
CS 188: Artificial Intelligence 

Hidden Markov Models

Instructors: Oliver Grillmeyer, Kaylo Littlejohn — University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ HW7 is due Tuesday, July 29, 11:59 PM PT 
▪ HW8 is due Thursday, July 31, 11:59 PM PT 
▪ Project 4 is due Friday, August 1, 11:59 PM PT 
▪ Ignore assessment on HWs part B, but please show your work 
▪ Email topramen@berkeley.edu if you would attend MW 7-8 

sections that focused on projects and homework 

mailto:topramen@berkeley.edu


Reasoning over Time or Space

▪ Often, we want to reason about a sequence of observations 

▪ Speech recognition 

▪ Robot localization 

▪ User attention 

▪ Medical monitoring 
▪ Language understanding 

▪ Need to introduce time (or space) into our models and update 
beliefs based on: 
▪ Getting more evidence (we did this with BNs) 
▪ World changing over time (new this week)



Motivating Example: Pacman Sonar



Today’s Topics

▪ Quick probability recap 
▪ Markov Chains & their Stationary Distributions 

▪ How beliefs about state change with passage of time 

▪ Hidden Markov Models (HMMs) formulation 

▪ How beliefs change with passage of time and evidence 

▪ Filtering with HMMs 

▪ How to infer beliefs from evidence



Probability Recap

▪ Conditional probability 

▪ Marginal probability 

▪ Product rule 

▪ Chain rule 



Probability Recap

▪ X, Y independent if and only if: 

▪ X and Y are conditionally independent given Z:                        if and only if: 

▪ Proportionality:  or means  (for some 

constant k that doesn’t depend on X). Equivalent to: 

𝑃 (𝑋) ∝ 𝑓(𝑋) 𝑃 (𝑋) ∝𝑋 𝑓(𝑋)  𝑃 (𝑋) = 𝑘𝑓(𝑋)

𝑃 (𝑋) =
𝑓(𝑋)

∑𝑥 𝑓(𝑥)



Markov Models

▪ Value of X at a given time is called the state 

▪ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities) 

▪ Stationarity assumption: transition probabilities the same at all times 
▪ Same as MDP transition model, but no choice of action 
▪ A "growable” BN (can always use BN methods if we truncate to fixed length)

X2X1 X3 X4



Conditional Independence

▪ Basic conditional independence: 
▪ Past and future independent given the present 
▪ Each time step only depends on the previous 
▪ This is called the (first order) Markov property

X2X1 X3 X4



Example Markov Chain: Weather

▪ States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun 

▪ CPT P(Xt | Xt-1): 



Example Markov Chain: Weather

▪ Initial distribution: 1.0 sun 
▪ We know: 

▪ What is the probability distribution after one step?

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7



Example Markov Chain: Weather

▪ Initial distribution: 1.0 sun 
▪ We know: 

▪ In matrix form: 

𝑃(𝑋2) =  [0.9 0.3
0.1 0.7]𝑃(𝑋1)

[ 0.9
0 . 1]  =  [0 . 9 0.3

0.1 0.7][1.0
0 ]

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

row = , col = 𝑋𝑡 𝑋𝑡−1



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t? 

▪ We know  and 𝑃(𝑋1) 𝑃(𝑋𝑡 𝑋𝑡−1)

Forward simulation

X2X1 X3 X4 Xt ?



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun 

	  

▪ From initial observation of rain 

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X∞)
…

[Demo: L13D1,2,3]



Video of Demo Ghostbusters Basic Dynamics



Video of Demo Ghostbusters Circular Dynamics



▪ Stationary distribution: 
▪ The distribution we end up with is called 

the stationary distribution           of the 
chain 

▪ It satisfies 

Stationary Distributions

▪ For most chains: 
▪ Influence of the initial distribution gets 

less and less over time. 
▪ The distribution we end up in is 

independent of the initial distribution



Example: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:

▪ Alternatively: run simulation for a long (ideally infinite) time

X∞ ?



Application of Stationary Distribution: Web Link Analysis

▪ PageRank over a web graph 
▪ Each web page is a state 
▪ Initial distribution: uniform over pages 
▪ Transitions: 

▪ With prob. c, uniform jump to a 
	random page (dotted lines, not all shown) 
▪ With prob. 1-c, follow a random 
	outlink (solid lines) 

▪ Stationary distribution 
▪ Will spend more time on highly reachable pages 
▪ E.g. many ways to get to the Acrobat Reader download page 
▪ Somewhat robust to link spam 
▪ Google 1.0 returned the set of pages containing all your keywords in 

decreasing rank, now all search engines use link analysis along with many 
other factors (rank actually getting less important over time)



Hidden Markov Models



Hidden Markov Models

▪ Markov chains OK for games, weak for real robots

X5X2X1 X3 X4



Hidden Markov Models

▪ Markov chains OK for games, weak for real robots 

▪ Need observations to update your beliefs 

▪ Hidden Markov models (HMMs) 
▪ Underlying Markov chain over states X 
▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X5X2X1 X3 X4



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by: 
▪ Initial distribution: 
▪ Transitions: 
▪ Emissions:

EmissionsTransitions



Example: Ghostbusters HMM

▪ P(X1) = uniform 

▪ P(X’|X) = usually move clockwise, but 
sometimes move in a random direction or stay 
in place 

▪ P(Rij|X) = same sensor model as before: 
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X’|X = <1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X1 X2 X3 X4

Ri,j Ri,j Ri,j Ri,j

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



Video of Demo Ghostbusters – Circular Dynamics -- HMM



Conditional Independence

▪ HMMs have two important independence properties: 

▪ Markov hidden process: future depends on past via the present 

▪ Current observation independent of all else given current state 

▪ Does this mean that evidence variables are guaranteed to be independent?

