CS 188: Artificial Intelligence

Perceptrons and Logistic Regression

Instructors: Oliver Grillmeyer —- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Announcements

HWS is due Thursday, July 31, 11:59 PM PT

Project 4 is due Friday, August 1, 11:59 PM PT

HW9 is due Tuesday, August 5, 11:59 PM PT

HW10 is due Thursday, August 7, 11:59 PM PT

gnore assessment on HWs part B, but please show your work
-inal Exam is Wednesday, August 13, 7-10 PM PT

= Accommodation requests by Wednesday, July 30, 11:59 PM PT

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

~
free

YOUR NAME
MISSPELLED
FROM FRIEND

~

PIXEL-7,12
PIXEL-7,13

NUM LOOPS

~

SPAM
or

“2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

= Inputs are feature values
= Each feature has a weight

= Sum is the activation

» |f the activation is: f, f——>
W
= Positive, output +1 5 W2 | 2 >0? —
3
= Negative, output -1 s o

Weights

= Binary case: compare features to a weight vector

= Learning: figure out the weight vector from examples

- ~N
free : 4
YOUR_NAME -1
MISSPELLED 1

FROM FRIEND :-3 21}

~

N

) f(x1)

f(x2)

Dot product w - f positive
means the positive class

~

~

#

YOUR NAME
MISSPELLED
FROM FRIEND :

~

~

free

free
YOUR NAME
MISSPELLED

FROM FRIEND :

e =)

Decision Rules

Binary Decision Rule

= In the space of feature vectors

= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1
= Other corresponds to Y=-1

o

Q 2

=

w +1 = SPAM
BIAS : -3 {
free : 4
money : 2
-1 = HAM OO 1

free

Weight Updates

Learning: Binary Perceptron

s Start with weights =0
s For each training instance:

s Classify with current weights

» If correct (i.e., y=y*), no change!

= If wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights =0
= For each training instance:
= Classify with current weights
y - f
1L i we f(x) >0
v {—1 it w- f(z) <0

« If correct (i.e., y=y*), no change!

= If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y" f

Examples: Perceptron

= Separable Case

5.
asl

a + +
35!

3 - o)
25!

2 + O o)
5 o

" o) o)
osl

1 1 1 1 1 1 1
g | 0 L] 1 p 4 2 2 3 @ 4 & 5 B

Multiclass Decision Rule

= If we have multiple classes:

= A weight vector for each class:
Wy

= Score (activation) of a class y:

= Prediction highest score wins

y = argmax wy - f(x)
Y

/—:
. O °J3
+ + - + + O o O O
+ o
+ ++ + T + o O
w1y - f biggest
A w1
w
w9 3
wo - f w3 - f
bigzgest biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answetr,
raise score of right answer

wy = wy — f(x)

Wopx = Wyy* +f($>

Example: Multiclass Perceptron

sample A WS . fA = 1,WPfA=O, wT .fA=0

BIAS : 1
11 . L) win : 1
win the vote e 20 supies wS.fB=-2;wP.fB=3;wT.fB=0
the 1 BIAS : 1
14 . . b} win 1
win the election seme s 0 e o WS L fC=-2;wP . fC=3;wT.fC=0
TR " the 1 iiis 1
Wln tqe game game : 1
vote : O
the 1
WSPORTS WpOLITICS WTECH
fA WS fC WS fA wP fC wP
BIAS 1 1 0 1 1 BIAS : 0 1 1 1 0 BIAS 0
win 0 1 -1 1 0 win 0 1 1 1 0 win 0
game Ol- 0= 0 +1= 1 game Ol + 0= 0 -1= -1 game 0
vote 0 1 -1 0 -1 vote 0 1 1 0 1 vote 0
the 0 1 -1 1 0 the 0 1 1 1 0 the 0

Properties of Perceptrons

= Separability: true if some parameters get the training set Separable
perfectly correct oy
- vy,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -
»« Mistake Bound: the maximum number of mistakes (binary Non-Separable
case) related to the margin or degree of separability
* +
. k - * &
mistakes < — -
52 - +

Problems with the Perceptron

Noise: if the data isn’t separable, . .
weights might thrash - o
= Averaging weight vectors over time can "

help (averaged perceptron)

