
CS 188: Artificial Intelligence

Neural Nets and Applications

Instructor: Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ HW8 is due Thursday, July 31, 11:59 PM PT
▪ Project 4 is due Friday, August 1, 11:59 PM PT
▪ HW9 is due Tuesday, August 5, 11:59 PM PT
▪ HW10 is due Thursday, August 7, 11:59 PM PT
▪ Project 5 is due Friday, August 8, 11:59 PM PT
▪ Ignore assessment on HWs part B, but please show your work
▪ Final Exam is Wednesday, August 13, 7-10 PM PT

Refresher: Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?

How to get probabilistic decisions?

▪ Activation:

▪ If very positive  want probability going to 1

▪ If very negative  want probability going to 0

▪ Sigmoid function

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Multiclass Logistic Regression

▪ Multi-class linear classification:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/ highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Neural Networks

Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

▪ Much larger weight vector to learn

▪ Keep training (adjust weights with gradient ascent) until we meet our
performance criteria or validation set performance starts decreasing

Neural Networks Properties

▪ Theorem (Universal Function Approximators). A two-layer neural
network (input layer, hidden layer, and outputs) with a sufficient
number of neurons can approximate any continuous function to any
desired accuracy.

▪ Practical considerations
▪ Can be seen as learning the features

▪ Large number of neurons
▪ Danger for overfitting

▪ (hence early stopping!)

Universal Function Approximation Theorem*

▪ In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Fun Neural Net Demo Site

▪ Demo-site:
▪ http://playground.tensorflow.org/

http://playground.tensorflow.org/

▪ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?

■ No problem: CHAIN RULE:

If

Then

 Derivatives can be computed by following well-defined
procedures

▪ Automatic differentiation software
▪ e.g. Theano, TensorFlow, PyTorch, Chainer
▪ Only need to program the function g(x,y,w)
▪ Can automatically compute all derivatives w.r.t. all entries in w
▪ This is typically done by caching info during forward computation pass of f, and

then doing a backward pass = “backpropagation”
▪ Autodiff / Backpropagation can often be done at computational cost

comparable to the forward pass

▪ Need to know this exists
▪ How this is done? -- outside of scope of CS188

Automatic Differentiation

Summary of Key Ideas
▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
▪ Take step in the gradient direction
▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression
▪ Now also many more layers before this last layer

▪ = computing the features
▪  the features are learned rather than hand-designed

▪ Universal function approximation theorem
▪ If neural net is large enough
▪ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
▪ But remember: need to avoid overfitting / memorizing the training data  early stopping!

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

How well does it work?

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

[HoG: Dalal and Triggs, 2005]

Features and Generalization

Image HoG

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Speech Recognition

graph credit Matt Zeiler, Clarifai

Machine Translation
Google Neural Machine Translation (2017)

YOLO object detection

Transfer Learning

▪ Problem: how do we efficiently build machine learning models

▪ Data Labeling is a very time consuming operation that requires human input

▪ Can we leverage off of existing, similar models?

▪ Transfer Learning entails using the weights of a similar network as a starting
point in training a new model

▪ Domain Adaptation is a simple form of Transfer Learning in which an existing
model is further trained using a new smaller data set

▪ Transfer Learning can involve freezing the feature detection part of the
network to just learn to discriminate and classify

Next Lectures

▪ Formalizing Learning and Decision Trees

▪ Large Language Models: Transformers and Attention