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Conditional Independence

▪ HMMs have two important independence properties: 

▪ Markov hidden process: future depends on past via the present 

▪ Current observation independent of all else given current state 

▪ Does this mean that evidence variables are guaranteed to be independent? 

▪ No, they are correlated by the hidden state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Real HMM Examples

▪ Speech recognition HMMs: 
▪ Observations are acoustic signals (continuous valued) 
▪ States are specific positions in specific words (so, tens of thousands) 

▪ Machine translation HMMs: 
▪ Observations are words (tens of thousands) 
▪ States are translation options 

▪ Robot tracking: 
▪ Observations are range readings (continuous) 
▪ States are positions on a map (continuous) X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Inference in HMMs: Filtering

▪ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time 

▪ We start with B1(X) in an initial setting, usually uniform 

▪ As time passes, or we get observations, we update B(X) 

▪ The Kalman filter was invented in the 60’s and first implemented 
as a method of trajectory estimation for the Apollo program

X2

E1

X1 X3 X4

E2 E3 E4

Xt

Et Observe

Find: P(Xt | e1, …, et) = Bt(X) 



Example: Robot Localization

t=0 
Sensor model: can read in which directions there is a wall, never more than 1 

mistake 
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1 
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



HMM Inference: Find State Given Evidence

▪ We are given evidence at each time and want to know 

▪ Idea: start with and derive  in terms of  
▪ Two steps: Passage of Time & Observation

𝑃 (𝑋1)  𝐵𝑡(𝑋) 𝐵𝑡−1(𝑋)

X4X2

E1

X1 X3

E2 E3 E4

𝐵3(𝑋)

𝐵′￼4(𝑋) = 𝑃 (𝑋4 |𝑒1:3)

𝐵4(𝑋) = 𝑃 (𝑋4 |𝑒1:4)

𝐵𝑡(𝑋) = 𝑃(𝑋𝑡 |𝑒1:𝑡)



Inference: Base Cases

X2X1
E1

X1

Passage of Time: Observation:



Passage of Time: Base Case

X2X1

𝑃(𝑋2 |𝑋1)Have:

Want:

𝑃(𝑋1)



Passage of Time: General Case

▪ Assume we have current belief P(X | evidence to date) 

▪ Then, after one time step passes: 

▪ Basic idea: beliefs get “pushed” through the transitions 
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation: Base Case

E1

X1

Also can write as: 

𝑃(𝑥1 |𝑒1) =
𝑃(𝑥1)𝑃(𝑒1 𝑥1)

∑𝑥′￼𝑃 (𝑥′￼)𝑃(𝑒1 𝑥′￼)

Have:

Want:

𝑃(𝐸1 |𝑋1)𝑃(𝑋1)



Observation: General Case
▪ Assume we have current belief P(X | previous evidence): 

▪ Then, after evidence comes in: 

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence 

▪ Unlike passage of time, we have 
to renormalize 



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Two Steps: Passage of Time + Observation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Pacman – Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (with beliefs)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = ? 
B’(-r)  = ?

Passage of Time:

Observation:

𝑃 (𝑋𝑡+1 |𝑋𝑡) 𝑃 (𝐸𝑡 |𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = 0.5*0.7 + 0.5*0.3 = 0.5 
B’(-r)  = 0.5*0.3 + 0.5*0.7 = 0.5

Passage of Time:

Observation:

𝑃 (𝑋𝑡+1 |𝑋𝑡) 𝑃 (𝐸𝑡 |𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = 0.5 
B’(-r)  = 0.5

B(+r) = ? 
B(-r)  = ?

Passage of Time:

Observation:

𝑃 (𝑋𝑡+1 |𝑋𝑡) 𝑃 (𝐸𝑡 |𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = 0.5 
B’(-r)  = 0.5

B(+r) = 0.9*0.5 = 0.45 
B(-r)  = 0.2*0.5 = 0.10

Passage of Time:

Observation:

0.818 
0.182

normalize

𝑃 (𝑋𝑡+1 |𝑋𝑡) 𝑃 (𝐸𝑡 |𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = 0.5 
B’(-r)  = 0.5

B(+r) = 0.818 
B(-r)  = 0.182

B’(+r) = 0.627 
B’(-r)  = 0.373

B(+r) = 0.883 
B(-r)  = 0.117

Passage of Time:

Observation:

𝑃 (𝑋𝑡+1 |𝑋𝑡) 𝑃 (𝐸𝑡 |𝑋𝑡)



What we did today

▪ Markov Chains & their Stationary Distributions 

▪ How beliefs about state change with passage of time 

▪ Hidden Markov Models (HMMs) formulation 

▪ How beliefs change with passage of time and evidence 

▪ Filtering with HMMs 

▪ How to infer beliefs from evidence



Next Time: More Filtering!


