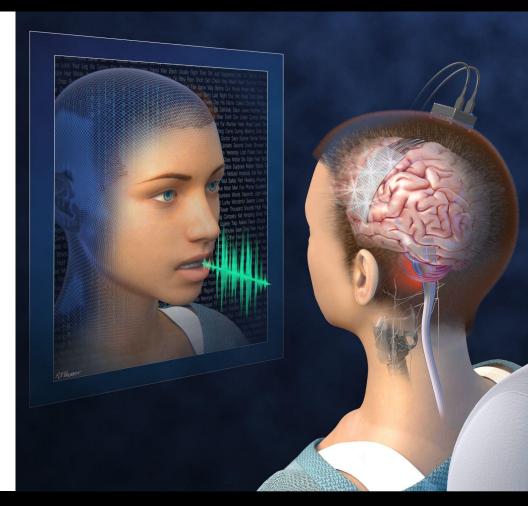
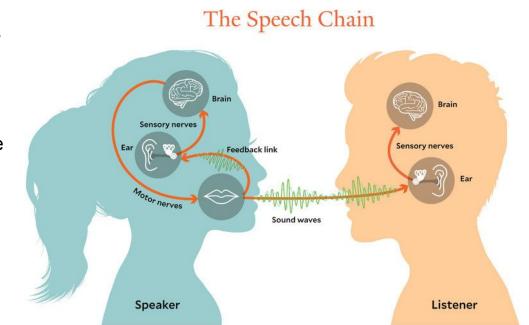
Speech neuroprostheses for restoring naturalistic communication and future prospects

Cheol Jun Cho



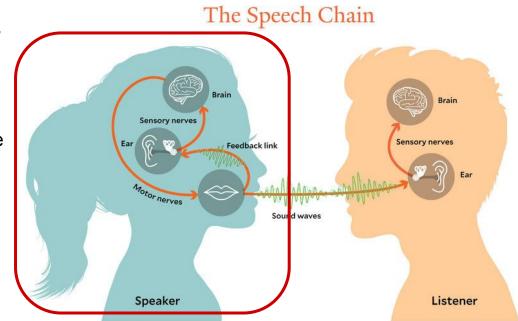
Speech is a natural and effective tool of human communication

- Evolved for more than **100,000 years**.
- More than 7,000 languages exist around the world.
- On average, individuals speak over 15,000 words per day.
- One of the most complicated cognitive processes of the human.

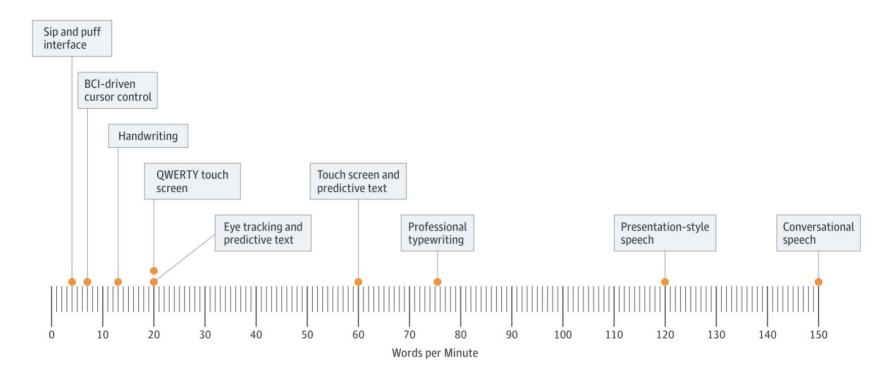


Speech is a natural and effective tool of human communication

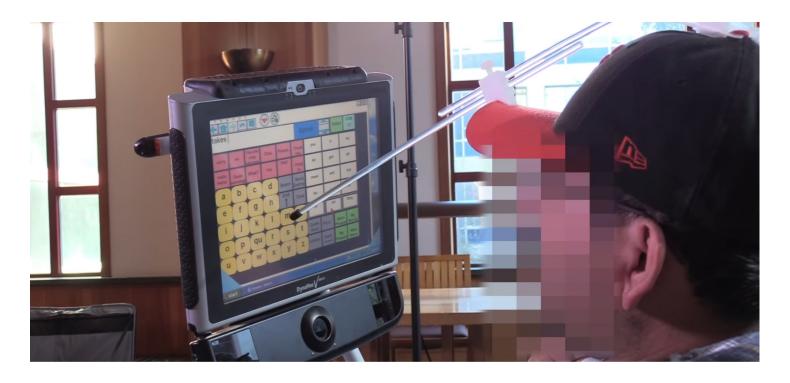
- Evolved for more than 100,000 years.
- More than 7,000 languages exist around the world.
- On average, individuals speak over 15,000 words per day.
- One of the most complicated cognitive processes of the human.
- Impairments of the ability to speak significantly affect quality of life.



Current assistive communication technology is much slower than speech

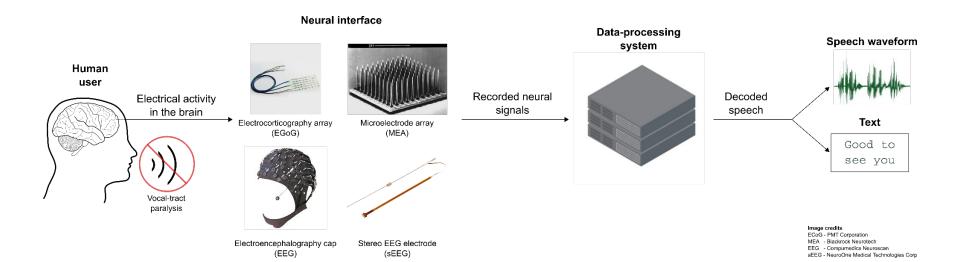


Standard of care for assistive communication

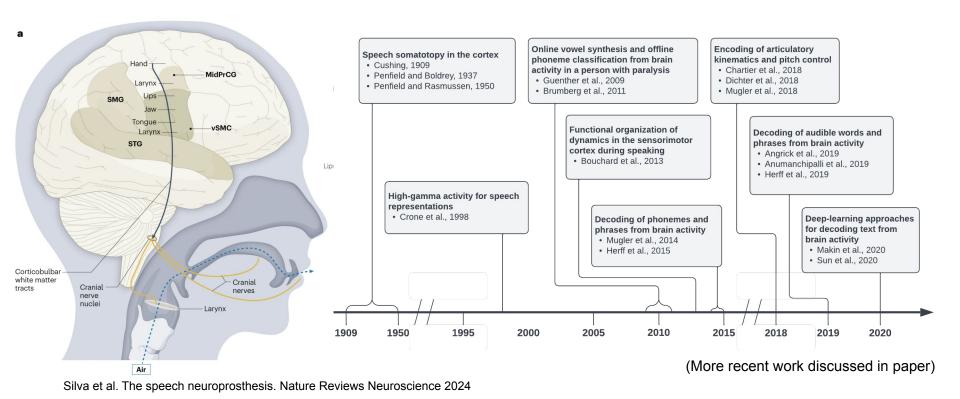


Operates at a speed of ~5-15 words per minute

A brain-computer interface to decode speech from brain activity could help persons with paralysis



