
▪ It’s not obvious! 

▪ We need to do a mini-expectimax (one step) 

▪ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values: 

▪ How should we act? 
▪ Completely trivial to decide! 

▪ Important lesson: actions are easier to select from q-values than values!



Policy Iteration

▪ Alternative approach for optimal values: 
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence 
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values 
▪ Repeat steps until policy converges 

▪ This is policy iteration 
▪ It’s still optimal! 
▪ Can converge (much) faster under some conditions



Example: Policy Iteration
Always Go East Improved Policy using Q-Values Improve again – Optimal!

Q-Values for the above policies



Reinforcement Learning

▪ Still assume a Markov decision process (MDP): 
▪ A set of states s ∈ S 
▪ A set of actions (per state) A 
▪ A model T(s,a,s’) 

▪ A reward function R(s,a,s’) 

▪ Still looking for a policy π(s) 

▪ New twist: don’t know T or R 
▪ I.e. we don’t know which states are good or what the actions do 
▪ Must actually try out actions and states to learn



Reinforcement Learning

▪ Basic idea: 
▪ Receive feedback in the form of rewards 
▪ Agent’s utility is defined by the reward function 
▪ Must (learn to) act so as to maximize expected rewards 
▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s 

Reward: r



Model-Free Reinforcement Learning



Passive Reinforcement Learning

▪ Simplified task: policy evaluation 
▪ Input: a fixed policy π(s) 
▪ You don’t know the transitions T(s,a,s’) 
▪ You don’t know the rewards R(s,a,s’) 
▪ Goal: learn the state values 

▪ In this case: 
▪ Learner is “along for the ride” 
▪ No choice about what actions to take 
▪ Just execute the policy and learn from experience 
▪ This is NOT offline planning!  You actually take actions in the world.



Problems with Direct Evaluation

▪ What’s good about direct evaluation? 
▪ It’s easy to understand 
▪ It doesn’t require any knowledge of T, R 
▪ It eventually computes the correct average values, 

using just sample transitions 

▪ What’s bad about it? 
▪ It wastes information about state connections 
▪ Each state must be learned separately 
▪ So, it takes a long time to learn

Output Values

 A

 B  C  D

 E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Temporal Difference Learning

▪ Big idea: learn from every experience! 
▪ Update V(s) each time we experience a transition (s, a, s’, r) 
▪ Likely outcomes s’ will contribute updates more often 

▪ Temporal difference learning of values 
▪ Policy still fixed, still doing evaluation! 
▪ Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages 

▪ However, if we want to turn values into a (new) policy, we’re sunk: 

▪ Idea: learn Q-values, not values 

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’



Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values 
▪ Start with V0(s) = 0, which we know is right 
▪ Given Vk, calculate the depth k+1 values for all states: 

▪ But Q-values are more useful, so compute them instead 
▪ Start with Q0(s,a) = 0, which we know is right 
▪ Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

▪ Q-Learning: sample-based Q-value iteration 

▪ Learn Q(s,a) values as you go 
▪ Receive a sample (s,a,s’,r) 
▪ Consider your old estimate: 
▪ Consider your new sample estimate: 

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)] 
[Demo: Q-learning – crawler (L10D3)]



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally! 

▪ This is called off-policy learning 

▪ Caveats: 
▪ You have to explore enough 
▪ You have to eventually make the learning rate 
 small enough 
▪ … but not decrease it too quickly 
▪ Basically, in the limit, it doesn’t matter how you select actions (!)



How to Explore?

▪ Several schemes for forcing exploration 
▪ Simplest: random actions (ε-greedy) 
▪ Every time step, flip a coin 
▪With (small) probability ε, act randomly 
▪With (large) probability 1-ε, act on current policy 

▪ Problems with random actions? 
▪ You do eventually explore the space, but keep 

thrashing around once learning is done 
▪ One solution: lower ε over time 
▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Exploration Functions
▪ When to explore? 

▪ Random actions: explore a fixed amount 
▪ Better idea: explore areas whose badness is not 
 (yet) established, eventually stop exploring 

▪ Exploration function 
▪ Takes a value estimate u and a visit count n, and 
 returns an optimistic utility, e.g. 

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well! 
    

Modified Q-Update:
Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Feature-Based Representations

▪ Solution: describe a state using a vector of features 
(properties) 
▪ Features are functions from states to real numbers (often 

0/1) that capture important properties of the state 
▪ Example features: 

▪ Distance to closest ghost 
▪ Distance to closest dot 
▪ Number of ghosts 
▪ 1 / (dist to dot)2 
▪ Is Pacman in a tunnel? (0/1) 
▪ …… etc. 
▪ Is it the exact state on this slide? 

