CS 188: Artificial Intelligence
Large Language Models and Transformers

Instructor: Oliver Grillmeyer --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Announcements

HW9 is due Tuesday, August 5, 11:59 PM PT

HW10 is due Thursday, August 7, 11:59 PM PT

Project 5 is due Friday, August 8, 11:59 PM PT

gnore assessment on HWs part B, but please show your work
~inal Exam is Wednesday, August 13, 7-10 PM PT

Large Language Model Transformers

Today’s Al

How can | help you today?

@ Message ChatGPT...

ChatGPT

©

A\ Untitled v

What can I help you with today?

Message Claude...

Claude 3 Opus *

Large Language Models

= Feature engineering
= Text tokenization
= Word embeddings
= Deep neural networks

= Autoregressive models
= Self-attention mechanisms

s Transformer architecture

s Multi-class classification

Supervised learning

= Self-supervised learning
= |Instruction tuning

Reinforcement learning
s ... from human feedback (RLHF)

Policy search

= Policy gradient methods

Beam search

Deep Neural Networks

OO gD

B>
}y(
L
>

20X g
)) ()) =0
u)

= Input: some text

= “The dog chased the”

= Output: more text

= Implementation:

= Linear algebra
= How??

.. " ball”

Text Tokenization

GPT-35&GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing

the underlying bytes: ¥

Sequences of characters commonly found next to each other may be grouped
together: 1234567890

Clear Show example

Tokens Characters

o7 252

https://platform.openai.com/tokenizer

Text Tokenization

GPT-35&GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing
the underlying bytes: 666666

Sequences of characters commonly found next to each other may be grouped
together: 1234567890

Text Token IDs

Tokens Characters

o7 252

https://platform.openai.com/tokenizer

Text Tokenization

GPT-35&GPT-4 GPT-3 (Legacy)

[8607, 4339, 2472, 311, 832, 4037, 11, 719, 1063, 1541, 956, 25, 3687,
23936, 382, 35020, 5885, 1093, 100166, 1253, 387, 6859, 1139, 1690,
11460, 8649, 279, 16940, 5943, 25, 11410, 97, 248, 9468, 237, 122, 271,
1542, 45045, 315, 5885, 17037, 1766, 1828, 311, 1855, 1023, 1253, 387,
41141, 3871, 25, 220, 4513, 10961, 16474, 15]

Text Token IDs

Tokens Characters

o7 252

https://platform.openai.com/tokenizer

Word Embeddings

= Input: some text

« “The”

”

s ‘dog

tokenize

tokenize

tokenize

tokenize

= Output: more text

« “ball”

<Jn-tokenize

one-hot

r

[791]
[5679]

[5041]

~N

.—->

embed

embed

embed

embed

un-embed

.\4 <predict

What do word embeddings look like?

= Words cluster by similarity: e

i swim

......

........

ig.ft.com/generative-ai

What do word embeddings look like?

s Features learned in language models:
o NN TEN 1

HEaT
= [NARINEIN

ig.ft.com/generative-ai

What do word embeddings look like?

= Signs of sensible algebra in embedding space:

womarn

king - man + woman = queen

[Efficient estimation of word representations in vector space, Mikolov et al, 2013]

Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Artificial Intelligence

Generative Al exists
because of the transformer

By Visual Storytelling Team and Madhumita Murgia in London SEPTEMBER 11 2023

Large Language Models

= Deep neural networks

= Autoregressive models
= Self-attention mechanisms

s Transformer architectures

s Multi-class classification

Supervised learning

= Self-supervised learning
= |Instruction tuning

Reinforcement learning
s ... from human feedback (RLHF)

Policy search

= Policy gradient methods

Beam search

Autoregressive Models

Autoregressive Models

Predict output one piece at a time (e.g. word, token, pixel, etc.)
Concatenate: input + output

Feed result back in as new input

Repeat

Self-Attention Mechanisms

Self-Attention Mechanisms

= Instead of conditioning on all
input tokens equally...

= Pay more attention to
relevant tokens!

Self-Attention Mechanisms

c-: chewed the

..

........................