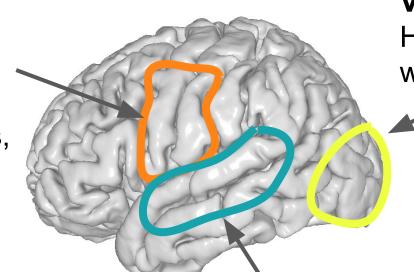
Over a century of research characterizing speech and motor control in the brain



Our brains act as a control center

Motor cortex:

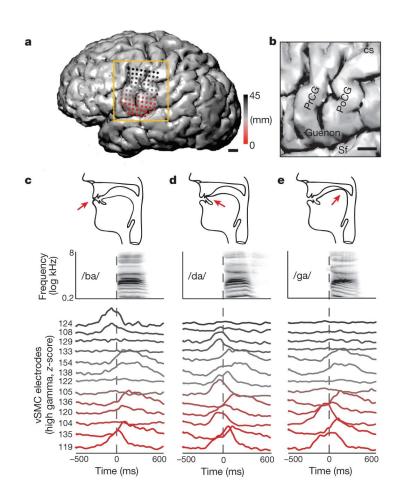
Controls many of our voluntary movements (arms, mouth, and more)

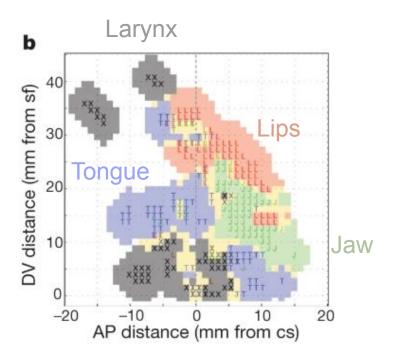


Visual cortex:

Helps interpret what our eyes see

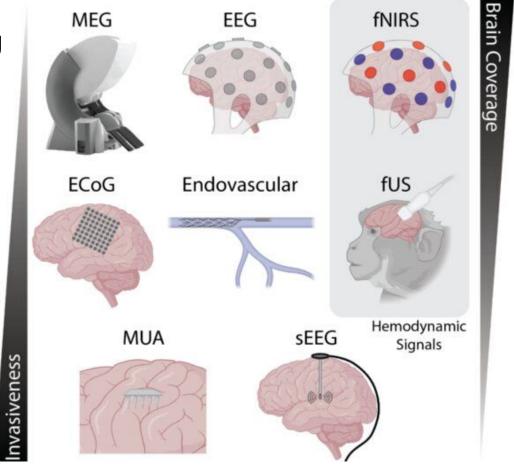
Temporal lobe: Plays a role in understanding what we hear



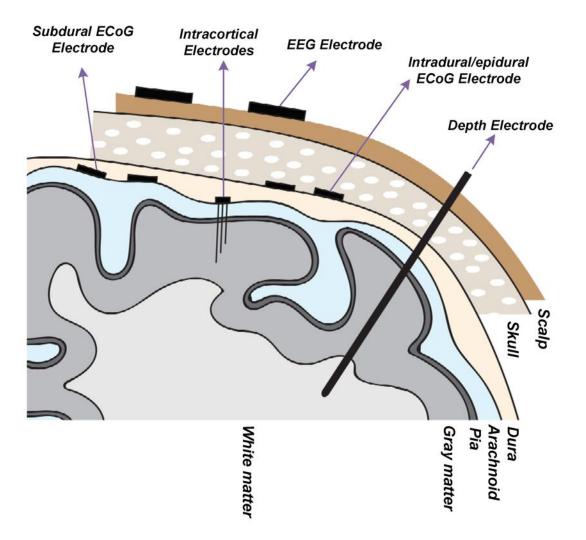


Bouchard et al. (2013)

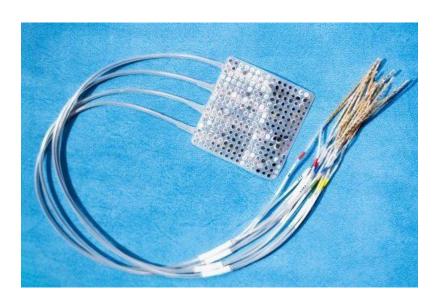
Types of neural recording device

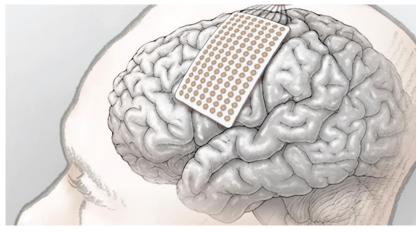


Edelman et al., Non-Invasive Brain-Computer Interfaces: State of the Art and Trends. 2024



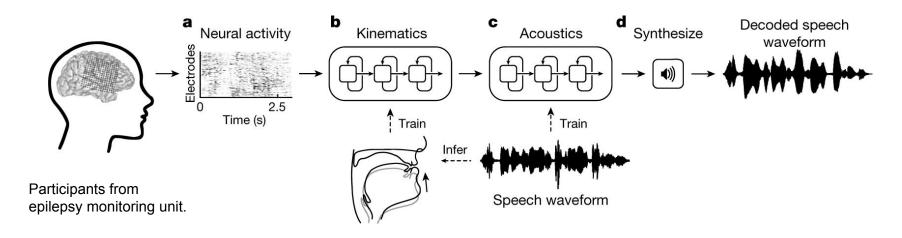
Electrocorticography (ECoG) to record electrical signals from the brain surface

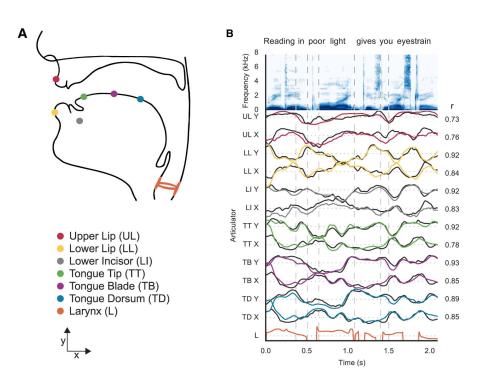




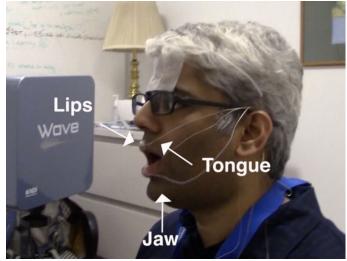
12

Intelligible and naturalistic speech decoding from brain signals from able speakers