▪ Can also describe a q-state (s, a) with features (e.g. action 
moves closer to food)



Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights: 

▪ Advantage: our experience is summed up in a few powerful numbers 

▪ Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

▪ Q-learning with linear Q-functions: 

▪ Intuitive interpretation: 
▪ Adjust weights of active features 
▪ E.g., if something unexpectedly bad happens, blame the features that were on: disprefer 

all states with that state’s features 

▪ Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities) 
aren’t the ones that approximate V / Q best 
▪ Q-learning’s priority: get Q-values close (modeling) 
▪ Action selection priority: get ordering of Q-values right (prediction) 
▪ We’ll see this distinction between modeling and prediction again later in the course 

▪ Solution: learn policies π that maximize rewards, not the Q values that predict them 

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search
▪ Simplest policy search: 

▪ Start with an initial linear value function or Q-function 
▪ Nudge each feature weight up and down and see if your policy is better than before 

▪ Problems: 
▪ How do we tell the policy got better? 
▪ Need to run many sample episodes! 
▪ If there are a lot of features, this can be impractical 

▪ Better methods exploit lookahead structure, sample wisely, change multiple 
parameters… 
▪ Policy Gradient, Proximal Policy Optimization (PPO) are examples



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal    Technique 

Compute V*, Q*, π*  Value / policy iteration 

Evaluate a fixed policy π Policy evaluation 

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal   Technique 

Compute V*, Q*, π* VI/PI on approx. MDP 

Evaluate a fixed policy π PE on approx. MDP 

Goal   Technique 

Compute V*, Q*, π* Q-learning 

Evaluate a fixed policy π Value Learning 
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Random Variables

▪ A random variable is some aspect of the world about which we 
(may) have uncertainty 

▪ R = Is it raining? 
▪ T = Is it hot or cold? 
▪ D = How long will it take to drive to work? 
▪ L = Where is the ghost? 

▪ We denote random variables with capital letters 

▪ Like variables in a CSP, random variables have domains 

▪ R in {true, false}   (often write as {+r, -r}) 
▪ T in {hot, cold} 
▪ D in [0, ∞) 
▪ L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

▪ Associate a probability with each value of that random variable 

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather:  

𝑃 (𝑊 )
𝑃 (𝑇 )



Probabilistic Models

▪ A probabilistic model is a joint distribution 
over a set of random variables 

▪ Probabilistic models: 
▪ (Random) variables with domains  
▪ Assignments are called outcomes 
▪ Joint distributions: say whether assignments 

(outcomes) are likely 
▪ Normalized: sum to 1.0 
▪ Ideally: only certain variables directly interact 

▪ Constraint satisfaction problems: 
▪ Variables with domains 
▪ Constraints: state whether assignments are 

possible 
▪ Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun T
hot rain F
cold sun F
cold rain T

Distribution over T,W

Constraint over T,W



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate random variables  
▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

𝑃 (𝑡) = ∑
𝑤

𝑃 (𝑡,  𝑤)

𝑃 (𝑤) = ∑
𝑡

𝑃 (𝑡,  𝑤)

𝑃 (𝑇,  𝑊 )
𝑃 (𝑇 )

𝑃 (𝑊 )

𝑃(𝑋1 = 𝑥1) = ∑
𝑥2

𝑃 (𝑋1 = 𝑥1,  𝑋2 = 𝑥2)

hidden (unobserved) variables



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities 
▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)evidence

query = (proportion of b where a holds)



SELECT the joint 
probabilities 
matching the 

evidence 

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection 

(make it sum to one) 



Inference by Enumeration
▪ General case: 

▪ Evidence variables:  
▪ Query* variable: 
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want: 

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize 



Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability: 

▪ Example: 
▪ M: meningitis, S: stiff neck

Example 
givens

 P(+m | +s) ≅ 0.008
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▪ Two variables are independent if: 

▪ This says that their joint distribution factors into a product two simpler 
distributions 

▪ Another form: 

   

▪ We write:  

▪ Independence is a simplifying modeling assumption 

▪ Empirical joint distributions: at best “close” to independent 

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Conditional Independence

▪ Unconditional (absolute) independence very rare (why?) 

▪ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 

▪ X is conditionally independent of Y given Z 

      if and only if: 

      or, equivalently, if and only if



Example: Coin Flips

▪ N independent coin flips 

▪ No interactions between variables: absolute independence

X1 X2 Xn



Example: Alarm Network

▪ Variables 
▪ B: Burglary 
▪ A: Alarm goes off 
▪ M: Mary calls 
▪ J: John calls 
▪ E: Earthquake!

B

A

MJ

E



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Conditional Independence

▪ X and Y are independent if 

▪ X and Y are conditionally independent given Z 

▪ (Conditional) independence is a property of a distribution 

▪ Example: 



Active / Inactive Paths

▪ Question: Are X and Y conditionally independent given 
evidence variables {Z}? 

▪ Yes, if X and Y “d-separated” by Z 
▪ Consider all (undirected) paths from X to Y 

▪ No active paths = independence! 

▪ A path is active if each triple is active: 
▪ Causal chain A → B → C where B is unobserved (either direction) 
▪ Common cause A ← B → C where B is unobserved 
▪ Common effect (aka v-structure) 
 A → B ← C where B or one of its descendants is observed 
  

▪ All it takes to block a path is a single inactive segment 

 

Active Triples Inactive Triples



▪ Query:  

▪ Check all (undirected!) paths between        and  

▪ If one or more active, then independence not guaranteed 
    

▪ Otherwise (i.e. if all paths are inactive), 
    then independence is guaranteed

D-Separation

?



Example

Yes R

T

B

T’



Example

R

T

B

D

L

T’

Yes

Yes

Yes



Example

▪ Variables: 
▪ R: Raining 

▪ T: Traffic 

▪ D: Roof drips 

▪ S: I’m sad 

▪ Questions:

T

S

D

R

Yes


