CS 188: Artificial Intelligence

Perceptrons and Logistic Regression

Instructors: Oliver Grillmeyer — University of California, Berkeley

Announcements

- HW8 is due Thursday, July 31, 11:59 PM PT
- Project 4 is due Friday, August 1, 11:59 PM PT
- HW9 is due Tuesday, August 5, 11:59 PM PT
- HW10 is due Thursday, August 7, 11:59 PM PT
- Ignore assessment on HWs part B, but please show your work
- Final Exam is Wednesday, August 13, 7-10 PM PT
 - Accommodation requests by Wednesday, July 30, 11:59 PM PT

Linear Classifiers

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or FROM_FRIEND : 0 cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1 PIXEL-7,13 : 0 ... NUM_LOOPS : 1

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg\max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

```
wS \cdot fA = 1; wP \cdot fA = 0; wT \cdot fA = 0
Sample A
BIAS : 1
win : 1
game: 0
                         wS . fB = -2; wP . fB = 3; wT . fB = 0
              Sample B
vote: 1
              BIAS : 1
the : 1
              win : 1
              game : 0
                                        wS . fC = -2; wP . fC = 3; wT . fC = 0
                              Sample C
              vote : 0
                              BIAS : 1
              the : 1
                              win : 1
                              game: 1
                             vote : 0
                              the : 1
```

w_{SPORTS}

$w_{POLITICS}$

			fA	wP	fC	wP
BIAS	:	0	1	1	1	0
win	:	0	1	1	1	0
game	:	0	+ 0 =	= 0	- 1 =	-1
vote	:	0	1	1	0	1
the	:	0	1	1	1	0
						• • •

w_{TECH}

BIAS	:	0
win	:	0
game	:	0
vote	:	0
the	:	0

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

Recall Perceptron:

- lacktriangledown A weight vector for each class: $w_{oldsymbol{\psi}}$
- lacksquare Score (activation) of a class y: $w_y \cdot f(x)$

How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:

$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Choosing weights

Optimization

■ i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

- Recall from CSPs lecture: simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization

- ullet Could evaluate $g(w_0+h)$ and $g(w_0-h)$
 - Then step in best direction
- Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) g(w_0 h)}{2h}$
 - Tells which direction to step into

2-D Optimization

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

$$\max_{\Delta: \Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w + \Delta)$$

First-Order Taylor Expansion:

$$g(w + \Delta) \approx g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

Steepest Ascent Direction:

$$\max_{\Delta:\Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

Recall:

$$\max_{\Delta: \|\Delta\| \le \varepsilon} \Delta^{\top} a \quad \to \quad \Delta = \varepsilon \frac{a}{\|a\|}$$

$$\Delta = \varepsilon \frac{a}{\|a\|}$$

$$\Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|}$$

Gradient direction = steepest direction!

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \end{bmatrix}$$

Gradient in n dimensions

$$abla g = egin{bmatrix} rac{\partial g}{\partial w_1} \ rac{\partial g}{\partial w_2} \ rac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

```
• init w
• for iter = 1, 2, ... w \leftarrow w + \alpha * \nabla g(w)
```

- $oldsymbol{lpha}$: learning rate --- hyperparameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes ψ about 0.1-1%

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

$$g(w)$$

- init w

• Init
$$w$$

• for iter = 1, 2, ...
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- init w
- for iter = 1, 2, ...
 - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- init w
- for iter = 1, 2, ...
 - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

Learning Rate Finder

- Calculate a good learning rate by trying learning rates over a range of possible values
- Plot the training loss at each of these epochs
- Pick a learning rate where the loss is declining the most before it hits the minimum:

5x10^-5 - 3x10^-4

Learning Rate Range Test, (smoothing: 0.9)