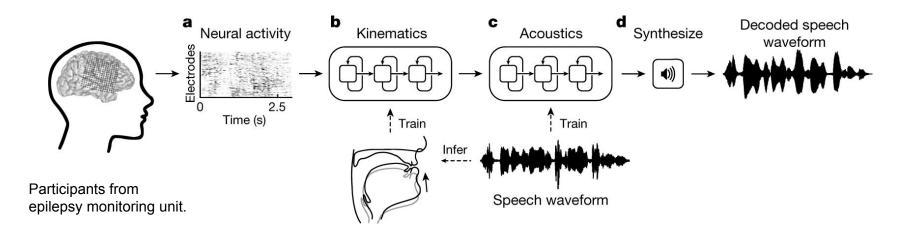




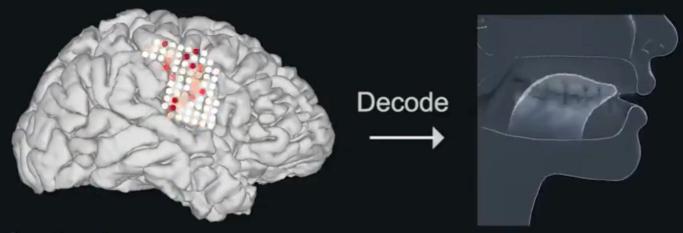
Chartier, Anumanchipalli et al. (2018)



Intelligible and naturalistic speech decoding from brain signals from able speakers



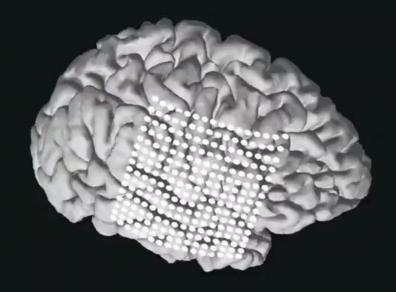
Speech synthesized from brain activity



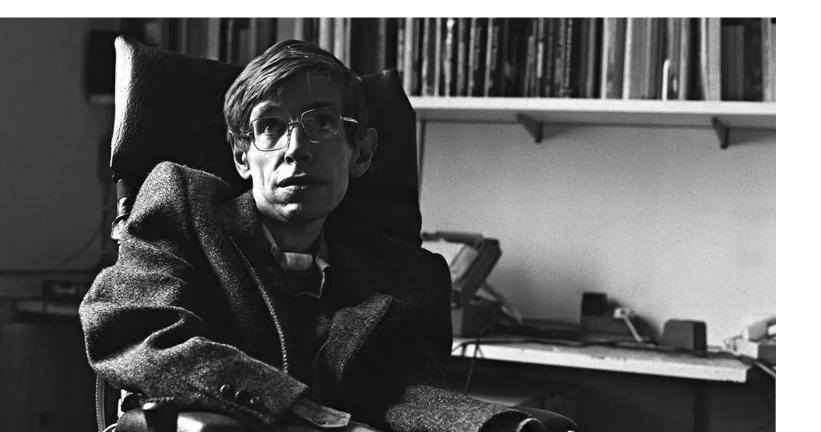
Synthesize

"The proof you are seeking is not available in books."

Speech synthesized from brain activity

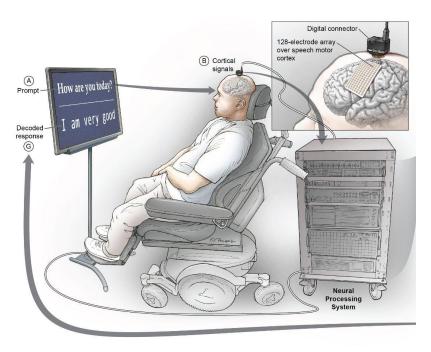


"Although I cannot move and I have to speak through a computer, in my mind I am free."



Hawking

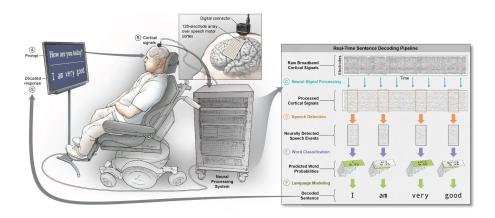
Restoring naturalistic communication ability of patients with severe paralysis

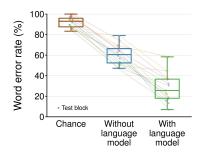


BRAVO: **B**Cl **R**estoration of **A**rm and **Vo**ice

 Clinical trial for long-term communication and movement restoration

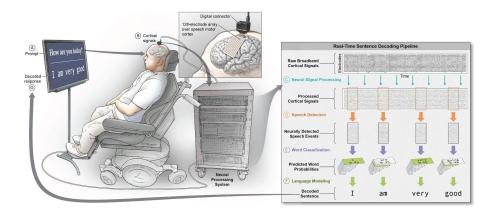
Word detection and classification (50 words)

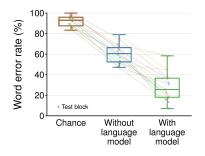




Moses, Metzger, Liu, et al. (2021)

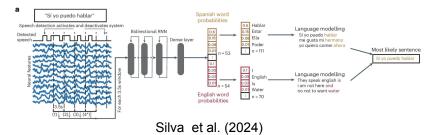
Word detection and classification (50 words)



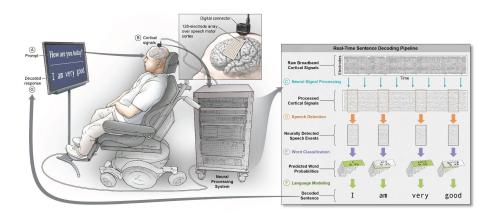


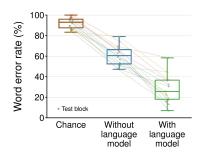
Moses, Metzger, Liu, et al. (2021)

Multilingual: English + Spanish



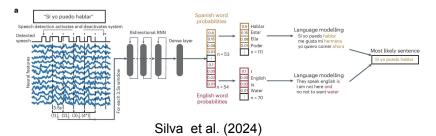
Word detection and classification (50 words)



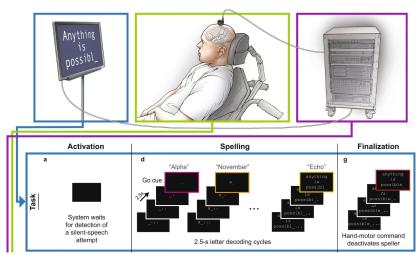


Moses, Metzger, Liu, et al. (2021)

Multilingual: English + Spanish



Speller: character decoding



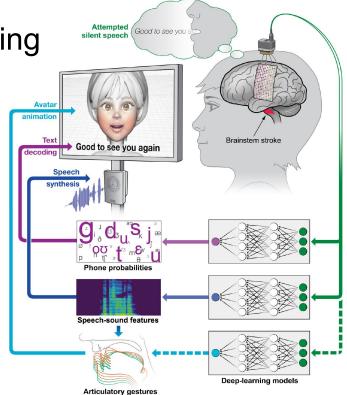
Metzger, Liu, Moses, et al. (2022)

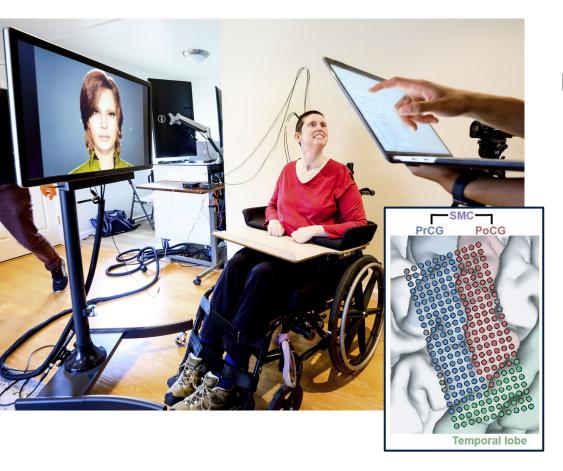
High-performance BCI system for decoding extensive and multimodal speech

