CS 188: Artificial Intelligence

Neural Nets and Applications

Instructor: Oliver Grillmeyer --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

HWS is due Thursday, July 31, 11:59 PM PT

Project 4 is due Friday, August 1, 11:59 PM PT

HW9 is due Tuesday, August 5, 11:59 PM PT

HW10 is due Thursday, August 7, 11:59 PM PT

Project 5 is due Friday, August 8, 11:59 PM PT

gnore assessment on HWSs part B, but please show your work
-inal Exam is Wednesday, August 13, 7-10 PM PT

Refresher: Linear Classifiers

= Inputs are feature values
= Each feature has a weight

= Sum is the activation

» |f the activation is: f, f——>
W
= Positive, output +1 5 W2 | 2 >0? —
3
= Negative, output -1 s o

How to get probabilistic decisions?

s Activation: 2z = w - f(g;)
n If z=w- f(x) verypositive 2> want probability goingto 1
« If 2z=w-f(x) verynegative > want probability goingto0

= Sigmoid function . ‘1_ K ﬁ ‘
¢(2) 1 4+ e~ J

Best w?

s Maximum likelihood estimation:

w

max [[(w) = max ZlogP(y(i)M(i);w)

with:

i i 1
P(y() — —|—1|QZ‘()7w) — 1+ o—w-f(z()

1

= Logistic Regression

Multiclass Logistic Regression

: . e s w1y - f biggest
= Multi-class linear classification: ' N
1
= A weight vector for each class: ’wy
= Score (activation) of a class y: Wy - f(.CU) w3
w2
= Prediction w/ highest score wins Yy — dfg max wy - f(x) wo - f w3 - f
(J 2 biggest
biggest
= How to make the scores into probabilities?
< < <
e~! e~? e~s

Z1,R2,23 — 9 9

e*l 4-e*2 +e*3 el +e*2 - e*3 e*l - e*2 + €73

\) \)
I Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [[(w) = max ZlogP(y(i)M(i);w)
with: 1

(3) | (1) oy)
P(yz|xz§w): b f (D)
>, evn FE®)

= Multi-Class Logistic Regression

Neural Networks

Multi-class Logistic Regression

= = special case of neural network

f,(x)

\ 621

P(y|z;w) = el 1 e%2 + %3

fo(x)

e*?
el + e*2 + e*3

f3(x)

z

S
o)
f
Z, — L Pplnw) =
m
a
X e

z, — ° —— P(ys|lzw) =

| / €Z1 _|_ €z2 —|_ 623

fi(x)

Deep Neural Network = Also learn the features!

f,(x)
\ -
Z, S P(y1|a:;w) = e?l 4 g2 4 73
f,(x) o
f
£ Plys | w)
Z, |—— — W) =
£y(x) ? m VLW = el e 1 e
a
z
% &

fi(x)

Deep Neural Network = Also learn the features!

X1 2’%1) z§2>
SR
X3 25" 2"
1 2
XL 22211 Z%?Q}

(n—1) f.(x
An D) «(x)

k k—1,k) (k—1
Zz() :g(ZWz’(,j)Z§))

J

S P(?/1|$;w):
(o)
f
tL P(y2\37;w)
m
a
R P(y3|z; w),

g = nonlinear activation function

Deep Neural Network = Also learn the features!

Xy 2’%1) z§2>
SR
X3 25" 2"
1 2
XL 22211 Z%?Q}

Z§n—1) (

W N— i s Plylw;w)
(n—1) o)
<2

E iﬁ %/ i f
Z(n—l) zéOUT) tL . P(yz\fl?;w)
3 m

a

Zl(;(i)l)

Zz(k) — g(§ Wz’(,];'_ 17k) Z;k_ 1)) g = nonlinear activation function

J

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 v - 1 — 5
9(2) olz) 0(2) |
0.8} 9') | 0.5 | g@| | 4| g'@ | |
0.6 | 3|
0
0.4 2 |
0.2 A haad 1|
0 11— 0 ;
-5 0 S 5 0 S -5 0 5
1 e? — e~ ?
= = z)=max (0, z
g(z) VLT g(z) T o=z g(z) (0,2z)
1 z>0
’ . . ' . _ 2 ' —)
g'(z)= g(2)(1-g(2)) g'(z)=1-g(2) 9 (z) {0, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

= Training the deep neural network is just like logistic regression:

max [[(w) = max Zlog Py |z w)
= Much larger weight vector to learn

s Keep training (adjust weights with gradient ascent) until we meet our
performance criteria or validation set performance starts decreasing

Neural Networks Properties

» Theorem (Universal Function Approximators). A two-layer neural
network (input layer, hidden layer, and outputs) with a sufficient
number of neurons can approximate any continuous function to any
desired accuracy.

s Practical considerations

= Can be seen as learning the features

= Large number of neurons

= Danger for overfitting

= (hence early stopping!)

Universal Function Approximation Theorem?*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure u, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdu(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is confinuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

= In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) ”“Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem?*

: i : 303-314 .
Math. Control Signals Systems (1989) 2: Mathematlcs Of COntrOl,

Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we that finite linear inations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approxi by conti d rd neural ks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
,le ao(yjx +), (§))

where y; € R"and o;, 6 € R are fixed. (yT is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal o’s:

© 1 as t— 400,
-
‘ 0 as t— —oo.

Such_functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal

* Date received: October 21, 1988, Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
85ER25001.

1 Center for Research and Devel and Department of Ell
Engineering, University of Illinois, Urbana, Illinois 61801, U.S.A.

and Computer

303

S96080/91 $3.00 + 00
Copyright © 1991 Pergamon Press ple

Neural Networks. Vol. 4. pp.
Printed in the USA. All rig!

