
CS 188: Artificial Intelligence 

Decision Trees

Instructor: Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ HW9 is due Tuesday, August 5, 11:59 PM PT 
▪ HW10 is due Thursday, August 7, 11:59 PM PT 
▪ Project 5 is due Friday, August 8, 11:59 PM PT 
▪ Ignore assessment on HWs part B, but please show your work 
▪ Final Exam is Wednesday, August 13, 7-10 PM PT



Today

▪ Neural Nets -- wrap 

▪ Enhanced Training 

▪ Formalizing Learning 
▪ Consistency 
▪ Simplicity 

▪ Decision Trees 
▪ Expressiveness 
▪ Information Gain 
▪ Overfitting
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Formalizing Learning: Inductive Learning



Inductive Learning (Science)

▪ Simplest form: learn a function from examples 
▪ A target function: g 
▪ Examples: input-output pairs (x, g(x)) 
▪ E.g. x is an email and g(x) is spam / ham 
▪ E.g. x is a house and g(x) is its selling price 

▪ Problem: 
▪ Given a hypothesis space H 
▪ Given a training set of examples xi 
▪ Find a hypothesis h(x) such that h ~ g 

▪ Includes: 
▪ Classification (outputs = class labels) 
▪ Regression (outputs = real numbers) 

▪ How do perceptron and naïve Bayes fit in?  (H, h, g, etc.)



Inductive Learning

▪ Curve fitting (regression, function approximation): 

▪ Consistency vs. simplicity 
▪ Ockham’s razor



Consistency vs. Simplicity

▪ Fundamental tradeoff: bias vs. variance 

▪ Usually algorithms prefer consistency by default (why?) 

▪ Several ways to operationalize “simplicity” 
▪ Reduce the hypothesis space 

▪ Assume more: e.g. independence assumptions, as in naïve Bayes 
▪ Have fewer, better features / attributes: feature selection 
▪ Other structural limitations (decision lists vs trees) 

▪ Regularization 
▪ Smoothing: cautious use of small counts 
▪ Many other generalization parameters (pruning cutoffs today) 
▪ Hypothesis space stays big, but harder to get to the outskirts



Decision Trees



Features

▪ Features, aka attributes 
▪ Sometimes: TYPE=French 
▪ Sometimes: fTYPE=French(x) = 1



Decision Trees

▪ Compact representation of a function: 
▪ Truth table 
▪ Conditional probability table 
▪ Regression values 

▪ True function 
▪ Realizable: in H



Expressiveness of DTs

▪ Can express any function of the features 

▪ However, we hope for compact trees



Comparison: Perceptrons

▪ What is the expressiveness of a perceptron over these features? 

▪ For a perceptron, a feature’s contribution is either positive or negative 
▪ If you want one feature’s effect to depend on another, you have to add a new conjunction feature 
▪ E.g. adding “PATRONS=full ∧ WAIT = 60” allows a perceptron to model the interaction between the two atomic 

features 

▪ DTs automatically conjoin features / attributes 
▪ Features can have different effects in different branches of the tree! 

▪ Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs) 
▪ Though if the interactions are too complex, may not find the DT greedily



Hypothesis Spaces

▪ How many distinct decision trees with n Boolean attributes? 
= number of Boolean functions over n attributes 
= number of distinct truth tables with 2n rows 
= 2^(2n) 
▪ E.g., with 6 Boolean attributes, there are 
 18,446,744,073,709,551,616 trees 

▪ How many trees of depth 1 (decision stumps)? 
= number of Boolean functions over 1 attribute 
= number of truth tables with 2 rows, times n 
= 4n 
▪ E.g. with 6 Boolean attributes, there are 24 decision stumps 

▪ More expressive hypothesis space: 
▪ Increases chance that target function can be expressed (good) 
▪ Increases number of hypotheses consistent with training set (bad, 

why?) 
▪ Means we can get better predictions (lower bias) 
▪ But we may get worse predictions (higher variance)



Decision Tree Learning

▪ Aim: find a small tree consistent with the training examples 
▪ Idea: (recursively) choose “most significant” attribute as root of (sub)tree



Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or 
“all negative” 

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly 
separated out



Entropy and Information

▪ Information answers questions 
▪ The more uncertain about the answer initially, the more 

information in the answer 
▪ Scale: bits 

▪ Answer to Boolean question with prior <1/2, 1/2>?   
▪ Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>? 
▪ Answer to 4-way question with prior <0, 0, 0, 1>? 
▪ Answer to 3-way question with prior <1/2, 1/4, 1/4>? 

