
CS 188: Artificial Intelligence
Perceptrons and Logistic Regression

Instructors: Oliver Grillmeyer —- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ HW8 is due Thursday, July 31, 11:59 PM PT
▪ Project 4 is due Friday, August 1, 11:59 PM PT
▪ HW9 is due Tuesday, August 5, 11:59 PM PT
▪ HW10 is due Thursday, August 7, 11:59 PM PT
▪ Ignore assessment on HWs part B, but please show your work
▪ Final Exam is Wednesday, August 13, 7-10 PM PT

▪ Accommodation requests by Wednesday, July 30, 11:59 PM PT

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

▪ Very loose inspiration: human neurons

Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?

Weights
▪ Binary case: compare features to a weight vector
▪ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points
▪ Any weight vector is a hyperplane
▪ One side corresponds to Y=+1
▪ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector

Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:
▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Examples: Perceptron

▪ Separable Case

Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

▪ Start with all weights = 0
▪ Pick up training examples one by one
▪ Predict with current weights

▪ If correct, no change!
▪ If wrong: lower score of wrong answer,

raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Sample A
BIAS : 1
win : 1
game : 0
vote : 1
the : 1

Sample B
BIAS : 1
win : 1
game : 0
vote : 0
the : 1

Sample C
BIAS : 1
win : 1
game : 1
vote : 0
the : 1

 fA
 1
 1
- 0 =
 1
 1

wS
 0
-1
 0
-1
-1
...

 fA
 1
 1
+ 0 =
 1
 1

wP
 1
 1
 0
 1
 1
...

wS . fA = 1; wP . fA = 0; wT . fA = 0

wS . fB = -2; wP . fB = 3; wT . fB = 0

wS . fC = -2; wP . fC = 3; wT . fC = 0

 fC
 1
 1
+ 1 =
 0
 1

wS
 1
 0
 1
-1
 0
...

 fC
 1
 1
- 1 =
 0
 1

wP
 0
 0
-1
 1
 0
...

Properties of Perceptrons

▪ Separability: true if some parameters get the training set
perfectly correct

▪ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Problems with the Perceptron

▪ Noise: if the data isn’t separable,
weights might thrash
▪ Averaging weight vectors over time can

help (averaged perceptron)

▪ Mediocre generalization: finds a
“barely” separating solution

▪ Overtraining: test / held-out
accuracy usually rises, then falls
▪ Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive  want probability going to 1

▪ If very negative  want probability going to 0

▪ Sigmoid function

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Choosing weights

▪ Optimization

▪ i.e., how do we solve:

Hill Climbing

▪ Recall from CSPs lecture: simple, general idea
▪ Start wherever
▪ Repeat: move to the best neighboring state
▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass logistic
regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

1-D Optimization

▪ Could evaluate and
▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

▪ Perform update in uphill direction for each coordinate

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

▪ E.g., consider:

▪ Updates: ▪ Updates in vector notation:

 with: = gradient

▪ Idea:
▪ Start somewhere
▪ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

What is the Steepest Direction?

▪ First-Order Taylor Expansion:

▪ Steepest Ascent Direction:

▪ Recall: 

▪ Hence, solution: Gradient direction = steepest direction!

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

▪ init

▪ for iter = 1, 2, …

▪ : learning rate --- hyperparameter that needs to be chosen
carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …
▪ pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …
▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Learning Rate Finder

▪ Calculate a good learning
rate by trying learning
rates over a range of
possible values

▪ Plot the training loss at
each of these epochs

▪ Pick a learning rate where
the loss is declining the
most before it hits the
minimum:
5x10^-5 - 3x10^-4

