CS 188: Artificial Intelligence Large Language Models and Transformers

Instructor: Oliver Grillmeyer --- University of California, Berkeley

Announcements

- HW9 is due Tuesday, August 5, 11:59 PM PT
- HW10 is due Thursday, August 7, 11:59 PM PT
- Project 5 is due Friday, August 8, 11:59 PM PT
- Ignore assessment on HWs part B, but please show your work
- Final Exam is Wednesday, August 13, 7-10 PM PT

Large Language Model Transformers

Today's AI

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architecture
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Deep Neural Networks

- Input: some text
 - "The dog chased the"

- Output: more text
 - ... " ball"

- Implementation:
 - Linear algebra
 - How??

Text Tokenization

GPT-3.5 & GPT-4

GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: \P

Sequences of characters commonly found next to each other may be grouped together: 1234567890

Clear

Show example

Tokens

Characters

57

252

Text Tokenization

```
Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: **COCCC**

Sequences of characters commonly found next to each other may be grouped together: 1234567890

Text Token IDs
```

Tokens Characters

57 252

Text Tokenization

GPT-3.5 & GPT-4

GPT-3 (Legacy)

```
[8607, 4339, 2472, 311, 832, 4037, 11, 719, 1063, 1541, 956, 25, 3687, 23936, 382, 35020, 5885, 1093, 100166, 1253, 387, 6859, 1139, 1690, 11460, 8649, 279, 16940, 5943, 25, 11410, 97, 248, 9468, 237, 122, 271, 1542, 45045, 315, 5885, 17037, 1766, 1828, 311, 1855, 1023, 1253, 387, 41141, 3871, 25, 220, 4513, 10961, 16474, 15]
```

Text

Token IDs

Tokens Characters

57 252

Word Embeddings

one-hot

[791]

[5679]

[62920]

[279]

Input: some text

- " dog"
- " chased"
- " the"

embed embed embed embed

Output: more text

" ball"

un-tokenize

[5041]

un-embed

What do word embeddings look like?

Words cluster by similarity:

What do word embeddings look like?

Features learned in language models:

What do word embeddings look like?

Signs of sensible algebra in embedding space:

[Efficient estimation of word representations in vector space, Mikolov et al, 2013]

Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Artificial Intelligence

Generative AI exists because of the transformer

is how

it

works

By Visual Storytelling Team and Madhumita Murgia in London SEPTEMBER 11 2023

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Autoregressive Models

Autoregressive Models

Predict output one piece at a time (e.g. word, token, pixel, etc.)

Concatenate: input + output

Feed result back in as new input

Repeat

Self-Attention Mechanisms

Self-Attention Mechanisms

 Instead of conditioning on all input tokens equally...

Pay more attention to relevant tokens!

Self-Attention Mechanisms

Single-headed

Head 6: previous word

Head 4: pronoun references

[CLS]	[CLS]	[CLS]	[CLS]	[CLS]	[CLS]
the	the	the	the	the	the
girl	girl	girl	girl	girl	girl
and	and	and	and	and	and
the	the	the	the	the	the
boy	boy	boy	boy	boy	boy
walked	walked	walked	walked	walked	walked
home	home	home	home	home	home
. //		. //		. /	
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]
she	she	she	she	she	she
took	took	took	took	took	took
his	his	his	his	his	his
hand	hand	hand	hand	hand	hand
in	in	in	in	in	in
hers	hers	hers	hers	hers	hers
	\ .				
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]

Transformer Architecture

Transformer Architecture

Transformer Architecture

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Unsupervised / Self-Supervised Learning

- Do we always need human supervision to learn features?
- Can't we learn general-purpose features?
- Key hypothesis:
 - IF neural network smart enough to predict:

Task 1

- Next frame in video
- Next word in sentence
- Generate realistic images
- ``Translate'' images
- **...**
- THEN same neural network is ready to do Supervised Learning from a very small
- Task 2 data-set

Transfer from Unsupervised Learning

Example Setting

Image Pre-Training: Predict Missing Patch

Pre-Training and Fine-Tuning

- Pre-Train: train a large model with a lot of data on a self-supervised task
 - Predict next word / patch of image
 - Predict missing word / patch of image
 - Predict if two images are related (contrastive learning)
- Fine-Tune: continue training the same model on task you care about

Instruction Tuning

- Task 1 = predict next word (learns to mimic human-written text)
 - Query: "What is population of Berkeley?"
 - Human-like completion: "This question always fascinated me!"
- Task 2 = generate **helpful** text
 - Query: "What is population of Berkeley?"
 - Helpful completion: "It is 117,145 as of 2021 census."
- Fine-tune on collected examples of helpful human conversations
- Also can use Reinforcement Learning

Reinforcement Learning from Human Feedback

MDP:

- State: sequence of words seen so far (ex. "What is population of Berkeley? ")
 - 100,000^{1,000} possible states
 - Huge, but can be processed with feature vectors or neural networks
- Action: next word (ex. "It", "chair", "purple", ...) (so 100,000 actions)
 - Hard to compute $\max_{a} Q(s', a)$ when max is over 100K actions!
- Transition T: easy, just append action word to state words

```
■ S: "My name" a: "is" S': "My name is"
```

- Reward R: ???
 - Humans rate model completions (ex. "What is population of Berkeley? ")

```
■ "It is 117,145": +1 "It is 5": -1 "Destroy all humans": -1
```

- Learn a reward model \hat{R} and use that (model-based RL)
- Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Policy Search

Policy Gradient Methods

- 1. Initialize policy π_{θ} somehow
- 2. Estimate policy performance: $J(\theta) = V^{\pi_{\theta}}(s_0)$
- 3. Improve policy:
 - Hill climbing
 - Change θ , evaluate new policy, keep if better
 - Gradient ascent
 - Estimate $\nabla_{\theta} J(\theta)$, change θ to ascend gradient: $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta_k)$
- 4. Repeat

Estimating the Policy Gradient*

- Define the advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- Note that expected TD error equals expected advantage:

$$\blacksquare \mathbb{E}_{\pi} \left[\delta_{t} \right] = \mathbb{E}_{\pi} \left[r_{t} + \gamma V^{\pi} \left(s_{t+1} \right) - V^{\pi} \left(s_{t} \right) \right] = \mathbb{E}_{\pi} \left[Q^{\pi} \left(s_{t}, a_{t} \right) - V^{\pi} \left(s_{t} \right) \right]$$

- Policy Gradient Theorem:
 - Let τ denote a trajectory from an arbitrary episode

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{|\tau|} A^{\pi}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right]$$

• Estimate $\nabla_{\theta} J(\theta)$:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\left|\tau_{i}\right|} \left(r_{t} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_{t})\right) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t})$$

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Beam Search

Random restarts

Beam Search

Beam Search

Tracking Progress

How well AI can do human tasks

Where to go next?

Congratulations, you've seen the basics of modern Al

... and done some amazing work putting it to use!

How to continue:

■ Machine learning: cs189, cs182, stat154, ind. eng. 142

■ Data Science: data100, data 102

Data Ethics: data c104

■ Probability: ee126, stat134

Optimization: ee127

Cognitive modeling: cog sci 131

Machine learning theory: cs281a/b

Computer vision: cs280

Deep RL: cs285

■ NLP: cs288

Special topics: cs194-?

... and more; ask if you're interested

Special Thanks

Ketrina Yim CS188 Artist