+ 1000 vocabulary

Direct synthesis to voice

Embodied decoding through avatar





Participant: Ann

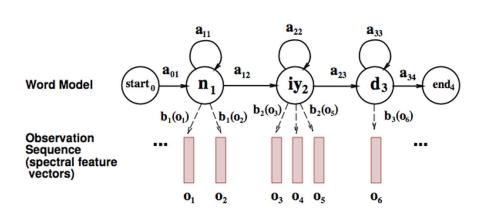
- Severe paralysis by brainstem stroke more than 20 years ago.
- Cannot speak or vocalize sounds.
- Cannot control orofacial movements.
- Attempting to mime a sentence prompted on the screen

Challenge: ground truth behaviors are often not observable in participants with severe paralysis

- Especially, **timing information ("when")** is not accessible for participants who have minimal or no residual speech ability to vocalize.

Similar setting as automatic speech recognition (ASR)

- ASR models (e.g., HMM): inferring temporally unaligned words from acoustic features
- Brain decoding: inferring temporally unaligned words from neural (brain) features

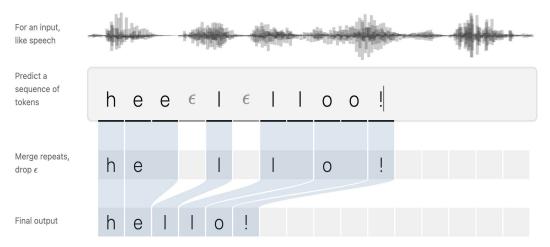




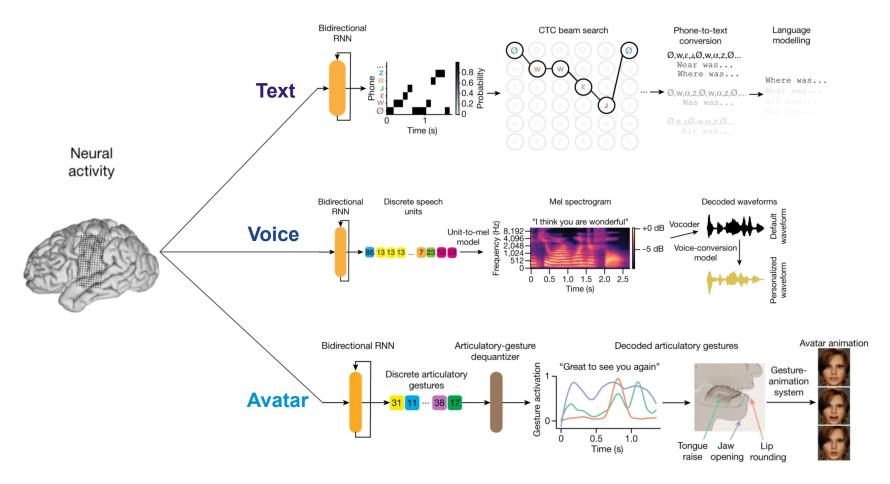


$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$
$$= 0.0006$$

Connectionist temporal classification (CTC) for training without time-aligned targets

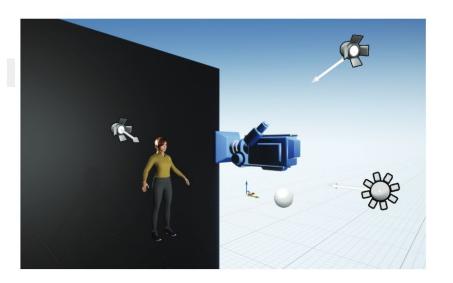


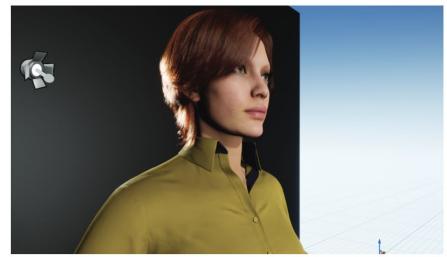
- CTC learns to dynamically infer alignment between frame-wise probabilities to unaligned target sequence.
- Successfully applied to several brain decoding studies (Sun et al., 2020), including clinical applications (Metzger et al., 2023; Willet et al., 2023).



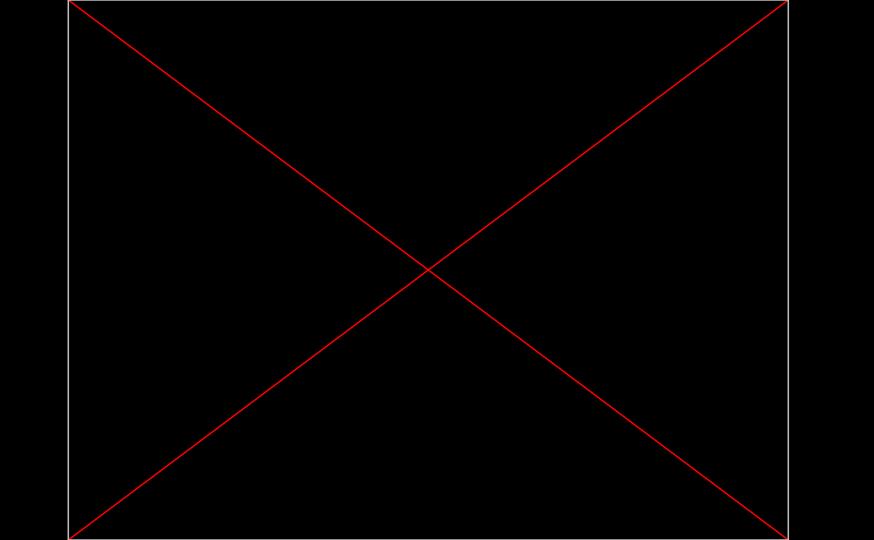
Metzger*, Littlejohn*, Silva*, Moses*, Seaton*, et al., A high-performance neuroprosthesis for speech decoding and avatar control. Nature 2023

Enabling virtual embodiment + interaction





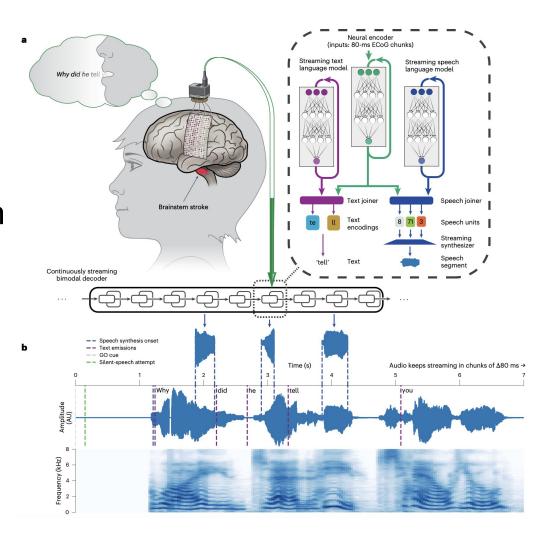
Virtual environment for avatar decoding



CTC decoding approach incurs a long delay

 Decoder synthesizes predicted speech based on an 8 second window, resulting in a long delay time

