
CS 188: Artificial Intelligence

Decision Trees

Instructor: Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ HW9 is due Tuesday, August 5, 11:59 PM PT
▪ HW10 is due Thursday, August 7, 11:59 PM PT
▪ Project 5 is due Friday, August 8, 11:59 PM PT
▪ Ignore assessment on HWs part B, but please show your work
▪ Final Exam is Wednesday, August 13, 7-10 PM PT

Today

▪ Neural Nets -- wrap

▪ Enhanced Training

▪ Formalizing Learning
▪ Consistency
▪ Simplicity

▪ Decision Trees
▪ Expressiveness
▪ Information Gain
▪ Overfitting

Refresh: Deep Neural Network

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Formalizing Learning: Inductive Learning

Inductive Learning (Science)

▪ Simplest form: learn a function from examples
▪ A target function: g
▪ Examples: input-output pairs (x, g(x))
▪ E.g. x is an email and g(x) is spam / ham
▪ E.g. x is a house and g(x) is its selling price

▪ Problem:
▪ Given a hypothesis space H
▪ Given a training set of examples xi
▪ Find a hypothesis h(x) such that h ~ g

▪ Includes:
▪ Classification (outputs = class labels)
▪ Regression (outputs = real numbers)

▪ How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

▪ Curve fitting (regression, function approximation):

▪ Consistency vs. simplicity
▪ Ockham’s razor

Consistency vs. Simplicity

▪ Fundamental tradeoff: bias vs. variance

▪ Usually algorithms prefer consistency by default (why?)

▪ Several ways to operationalize “simplicity”
▪ Reduce the hypothesis space

▪ Assume more: e.g. independence assumptions, as in naïve Bayes
▪ Have fewer, better features / attributes: feature selection
▪ Other structural limitations (decision lists vs trees)

▪ Regularization
▪ Smoothing: cautious use of small counts
▪ Many other generalization parameters (pruning cutoffs today)
▪ Hypothesis space stays big, but harder to get to the outskirts

Decision Trees

Features

▪ Features, aka attributes
▪ Sometimes: TYPE=French
▪ Sometimes: fTYPE=French(x) = 1

Decision Trees

▪ Compact representation of a function:
▪ Truth table
▪ Conditional probability table
▪ Regression values

▪ True function
▪ Realizable: in H

Expressiveness of DTs

▪ Can express any function of the features

▪ However, we hope for compact trees

Comparison: Perceptrons

▪ What is the expressiveness of a perceptron over these features?

▪ For a perceptron, a feature’s contribution is either positive or negative
▪ If you want one feature’s effect to depend on another, you have to add a new conjunction feature
▪ E.g. adding “PATRONS=full ∧ WAIT = 60” allows a perceptron to model the interaction between the two atomic

features

▪ DTs automatically conjoin features / attributes
▪ Features can have different effects in different branches of the tree!

▪ Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
▪ Though if the interactions are too complex, may not find the DT greedily

Hypothesis Spaces

▪ How many distinct decision trees with n Boolean attributes?
= number of Boolean functions over n attributes
= number of distinct truth tables with 2n rows
= 2^(2n)
▪ E.g., with 6 Boolean attributes, there are
 18,446,744,073,709,551,616 trees

▪ How many trees of depth 1 (decision stumps)?
= number of Boolean functions over 1 attribute
= number of truth tables with 2 rows, times n
= 4n
▪ E.g. with 6 Boolean attributes, there are 24 decision stumps

▪ More expressive hypothesis space:
▪ Increases chance that target function can be expressed (good)
▪ Increases number of hypotheses consistent with training set (bad,

why?)
▪ Means we can get better predictions (lower bias)
▪ But we may get worse predictions (higher variance)

Decision Tree Learning

▪ Aim: find a small tree consistent with the training examples
▪ Idea: (recursively) choose “most significant” attribute as root of (sub)tree

Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Entropy and Information

▪ Information answers questions
▪ The more uncertain about the answer initially, the more

information in the answer
▪ Scale: bits

▪ Answer to Boolean question with prior <1/2, 1/2>?
▪ Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
▪ Answer to 4-way question with prior <0, 0, 0, 1>?
▪ Answer to 3-way question with prior <1/2, 1/4, 1/4>?