1 (HRYESE delicious

...............

ig.ft.com/generative-ai

—

output X
|
+
4
I | |
|—> o |€=—— —> ¢ [|—> o |
attention weight a, a, a,
4 1 ‘)
normalize & softmax
A
I | !
score S, S5 S5
A A A
1 1 1
key query value v, Vs, Vi
t { {
multi—layer perceptron MLP MLP MLP MLP MLP MLP MLP MLP MLP
4 4 4 4 4 4 4 4 4
I I I
mput X, X, X3

output

attention weight

SCO1C

key query value

multi-layer perceptron

input

normalize & softmax

1
y™
1
M
4
MLP MLP MLP

output

| o |- >
attention weight |: a, < I— a,

A

=» pormalize & softmax

A

score S, S,

A a

1 1

key query value A
y -
multi—layer perceptron MLP MLP MLP MLP MLP MLP
A A A A A A

input Xy X5

output

attention weight

SCO1C

key query value

multi-layer perceptron

input

Xy
A
|
>+
1
rb ° | rh—' | Pl o |G
a, < d, > dj
A
|
=> normalize & softmax [<
A
\
$1 S S3
N " N
V V
1 2 3
1 \
MLP || MLP || MP | [MeP | mep [mee | [mep | mep | mep
) 3 } t—— 1
|
X1 X2 X3

Multi-Headed Attention

Multi-Headed Attention

Single-headed >§' Multi-headed
1
MLP
t
X' concatenate
A A
f | \ | | |
softmax(k-q)/d; v Z}l Zéz “3
. ~ I
soft/ I B
MLP SOft/ \
softmax(keq)/d e v
_ f J ke
v
[X] 9 X2 9 X3 ’ \
o] MLP

L
_ i J

[X19X29X39

Head 6:

[CLS]
the
girl

and
the
boy
walked
home

[SEP]

Multi-Headed Attention

previous word

[CLS]
the

— and

the
boy
walked
home

[SEP]

[CLS]
the
girl

and
the
boy
walked
home

[SEP]

[CLS]
the
girl

— the

boy
walked
home

[SEP]

[CLS]
the
girl

and
the
boy
walked
home

[SEP]

[CLS]
the
girl
and
the
boy

—_— home

[SEP]

https://github.com/jessevig/bertviz

Head 4: pronoun references

[CLS]
the
girl

and
the
boy
walked
home

[SEP]
she
took
his
hand
in
hers

[SEP]

[CLS]
the

girl
and
the
boy
walked
home

[SEP]
she
took
his
hand
in
hers

[SEP]

[CLS]
the
girl

and
the
boy
walked
home

[SEP]
she
took
his
hand
in
hers

[SEP]

[CLS]
the

and
the
boy
walked
home

[SEP]
she
took
his
hand

hers

[SEP]

Multi-Headed Attention

[CLS]
the
girl

and
the
boy
walked
home

[SEP]
she
took
his
hand
in
hers

[SEP]

[CLS]
the

girl
and
the
boy
walked
home

[SEP]
she
took
his
hand
in
hers

[SEP]

https://github.com/jessevig/bertviz

Transformer Architecture

Transformer Architecture

A

4 Transformer
| \ Block

MLP 'y
ry |
LayerNorm
A _ Transformer T
Multi-Headed e Transformer
Attention Block
4
LayerNorm 1

|
1 / [Transformer]

Block
A

Transformer Architecture

“pall”
A
, I
— Un-tokenize

4
Un-embed
4
4)
Transformer
\»éo}'/ Block XN
v V\ _ Y Y,
| | { | (| | .) I
O (g é Embed
) 7y
| <A |
SZEH K hod ,
SN (\". Tokenize
) \S=

1 1) ! o \
NN !

R “The dog chased the”

Large Language Models

Supervised learning

= Self-supervised learning
= |Instruction tuning

Reinforcement learning
s ... from human feedback (RLHF)

Policy search

= Policy gradient methods

Beam search

Unsupervised / Self-Supervised Learning

= Do we always need human supervision to learn features?
= Can’t we learn general-purpose features?

= Key hypothesis:
= IF neural network smart enough to predict:

Task 1| « Next frame in video

= Next word in sentence
= Generate realistic images
= Translate” images

= THEN same neural network is ready to do Supervised Learning from a very small

Task 2 | data-set

in

Transfer from Unsupervised Learning

Task 1 = unsupervised

v
.

Task 2 = real task

text

Example Setting

o
AN

Task 1 = predict next word

Task 2 = predict sentiment

Image Pre-Training: Predict Missing Patch

Pre-Training and Fine-Tuning

@Pre-Train: train a large model with a lot of data on a self-
supervised task

» Predict next word / patch of image
» Predict missing word / patch of image
= Predict if two images are related (contrastive learning)

Fine-Tune: continue training the same model on task you care
about

Instruction Tuning

Task 1 = predict next word (learns to mimic human-written text)

» Query: “What is population of Berkeley?”