A streaming brain-to-voice neuroprosthesis to restore naturalistic communication

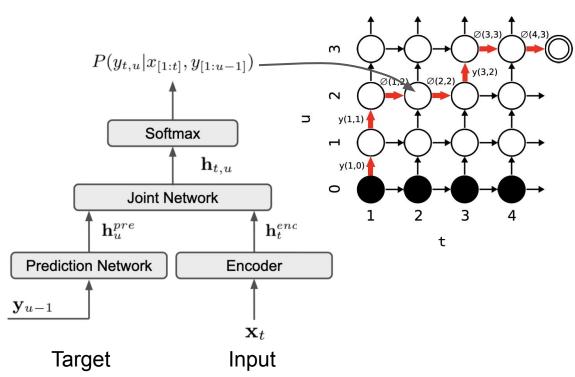


Littlejohn*, Cho*, ..., Chang*, and Anumanchipalli*, Nature Neuroscience, 2025

Limitations of the previous CTC for streaming decoding

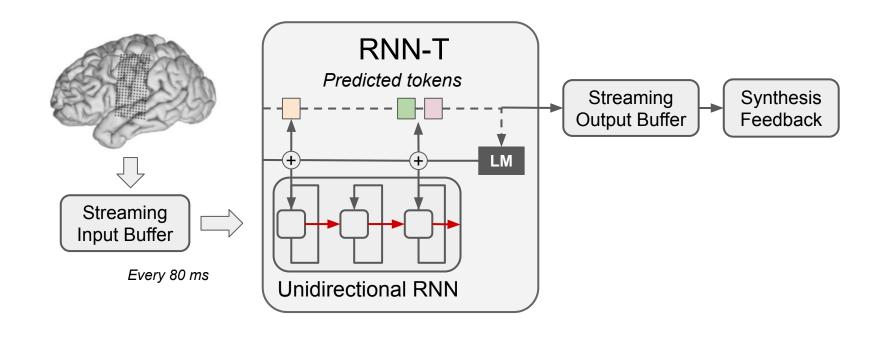
- CTC lacks an architectural mechanism for streaming inference.
- CTC assumes conditional independence between output tokens.
 - No explicit language prior in training, which is crucial for accurate inference.
 - Thus, it typically requires a large window of inputs.

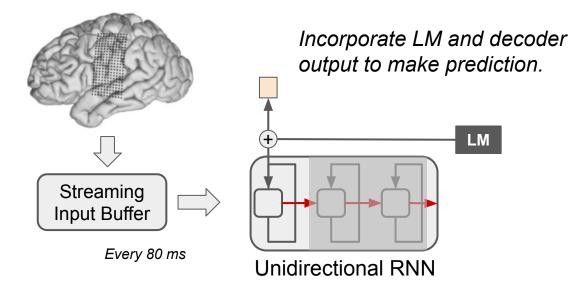
Recurrent neural network-Transducer (RNN-T)

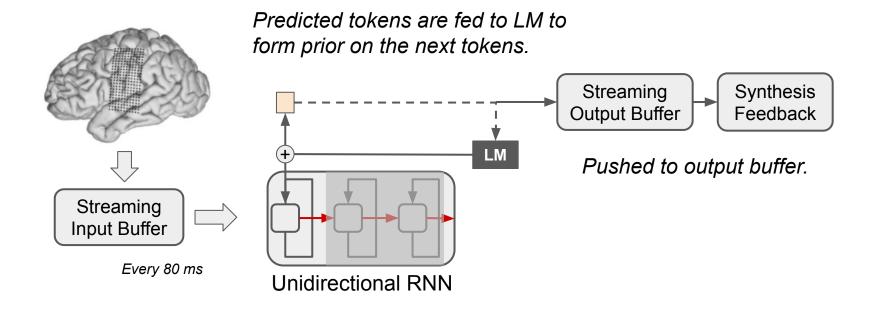


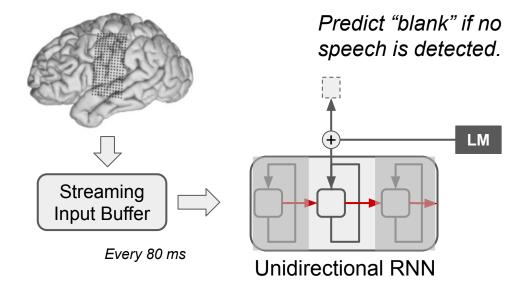
- A joint language model (predictor) imposes prior on the incremental prediction.
- A dynamic path search on the alignment grid during training and inference.

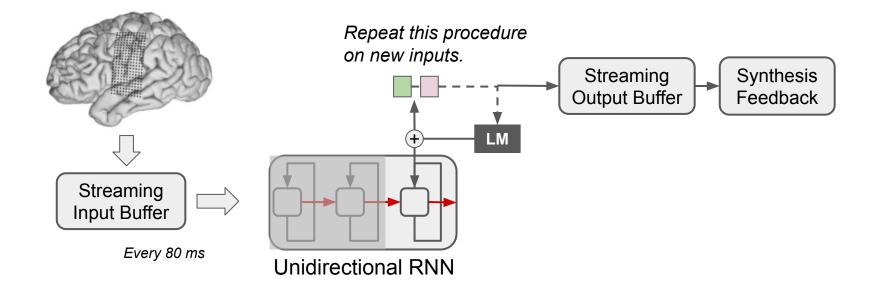
A streamable speech BCI framework via RNN-T



