
CS 188: Artificial Intelligence 
Perceptrons and Logistic Regression

Instructors: Oliver Grillmeyer —- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ HW8 is due Thursday, July 31, 11:59 PM PT 
▪ Project 4 is due Friday, August 1, 11:59 PM PT 
▪ HW9 is due Tuesday, August 5, 11:59 PM PT 
▪ HW10 is due Thursday, August 7, 11:59 PM PT 
▪ Ignore assessment on HWs part B, but please show your work 
▪ Final Exam is Wednesday, August 13, 7-10 PM PT 

▪ Accommodation requests by Wednesday, July 30, 11:59 PM PT



Linear Classifiers



Feature Vectors

Hello, 

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2 
YOUR_NAME   : 0 
MISSPELLED  : 2 
FROM_FRIEND : 0 
...

SPAM 
or 
+

PIXEL-7,12  : 1 
PIXEL-7,13  : 0 
... 
NUM_LOOPS   : 1 
...

“2”



Some (Simplified) Biology

▪ Very loose inspiration: human neurons



Linear Classifiers

▪ Inputs are feature values 
▪ Each feature has a weight 
▪ Sum is the activation 

▪ If the activation is: 
▪ Positive, output +1 
▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Weights
▪ Binary case: compare features to a weight vector 
▪ Learning: figure out the weight vector from examples

# free      : 2 
YOUR_NAME   : 0 
MISSPELLED  : 2 
FROM_FRIEND : 0 
...

# free      : 4 
YOUR_NAME   :-1 
MISSPELLED  : 1 
FROM_FRIEND :-3 
...

# free      : 0 
YOUR_NAME   : 1 
MISSPELLED  : 1 
FROM_FRIEND : 1 
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

▪ In the space of feature vectors 
▪ Examples are points 
▪ Any weight vector is a hyperplane 
▪ One side corresponds to Y=+1 
▪ Other corresponds to Y=-1

BIAS  : -3 
free  :  4 
money :  2 
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron

▪ Start with weights = 0 
▪ For each training instance: 

▪ Classify with current weights 

▪ If correct (i.e., y=y*), no change! 

▪ If wrong: adjust the weight vector



Learning: Binary Perceptron

▪ Start with weights = 0 
▪ For each training instance: 
▪ Classify with current weights 

▪ If correct (i.e., y=y*), no change! 
▪ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Examples: Perceptron

▪ Separable Case



Multiclass Decision Rule

▪ If we have multiple classes: 
▪ A weight vector for each class: 

▪ Score (activation) of a class y: 

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

▪ Start with all weights = 0 
▪ Pick up training examples one by one 
▪ Predict with current weights 

▪ If correct, no change! 
▪ If wrong: lower score of wrong answer, 

raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1 
win   : 0 
game  : 0  
vote  : 0  
the   : 0   
...

BIAS  : 0   
win   : 0  
game  : 0  
vote  : 0  
the   : 0   
...

BIAS  : 0  
win   : 0  
game  : 0  
vote  : 0  
the   : 0   
...

“win the vote”

“win the election”

“win the game”

Sample A 
BIAS : 1 
win  : 1 
game : 0 
vote : 1 
the  : 1

Sample B 
BIAS : 1 
win  : 1 
game : 0 
vote : 0 
the  : 1

Sample C 
BIAS : 1 
win  : 1 
game : 1 
vote : 0 
the  : 1

 fA 
  1 
  1 
- 0 = 
  1 
  1 

wS 
 0 
-1 
 0 
-1 
-1 
...

 fA 
  1 
  1 
+ 0 = 
  1 
  1 

wP 
 1 
 1 
 0 
 1 
 1 
...

wS . fA = 1; wP . fA = 0; wT . fA = 0

wS . fB = -2; wP . fB = 3; wT . fB = 0

wS . fC = -2; wP . fC = 3; wT . fC = 0

 fC 
  1 
  1 
+ 1 = 
  0 
  1 

wS 
 1 
 0 
 1 
-1 
 0 
...

 fC 
  1 
  1 
- 1 = 
  0 
  1 

wP 
 0 
 0 
-1 
 1 
 0 
...



Properties of Perceptrons

▪ Separability: true if some parameters get the training set 
perfectly correct 

▪ Convergence: if the training is separable, perceptron will 
eventually converge (binary case) 

▪ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Problems with the Perceptron

▪ Noise: if the data isn’t separable, 
weights might thrash 
▪ Averaging weight vectors over time can 

help (averaged perceptron) 

▪ Mediocre generalization: finds a 
“barely” separating solution 

▪ Overtraining: test / held-out 
accuracy usually rises, then falls 
▪ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

▪ Perceptron scoring: 

▪ If            very positive  want probability going to 1 

▪ If             very negative  want probability going to 0 

▪ Sigmoid function



Best w? 

▪ Maximum likelihood estimation: 

with:

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression

▪ Recall Perceptron: 
▪ A weight vector for each class: 

▪ Score (activation) of a class y: 

▪ Prediction highest score wins 

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation: 

with:

= Multi-Class Logistic Regression



Choosing weights

▪ Optimization 

▪ i.e., how do we solve:



Hill Climbing

▪ Recall from CSPs lecture: simple, general idea 
▪ Start wherever 
▪ Repeat: move to the best neighboring state 
▪ If no neighbors better than current, quit 

▪ What’s particularly tricky when hill-climbing for multiclass logistic 
regression? 
• Optimization over a continuous space 

• Infinitely many neighbors! 

• How to do this efficiently?



1-D Optimization

▪ Could evaluate   and 
▪ Then step in best direction 

▪ Or, evaluate derivative: 

▪ Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

▪ Perform update in uphill direction for each coordinate 

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step 
for that coordinate 

▪ E.g., consider:  

▪   Updates: ▪ Updates in vector notation: 

 with: = gradient



▪ Idea:  
▪ Start somewhere 
▪ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



What is the Steepest Direction?

▪ First-Order Taylor Expansion: 

▪ Steepest Ascent Direction: 

▪ Recall:     

▪ Hence, solution: Gradient direction = steepest direction!



Gradient in n dimensions



Optimization Procedure: Gradient Ascent

▪ init 

▪ for iter = 1, 2, …

▪     : learning rate --- hyperparameter that needs to be chosen 
carefully 

▪ How? Try multiple choices 
▪ Crude rule of thumb: update changes       about 0.1 – 1 % 



Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



Learning Rate Finder

▪ Calculate a good learning 
rate by trying learning 
rates over a range of 
possible values 

▪ Plot the training loss at 
each of these epochs 

▪ Pick a learning rate where 
the loss is declining the 
most before it hits the 
minimum: 
5x10^-5 - 3x10^-4