▪ A probability p is typical of:
▪ A uniform distribution of size 1/p
▪ A code of length log 1/p

Entropy

▪ General answer: if prior is <p1,…,pn>:
▪ Information is the expected code length

▪ Also called the entropy of the distribution
▪ More uniform = higher entropy
▪ More values = higher entropy
▪ More peaked = lower entropy
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit

Information Gain

▪ Back to decision trees!
▪ For each split, compare entropy before and after

▪ Difference is the information gain
▪ Problem: there’s more than one distribution after split!

▪ Solution: use expected entropy, weighted by the number of
examples

Next Step: Recurse

▪ Now we need to keep growing the tree!
▪ Two branches are done (why?)
▪ What to do under “full”?

▪ See what examples are there…

Example: Learned Tree

▪ Decision tree learned from these 12 examples:

▪ Substantially simpler than “true” tree
▪ A more complex hypothesis isn't justified by data

▪ Also: it’s reasonable, but wrong

Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Find the First Split

▪ Look at information gain for
each attribute

▪ Note that each attribute is
correlated with the target!

▪ What do we split on?

Result: Decision Stump

Second Level

Final Tree

MPG Training
Error

The test set error is much worse than the
training set error…

…why?

Reminder: Overfitting

▪ Overfitting:
▪ When you stop modeling the patterns in the training data (which

generalize)
▪ And start modeling the noise (which doesn’t)

▪ We had this before:
▪ Naïve Bayes: needed to smooth
▪ Perceptron: early stopping

Consider this
split

Significance of a Split

▪ Starting with:
▪ Three cars with 4 cylinders, from Asia, with medium HP
▪ 2 bad MPG
▪ 1 good MPG

▪ What do we expect from a three-way split?
▪ Maybe each example in its own subset?
▪ Maybe just what we saw in the last slide?

▪ Probably shouldn’t split if the counts are so small they could be due to chance

▪ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

▪ Each split will have a significance value, pCHANCE

Keeping it General

▪ Pruning:
▪ Build the full decision tree
▪ Begin at the bottom of the tree
▪ Delete splits in which
 pCHANCE > MaxPCHANCE

▪ Continue working upward until
there are no more prunable
nodes

▪ Note: some chance nodes may
not get pruned because they
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Regularization

▪ MaxPCHANCE is a regularization parameter

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test

Training

Two Ways of Controlling Overfitting

▪ Limit the hypothesis space
▪ E.g. limit the max depth of trees
▪ Easier to analyze

▪ Regularize the hypothesis selection
▪ E.g. chance cutoff
▪ Skip most of the hypotheses unless data is clear
▪ Usually done in practice

Expert Systems

▪ Expert Systems are collections of if-then rules that capture the
knowledge of a human expert to carry out a specific task

▪ Rules have certainty factors that give a probability of their
importance or likelihood

▪ Rules are independent of one another but can add information that
other rules use

▪ Inference Engine decides which rule to apply

▪ Similar to Decision Trees which can be thought of as a large
collection of if-then-else statements, but no tree structure is used

Expert System Rules

▪ Sample rules for car mileage

▪ if model-year is “79to83” then mileage <— “good”

▪ if model-year is “70to74” then mileage <— “bad”

▪ if model-year is “75to78” and displacement <— “low” then
mileage <— “good”

▪ if model-year is “75to78” and displacement is not “low” then
mileage <— “bad”

▪ if weight is “low” then mpg_trending_low <— true

Next Lecture: Large Language Models & Transformers

▪ Large Langauge Models

▪ Transformers