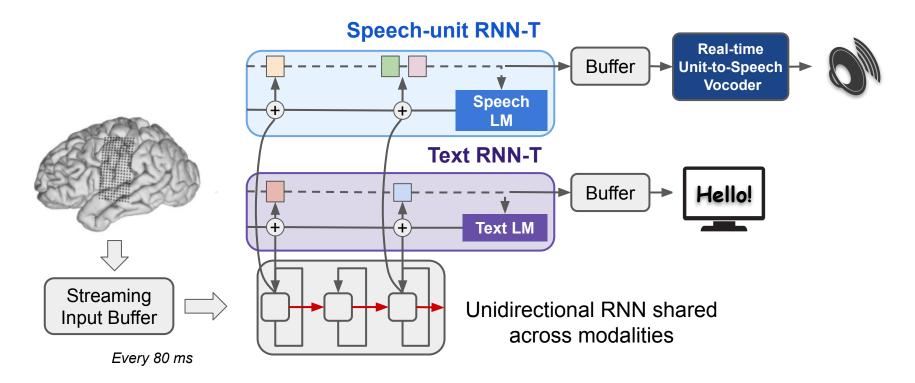




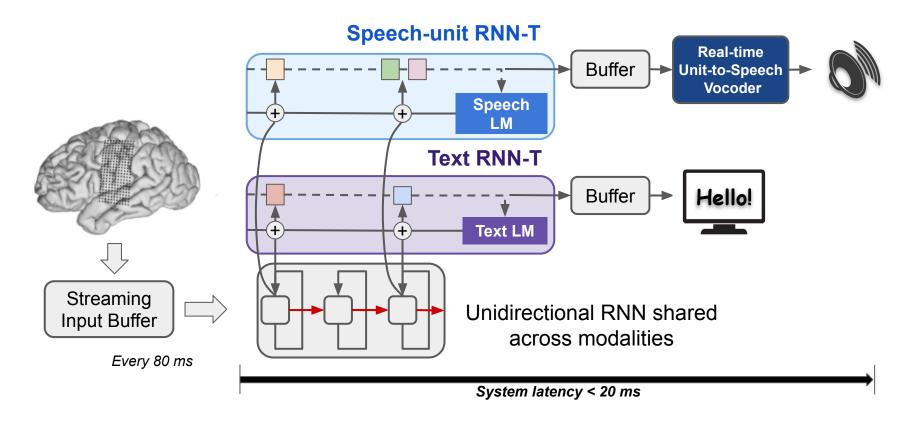




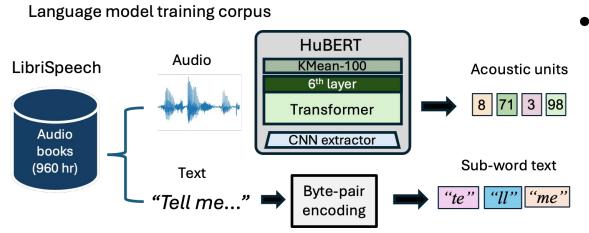
Multimodal RNN-T neural decoder: speech & text joint decoding



Multimodal RNN-T neural decoder: speech & text joint decoding



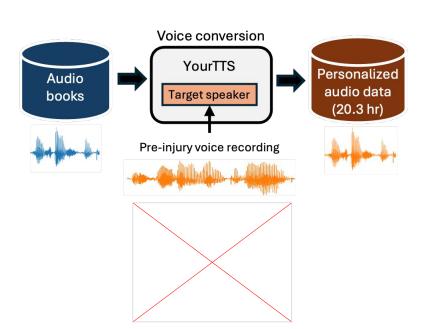
Pretraining LM on a large speech corpus to overcome the limited coverage of speech



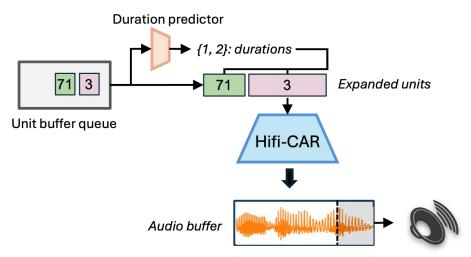
 RNN-T LMs were pretrained using a large speech audio dataset.

A personalized streamable synthesizer that restores participant's original voice

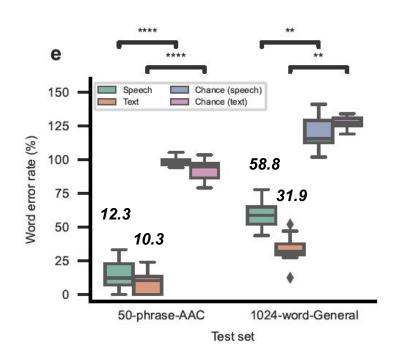
Synthesizer training corpus

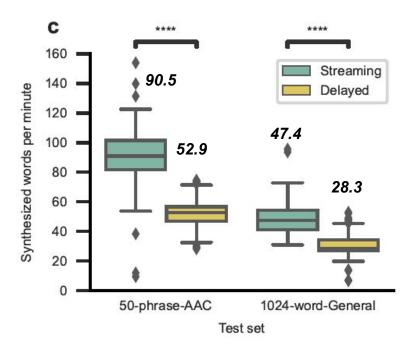


Streaming synthesizer

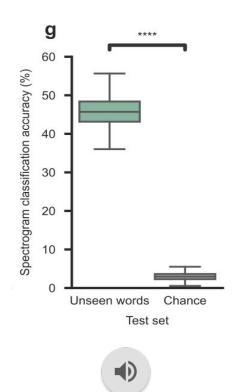


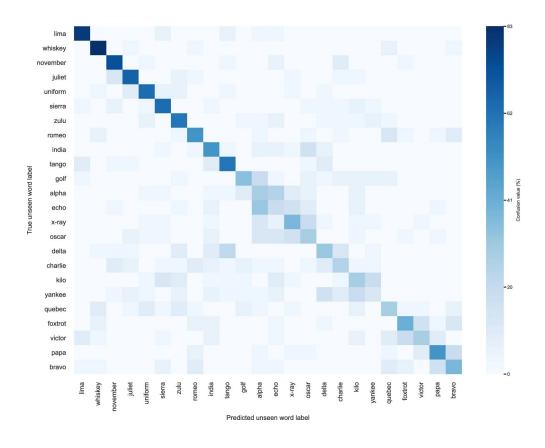
Fast streaming intelligible speech synthesis and text decoding





Generalization to rare unseens words





Future of communication neuroprostheses

- 1) Wireless, low footprint high-density devices
- Closed-loop speech/avatar decoding
- 3) Universal vocal tract models grounded in speech science
- 4) Complete virtual embodiment (body / hand / voice)

The Ideal Speech BCI

Performance

- 80 words per min
- > <5% word error rate
- Easy to use by patient, caregivers, and communication partners

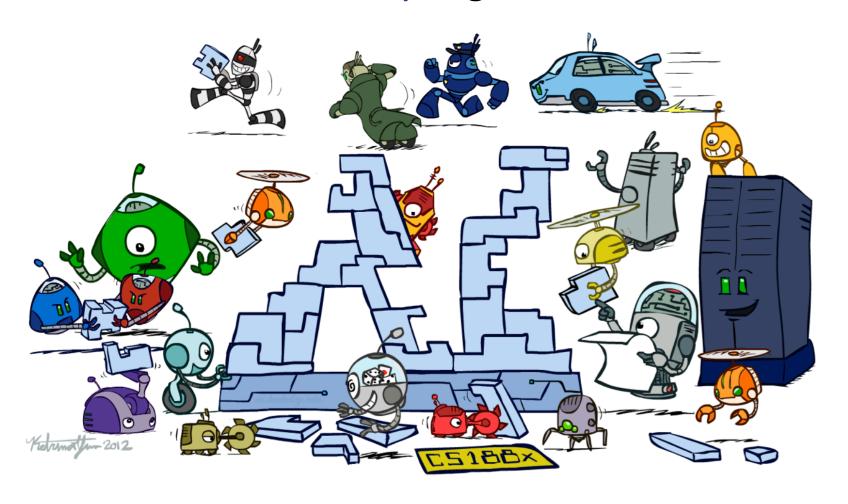
Robustness

- Easy and fast calibration
- Long-term stability
- Can be used across multiple indications (e.g., ALS, stroke, and others)
- Performance retained in different settings (indoor and outdoor, daytime and nighttime) and over disease progression
- Safeguards to maintain privacy of personal data