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KurT HORNIK
Technische Universitiit Wien. Vienna, Austria
(Received 30 January 1990: revised and accepred 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect o L'() per-
formance criteria, for arbitrary finite input environment measures yi. provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

its derivatives.

Keywords—Multilayer feedforward networks, Activati

on function, Universal approximation capabilities. Input

measure, L(x) app . Uniform

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at / output units given values
at k input units, hence implementing a class of map-
pings from R* to R', we can ask how well arbitrary
mappings from R* to R’ can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform simul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fir Statistik und Wahrscheinlichkeitstheorie, Technische Uni-
versitit Wien, Wiedner HauptstraBe 8-10/107. A-1040 Wien. Aus.
tria.

pp . Sobolev spaces, Smooth approximation.
measured by the uniform distance between functions
on X, that is,

Pl f. 8) = sup [f(x) = g(x)
X

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure y, where u(R) < =,
In this case, closeness is measured by the L#(x) dis-
tances

pekfg) = I { f(x) — gx) du(x) | .
Ju

I = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications. it is also necessary that the derivatives of
the approximating function i d by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990). who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers

certain approxi ca-

MULTILAYER FEEDFORWARD NETWORKS
WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by

Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series

STERN 1S-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”“Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”

Fun Neural Net Demo Site

= Demo-site:
s http://playground.tensorflow.org/

http://playground.tensorflow.org/

How about computing all the derivatives?

s Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

d

“a)=0
dx

d
—(x)=1
dx

d . du
—(au)=a—
dx dx

d o du dv
—(ut+tv-w)=—+———
dx de dx
d _ dv du
—(uv)=u—=+v—
dx dx dx

i(f_") _ldu_udv
vdr vdx

dx\ v

i(u")= nu"™! au
dx dx
d . 1 du
—(WU)=—F——
dx 2-u dx

d 'l)_ 1 du
Z(‘; T Wl dx
d(1)Y_ n du
dx (u"] T ™ dx

i[f(u')] = i[_f(u)]
dx du

ﬂ
dx

dw

dx

d d | du
—[Inu]=—[log,u]=—=—
dx dx u dx
d | du
[I(;)g' u] =log e
dx “ T dx
d , ,du
.—.‘) —— {) —
dx dx
d . du
—a"=a"lna—
dx dx
d ;. 1 du dv
—(u")=vu"" —+Inu v —
dx dx dx
d . du
—SiNU = CoSu—
dx dx
d . du
—COSU = —Sinu—
dx dx
¢ > du
—tanu = sec” u—
dx dx
, 2 du
cotu =—cscu
dx dx
d du
secu = secutany—
dx dx
d ~ du
CSCH =—Cscucotu
dx dx

How about computing all the derivatives?

But neural net f is never one of those?
- No problem: CHAIN RULE:

f flz) = g(h(x))

Ther f'(z) = g'(h(x))R ()

- Derivatives can be computed by following well-defined
procedures

Automatic Differentiation

» Automatic differentiation software
= €.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

= This is typically done by caching info during forward computation pass of f, and
then doing a backward pass = “backpropagation”

« Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done? -- outside of scope of CS188

Summary of Key ldeas

= Optimize probability of label given input =~ max ll(w) = max > log P(y" |2 w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets

= Last layer = still logistic regression
= Now also many more layers before this last layer

= =computing the features
= > the features are learned rather than hand-designed

= Universal function approximation theorem

= ITf neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data > early stopping!
s Automatic differentiation gives the derivatives efficientlv (how? = outside of scope of 188)

How well does it work?

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

L D & o

N N, R

w A ALY] T e

{ Fedocaerirt |

+
y

!

1
A
)

[

|
R

¥

[HoG: Dalal and Triggs, 2005]

Features and Generalization

-
~
%
$ 4
b,
'z
*
¢
.

Image HoG

Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
o
o
va

S 40%
W

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

Error Rate

2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming

79%

60%
2
(++)
4

S 40%
uj

20%

AlexNet
7%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming

Error Rate

AlexNet !

§ TR R
S

2010 2011 2012 2013

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming

Error Rate

AlexNet !

§ TR N
S

2010 2011 2012 2013

graph credit Matt
Zeiler, Clarifai

MS COCO Image Captioning Challenge

[}

‘man in black shirt is ‘construction worker in "two young girls are "boy is doing backflip on
playing guitar. orange safety vest is playing with lego toy." wakeboard.
working on road.’

‘girlin pink dress is ‘man in blue wetsuit is
jumping in air.’ jumps over bar.’ swinging on swing.’ surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net: brown

Ground Truth: brown

How many school busses
are there?

Neural Net: 2

Ground Truth: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

144

What is on top of the
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent

Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai

Machine Translation

Google Neural Machine Translation (2017)

Encoder € || ©4 — | 2 — | O3 — el = 7 — | ©s

Decoder do . d; . d-

YOLO object detection

36 61 91
(,// //' | L//
% Y/ 79 . . -
o0
—{ % ° o0
* = °))) * o />_ "

\Q‘; Concatenation (1
& =
(1) Addition Scale 1 /
) - 82 Stride: 32

Residual Block

Detection Layer I Scale 2

94 Stride: 16
Upsampling Layer

e Further Layers

R [
\

Scale 3

106 Stride: 8

YOLO v3 network Architecture

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Transfer Learning

Problem: how do we efficiently build machine learning models
Data Labeling is a very time consuming operation that requires human input
Can we leverage off of existing, similar models?

Transfer Learning entails using the weights of a similar network as a starting
point in training a new model

Domain Adaptation is a simple form of Transfer Learning in which an existing
model is further trained using a new smaller data set

Transfer Learning can involve freezing the feature detection part of the
network to just learn to discriminate and classify

Next Lectures

= Formalizing Learning and Decision Trees

s Large Language Models: Transformers and Attention