Mediocre generalization: finds a -
“barely” separating solution

training
P
Overtraining: test / held-out @
accuracy usually rises, then falls 0 test
= Overtraining is a kind of overfitting o held-out

iterations

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

51 0.9]0.1
45 0.7] 0.3
4l 0.5] 0.5
351 0.3]| 0.7
31 1]0.9
25}
2|
15}

How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)
If z=w-f(z) verypositive 2> want probability goingto 1
If z=w-f(x) verynegative > want probability goingto0

Sigmoid function . ‘1_ K ﬁ ‘
¢(2) 1 4+ e~ J

Best w?

s Maximum likelihood estimation:

w

max [[(w) = max ZlogP(y(i)M(i);w)

with:

i i 1
P(y() — —|—1|QZ‘()7w) — 1+ o—w-f(z()

1

= Logistic Regression

Separable Case: Deterministic Decision — Many Options

5 -
Sr 5
45+
T 45}
4t
i s + +
JoF
J9F 35k
3k
3" 3 +
2oF
2.5" 25_
2k
2k
P
15} O O
1.9 F 15k
1tk
1tk
1
as| O O
U.S"' 05_
0
0

Separable Case: Probabilistic Decision — Clear Preference

P T L T LI T LI T LI T 1
o -t o (] o L] (4] EEN (4] o
T T T T T T T T T 1

|

Multiclass Logistic Regression

w1 - f biggest
= Recall Perceptron: N
1
= A weight vector for each class: ’wy
= Score (activation) of a class y: Wy - f(.CU) w3
w2
= Prediction highest score wins Yy — arg max wy - f(x) wo - f w3 - f
(J 2 biggest
biggest
= How to make the scores into probabilities?
< < <
e~! e~? e~s

Z1,R2,23 — 9 9

e*l 4-e*2 +e*3 el +e*2 - e*3 e*l - e*2 + €73

\) \)
I Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [[(w) = max ZlogP(y(i)M(i);w)
with: 1

(3) | (1) oy)
P(yz|xz§w): b f (D)
>, evn FE®)

= Multi-Class Logistic Regression

Choosing weights
s Optimization
= i.e., how do we solve:

w

max [l(w) = max ZlogP(y(i)h:(i);w)

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What'’s particularly tricky when hill-climbing for multiclass logistic
regression?
e Optimization over a continuous space
e Infinitely many neighbors!
« How to do this efficiently?

1-D Optimization

= Could evaluate g(qpy + h) and g(wg — h)

= Then step in best direction

s Or, evaluate derivative: 99(wo) _ lim g(wo + 1) — glwo — 1)

ow h—0 2h

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: g(wq,ws)

=« Updates: » Updates in vector notation:

dg
’wlel‘Fa*a—wl(wlan) w%w-FOé*vwg(w)

dg
Wo — W9 + (v * a—wg(wl’ w2) with: V,g(w) = [aauél(

] = gradient

Gradient Ascent

s ldea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

max w+ A
A:A2+A2<e 9()

0 0
First-Order Taylor Expansion: glw+ A) = g(w) + 2T A+ LA,
(911)1 (9’[1)2
N 99 A L 99 A
Steepest Ascent Direction: A,)t mALt g A
a

Al A=emry
Recall: A;ﬁ{ﬁ%g Lo EHCLH

Vg

: _ Gradient direction = steepest direction!
Hence, solution: A=e
‘ Vgl

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

= init W

= for iter =1, 2, ..

w <+ w~+ ax*x Vg(w)

= (¥:learning rate --- hyperparameter that needs to be chosen
carefully

« How? Try multiple choices
» Crude rule of thumb: update changes 7y about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood Objective

max [l(w) = max ZlogP(y(i)m(i);w)

w

\ J

g(w)

= init W

= for i1ter = 1, 2, ..

W — W+ « * ZVlogP(y(i)]x(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init W
= for iter =1, 2,

» pick random j

w < w4 ax Viog P(yY |z w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= init W
= for iter =1, 2,
» pick random subset of training examples J

W — W+ a* ZVIogP(y(j)\a:(j);w)
jed

Learning Rate Finder

» Calculate a good learning
rate by trying learning
rates over a range of
possible values

= Plot the training loss at
each of these epochs

= Pick a learning rate where
the loss is declining the
most before it hits the
minimum:
5x10A-5 - 3x107-4

Learning Rate Range Test, (smoothing: 0.9)

220 A

200 A

180 -

Loss

140 -

120 -

100 -

80 1

—— Train Loss

T LA
107 10~

LR | ! ! LA |
107 10~%
Learning Rate (log scale)

T
103