Safety

- Fully implantable, wireless
- Safe and easy to implant and explant

CS 188: Artificial Intelligence Fuzzy Logic



Instructor: Oliver Grillmeyer --- University of California, Berkeley

Announcements

- HW10 is due Thursday, August 7, 11:59 PM PT
- Project 5 is due Friday, August 8, 11:59 PM PT
- Ignore assessment on HWs part B, but please show your work
- Final Exam is Wednesday, August 13, 7-10 PM PT in 2050 VLSB
- Course evaluations open now

Fuzzy Logic

- History
- Fuzzy Sets
- Fuzzy Expert Systems

History

- Influenced by work in Multivalued Logic Jan Lukasiewicz, 1920s
- Lotfi Zadeh (U.C. Berkeley professor) developed math for Fuzzy Sets, 1965
- Fuzzy Controller for steam engine, mid 1970s
- Fuzzy Expert System for mixing and grinding cement in cement kiln, 1982
- Fuzzy Controlled subway system in Japan, 1986
- Fuzzy commercial and industrial systems counts:

1986: 8

1991: 300

1993: 1500

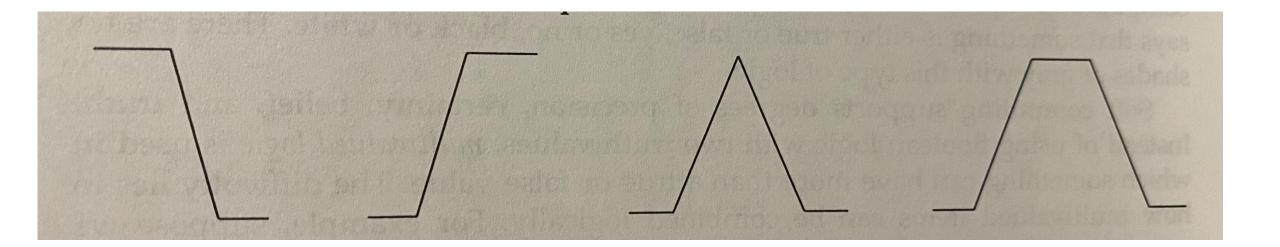
Fuzzy Sets

- Represent noncrisp values like Tall, Fast, Comfortable
- These have degrees of fit represented as Membership Grades
- Tall Fuzzy Set

<u>Actual Height</u>	Membership Grade	
<= 5'3"	0	
5'6"	0.25	
5'9"	0.5	
6'	0.75	
>=6'3"	1	

Fuzzy Set Functions

- Fuzzy Sets represented as functions
- Named after their shape: L, Γ, Λ, Π ('L', Gamma, Lambda, Pi)



Tall Fuzzy Set

- We can represent membership grade (degrees of fit) with functions
- Tall Fuzzy Set

Actual Height	Membership Grade
h <= 5'3"	0
5'3" <= h <= 6'3"	(h - 5'3") / 12"
h >= 6'3"	1

Linguistic Variables and Hedges

- Linguistic Variables represented as fuzzy sets, e.g., height has value Tall
- Hedges modify Linguistic Variables, e.g., Very, Somewhat, More or Less
- Very can be represented by squaring the Membership Grade of Tall

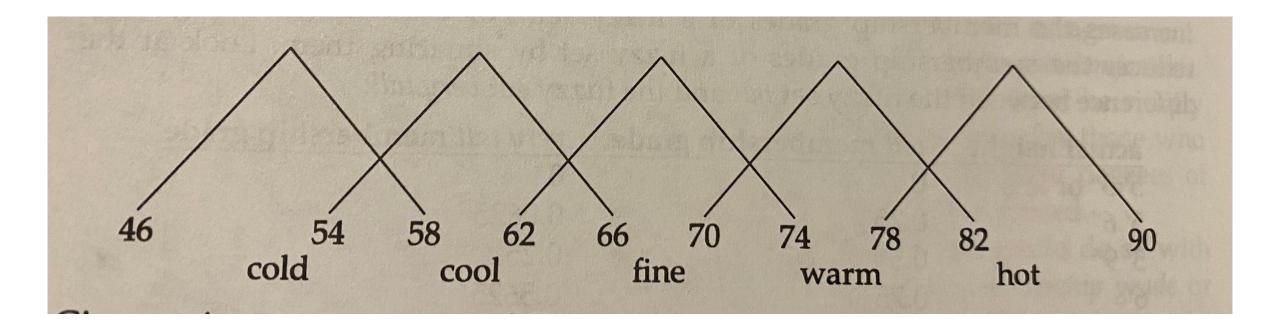
<u> Actual Height</u>	<u> Tall Membership Grade</u>	Very Tall Membership Grade
<= 5'3"	0	0
5'6"	0.25	0.0625
5'9"	0.5	0.25
6'	0.75	0.5625
>=6'3"	1	1

Fuzzy Sets for a Fan Controller

- Linguistic Variables and their values
 - temperature: Cold, Cool, Fine, Warm, Hot
 - humidity: Low, Medium, High, Very High
 - fan-speed: Slow, Medium, Fast

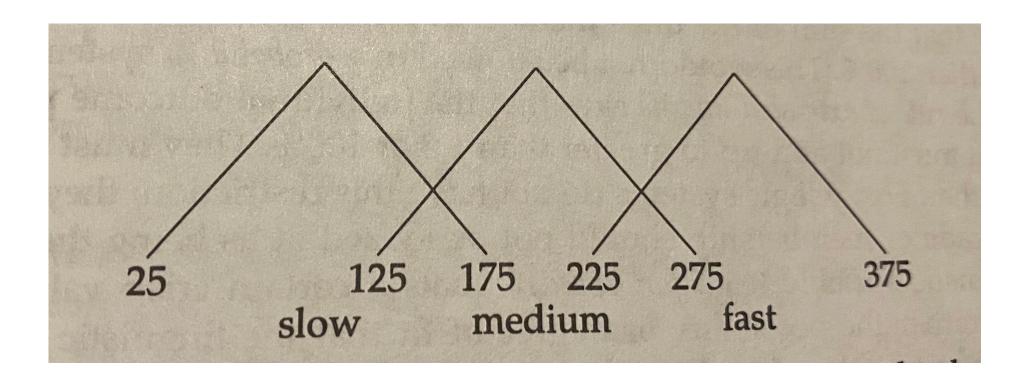
Temperature Fuzzy Set

- Linguistic Variables and their values
 - temperature: Cold, Cool, Fine, Warm, Hot
- Overlapping sets is important