= Human-like completion: “This question always fascinated me!”

Task 2 = generate helpful text

» Query: “What is population of Berkeley?”
= Helpful completion: “1t is 117,145 as of 2021 census.”

Fine-tune on collected examples of helpful human conversations
Also can use Reinforcement Learning

Reinforcement Learning from Human Feedback

= MDP:

= State: sequence of words seen so far (ex. “what is population of Berkeley? ”)

= 100,0001,000 possible states
= Huge, but can be processed with feature vectors or neural networks

= Action: next word (ex. “tt”, “chair”, “purple”,...)(so 100,000 actions)

. Hard to compute maxQ(s’, a) when max is over 100K actions!

a

= Transition T: easy, just append action word to state words

N\ g

1s

AAY

= S: "My name“ a: s’: "My name is™

s Reward R: ???

= Humans rate model completions (ex. “what is population of Berkeley? ”)
» V"It is 117,145%: +1 “It is 5%: -1 “Destroy all humans“: -1

= Learn a reward model ?{ and use that (model-based RL)

s Commonly use policy search (proximal policy optimization) but looking into Q Learning

Large Language Models

» Featureengineering » SupervisedHearning
» Jexttokenization » Self-supervisedHearning
» Word-embeddings s {Astruetiontuning
» Deepneuralnetworks » Reinforcementlearning
» Auteregressivemodels » —from-humanfeedback{REHF}
» Self-attention-mechanisms s Policy search
» Fransformer-arehitectures = Policy gradient methods

s Multi-classelassification s Beam search

Policy Search

Policy Gradient Methods

1. Initialize policy 7, somehow
2. Estimate policy performance: J(6) = V™(s)

3. Improve policy:
= Hill climbing

= Change 0, evaluate new policy, keep if better
s Gradient ascent

« Estimate V, J(0), change 0 to ascend gradient: 6, ,, = 0, + a V,J(0,)

4. Repeat

Estimating the Policy Gradient™

Define the advantage function: A”(s,a) = O”"(s,a) — V*(s)
Note that expected TD error equals expected advantage:

. Eﬁ[ét] = Eﬁ[rt -)/Vﬂ<SH_1) - V”(St)] = [EAQ”(SP at) - Vﬂ<St)]
Policy Gradient Theorem:

= Let 7 denote a trajectory from an arbitrary episode
|7

. Vol (0) =E,.,, Z A”(S,, at) Velogﬂg(at ‘ St>
=0

Estimate V, J(0):

i

| &
_ V,J(0) = o Z 2 (rt + J/Vﬂ(sm) - V”(st)) Vglogng(at ‘ St)
i=1 t=0

Large Language Models

0 beotureengineeras 0 SheepsicedHegraies
T canizat L Self o | .
L Word ambeddi) . .
= Deepneuralnetworks = Reinforcementlearning
Adtoregressive-models » —from-humanfeedback{REHF)
=« Selfattention-mechanisms s Policy-search
Franstormerarchitectures = Poliey-gradient-methods

s Multi-classelassification s Beam search

Beam Search

L,

Random restarts

Beam Search

Parallel search Beam search

Beam Search

..

..

.............

.............

............

............

......

.............

.............

ig.ft.com/generative-ai

Tracking Progress

gpt-4 [

gpt-4 (no vision)

Exam results (ordered by GPT-3.5 performance)

gpt3.5 W

Estimated percentile lower bound (among test takers)

100% —

= How well Al can
do human tasks

|
R
=)
@

60% —

40% —

20% -

Exam

[OpenAl]

Where to go next?

= Congratulations, you’ve seen the basics of modern Al
= ...and done some amazing work putting it to use!

= How to continue:
= Machine learning: cs189, cs182, stat154, ind. eng. 142
= Data Science: datal00, data 102
= Data Ethics: data c104
= Probability: eel26, stat134
= Optimization: eel27
= Cognitive modeling: cog sci 131
= Machine learning theory: cs281a/b
= Computer vision: cs280
= Deep RL: cs285
= NLP: cs288
= Special topics: cs194-?
= ...and more; ask if you’re interested

Special Thanks

Ketrina Yim
CS188 Artist

Il