▪ A probability p is typical of: 
▪ A uniform distribution of size 1/p 
▪ A code of length log 1/p



Entropy

▪ General answer: if prior is <p1,…,pn>: 
▪ Information is the expected code length 

▪ Also called the entropy of the distribution 
▪ More uniform = higher entropy 
▪ More values = higher entropy 
▪ More peaked = lower entropy 
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit



Information Gain

▪ Back to decision trees! 
▪ For each split, compare entropy before and after 

▪ Difference is the information gain 
▪ Problem: there’s more than one distribution after split! 

▪ Solution: use expected entropy, weighted by the number of 
examples



Next Step: Recurse

▪ Now we need to keep growing the tree! 
▪ Two branches are done (why?) 
▪ What to do under “full”? 

▪ See what examples are there…



Example: Learned Tree

▪ Decision tree learned from these 12 examples: 

▪ Substantially simpler than “true” tree 
▪ A more complex hypothesis isn't justified by data 

▪ Also: it’s reasonable, but wrong



Example: Miles Per Gallon
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mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Find the First Split

▪ Look at information gain for 
each attribute 

▪ Note that each attribute is 
correlated with the target! 

▪ What do we split on?



Result: Decision Stump



Second Level



Final Tree



MPG Training 
Error

The test set error is much worse than the 
training set error… 

…why?



Reminder: Overfitting

▪ Overfitting: 
▪ When you stop modeling the patterns in the training data (which 

generalize) 
▪ And start modeling the noise (which doesn’t) 

▪ We had this before: 
▪ Naïve Bayes: needed to smooth 
▪ Perceptron: early stopping



Consider this 
split



Significance of a Split

▪ Starting with: 
▪ Three cars with 4 cylinders, from Asia, with medium HP 
▪ 2 bad MPG 
▪ 1 good MPG 

▪ What do we expect from a three-way split? 
▪ Maybe each example in its own subset? 
▪ Maybe just what we saw in the last slide? 

▪ Probably shouldn’t split if the counts are so small they could be due to chance 

▪ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance* 

▪ Each split will have a significance value, pCHANCE



Keeping it General

▪ Pruning: 
▪ Build the full decision tree 
▪ Begin at the bottom of the tree 
▪ Delete splits in which  
  pCHANCE > MaxPCHANCE 

▪ Continue working upward until 
there are no more prunable 
nodes 

▪ Note: some chance nodes may 
not get pruned because they 
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b



Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree



Regularization

▪ MaxPCHANCE is a regularization parameter 

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE
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Training



Two Ways of Controlling Overfitting

▪ Limit the hypothesis space 
▪ E.g. limit the max depth of trees 
▪ Easier to analyze 

▪ Regularize the hypothesis selection 
▪ E.g. chance cutoff 
▪ Skip most of the hypotheses unless data is clear 
▪ Usually done in practice



Expert Systems

▪ Expert Systems are collections of if-then rules that capture the 
knowledge of a human expert to carry out a specific task 

▪ Rules have certainty factors that give a probability of their 
importance or likelihood 

▪ Rules are independent of one another but can add information that 
other rules use 

▪ Inference Engine decides which rule to apply 

▪ Similar to Decision Trees which can be thought of as a large 
collection of if-then-else statements, but no tree structure is used



Expert System Rules

▪ Sample rules for car mileage 

▪ if model-year is “79to83” then mileage <— “good” 

▪ if model-year is “70to74” then mileage <— “bad” 

▪ if model-year is “75to78” and displacement <— “low” then 
mileage <— “good” 

▪ if model-year is “75to78” and displacement is not “low” then 
mileage <— “bad” 

▪ if weight is “low” then mpg_trending_low <— true



Next Lecture: Large Language Models & Transformers

▪ Large Langauge Models 

▪ Transformers