Fan-Speed Fuzzy Set

- Linguistic Variables and their values
 - fan-speed: Slow, Medium, Fast

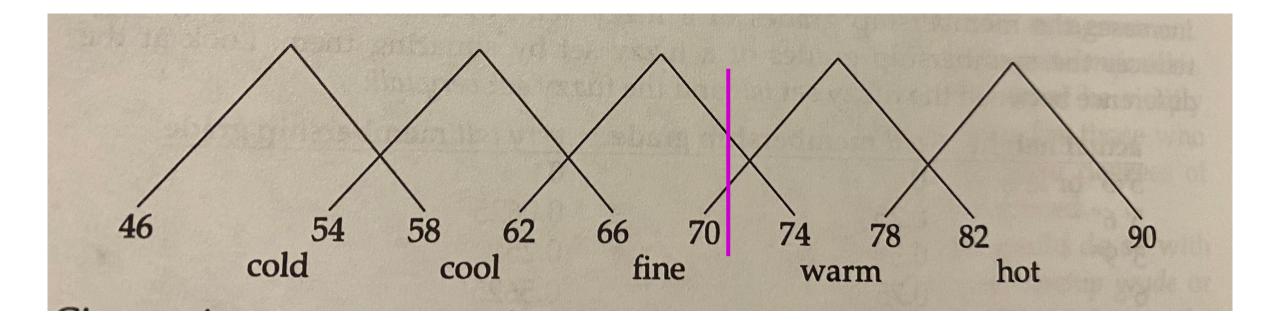


Fuzzy Controller Process

- Get crisp inputs (typically from sensors)
- Fuzzify crisp inputs
- Match fuzzy inputs to rules
- Combine rules according to membership grades to generate fuzzy output sets
- Defuzzify output sets to get crisp values
- Apply crisp values to the system being controlled

Fuzzify Temperature Crisp Input

- Assume: actual temperature is 71 degrees
- Match with temperature fuzzy sets: Fine and Warm
 - Membership grade in *Fine* is 0.5
 - Membership grade in Warm is 0.167



Fuzzify Humidity

- Assume: humidity is 65%
- Match with humidity fuzzy sets: Medium and High
 - Membership grade in *Medium* is 0.8
 - Membership grade in *High* is 0.3

Fuzzy Rules

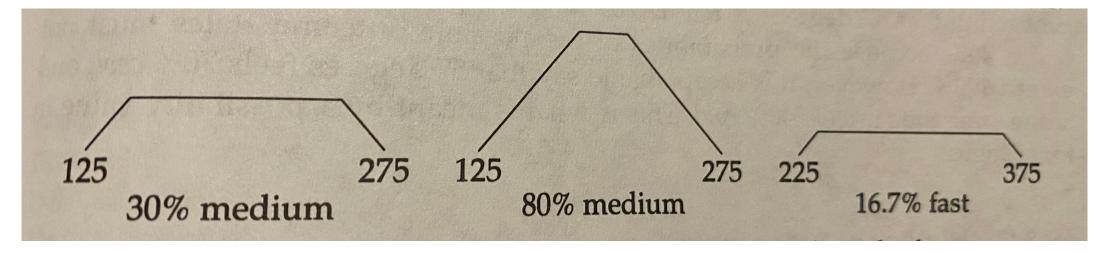
- Combining Rule-based system with Fuzzy Logic and Fuzzy Sets
- Can represent statements with a degree of imprecision
 - if temperature is Cool, then set fan-speed to Slow
 - if temperature is Warm, then set fan-speed to Fast
 - if temperature is Fine and humidity is High, then set fan-speed to Medium
 - if temperature is Warm or humidity is Medium, then set fan-speed to Medium

Match Fuzzy Inputs to Rule Conditions

- temperature is 0.5 Fine and 0.167 Warm
- humidity is 0.8 Medium and 0.3 High
- Match against condition of rules according to degree of fit
 - 0: if temperature is Cool
 - 0.167: if *temperature* is *Warm*
 - min(0.5, 0.3): if temperature is Fine and humidity is High
 - max(0.167, 0.8): if temperature is Warm or humidity is Medium

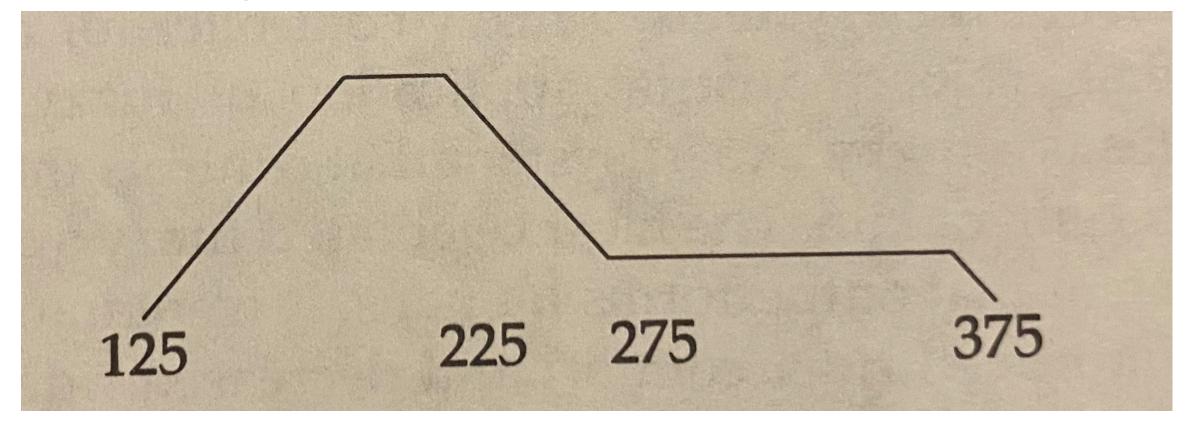
Apply Rule Actions

- Apply membership grade from condition to weigh effect of action
 - if temperature is Warm -> set fan-speed to Fast (16.7%)
 - if temperature is Fine and humidity is High -> set fan-speed to Medium
 (30%)
 - if temperature is Warm or humidity is Medium -> set fan-speed to Medium (80%)



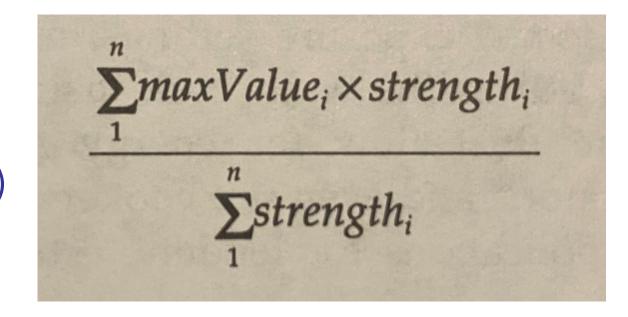
Combine Rule Actions

- Create new fuzzy sets representing weighted applicable actions
 - Sum weights or take maximum (maximum used here)



Defuzzify Output Fuzzy Set

- Produce a crisp value from the Fuzzy Set
- Different methods:
 - Center of mass or Center of gravity
 - Average of Maximums
 - max of *Medium*: 200 RPM
 - max of Fast: 300 RPM
- \bullet (200 x 0.8 + 300 x 0.167)/(0.8 + 0.167)
- 217.27 RPM



Possibility vs Probability

- Recall that our membership grades for 65% humidity were 0.8 Medium and 0.3 High
- Also our output sets were 80%, 30%, and 16.7%
- These exceed 100%
- Problem for probability
- Okay in Fuzzy Logic because they are Possibilities
- Don't say probability of 65% humidity = medium is 80% and high is 30%
- Instead say 65% humidity feels like 80% medium humidity and 30% high
- Temperature example: 57 degrees feels 50% Cool and 17% Cold