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Oracles in Quantum Computation

Ben Schmid, Jesse Dhillon, Lin Xu
Introduction
The promise of fast computation of traditionally intractable problems such as number factoring, calculating eigenvalues, and searching databases have made Quantum Computation and Information Theory hot topics of investigation. Current research in quantum computing has been generally focused on various physical schemes, and implementations of a number of canonical circuits. Most of these circuits can be classified as oracle based, i.e. such algorithms assume the existence of a black box, which provides a binary output: does the given input satisfy the problem? Here, we describe three criteria that can be applied to any implementation of oracles and survey some physical implementations, with particular emphasis on the scaling issues of each. 
First, we will discuss three canonical algorithms for which implementations have been widely attempted: Deutsch-Jozsa, Grover’s search algorithm, and Bernstein-Vazirani. These are all oracle based quantum algorithms. Shore’s algorithm, the other quantum algorithm that is widely attempted, does not require an oracle, and thus is not susceptible to many of the issues we discuss here. Still, these algorithms promise to provide a highly significant, often exponential speedup compared to the best classical solutions to the same problems. We compare the computational complexity of each via the number of executions of the oracle; classically, for example, O(N) calls to the oracle are required in Deutsch-Jozsa, but only a single call is required in the quantum algorithm. 

This illustrates one chief advantage of an oracle; computational complexity comparisons are easy to make by simply counting the number of oracle invocations made. It also simplifies algorithms; a black box oracle provides an abstraction, allowing unencumbered analysis of complexity and implementation issues. In this paper we will explicitly consider the issues involved in implementation of oracles.
Canonical oracle based algorithms

Deutsch-Jozsa
A simple promise problem - one which shows the potential advantage of quantum algorithms - is the Deutsch problem.  Consider the class of functions which take an argument of one bit, and return one bit.  The truth table of all such functions is easily constructed: 
	X
	f0
	f1
	f2
	f3

	0
	0
	0
	1
	1

	1
	0
	1
	0
	1


If one imagines executing the functions on a random string of bits sequentially, it is clear that for the functions f0 and f3, the output will always be the same, while for f1 and f2, half the time the output is 0 and the other half, 1.  Thus the function pairs {f0, f2} and {f1, f3} are described as constant and balanced, respectively. Now, suppose you are given a black box (oracle), which you know implements one of the functions. Deutsch asked the question: to which class does the function belong? In other words, is the function inside the oracle constant or balanced?  Classically, one would require two queries to the oracle, checking the result for inputs 0 and 1.  Deutsch showed that using a quantum algorithm, it is possible to determine the class in a single query
.
This problem was further generalized by David Deutsch and Richard Jozsa to the case of a function which takes as an input an N-bit string, and returns a single bit
.  In this problem, the functions need not actually be exclusively either constant or balanced; they could, for example, return 1 a third of the time, and 0 the rest.  If one restricts the problem to the subset of n-bit functions which are either constant or balanced, then the advantage of the quantum algorithm becomes very clear.
Classically, one must in the worst case check half of all possible inputs plus one, or N/2 + 1, calling the oracle which evaluates f each time.  As in the single bit case, the Deutsch-Jozsa algorithm promises the result in a single oracle call. 
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This stunning result is made possible by the utilization of quantum superposition and interference.  The quantum circuit is remarkably simple:

One begins with a single “target” in state 
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and an N qubit “measurement” register in state 
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.  Passing through Hadamard gates, the measurement qubits are all initialized into the superposition state, 
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. After the full N+1 qubit state is operated on by the oracle, the measurement register is passed through an n-qubit Hadamard.  
Given the simplicity of the algorithm, clearly the magic is happening inside the oracle.  Through the principle of phase kickback, each input x acquires a phase of 0 or 
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 if f(x) is 0 or 1, respectively.  If the function is constant, the total state is unaltered up to a global phase, and after passing through the 2nd Hadamard gate, the measurement state is returned to the initial state.  A balanced function, conversely, will yield destructive interference, and the final state will not be 
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The oracle, in this case, need only evaluate the function for the state given by the measurement register, which has been placed into a superposition of all possible bit strings.  Utilizing this inherent parallelism, phase kickback between the target and measurement qubits, and interference, the algorithm can determine whether or not the function f is balanced in a single call to the oracle.
Grover’s search algorithm

[image: image30.png]J

nt

supercond.

island Josephson

capacitor . .
junctions



Grover’s search algorithm
 provides a 
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 speed up over classical searching, O(N). Clearly, this search is over a unstructured database, since classically, we can structure the database such that searches on average could be as low as O(1). The algorithm can be described as a parallelized search: we utilize the ability of quantum systems create a superposition of multiple states, such that one application of the oracle, in principle, operates on all possible values in the search space. Each iteration of the algorithm boosts the probability of the correct (the “selected” state) state being measured when a measurement on the qubit is taken. Thus, after a number of iterations, the algorithm will select, with arbitrarily high probability, the correct state. Prepare a superposition of all input states, 

[image: image8.wmf]i

i

ai

Y=

å


such that the superposition is equal, i.e. that
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Then the action of the oracle is to take the marked states to 
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Grover’s algorithm then essentially inverts the amplitudes 
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about the mean. Repeated iteration results in amplitudes arbitrarily close to 
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except for the marked state, which now has amplitude close to unity.
The literature has covered Grover’s search and implementations thereof
, 
​; the algorithm has been shown to be optimal, in the sense that no other quantum algorithm could select the right states with less than ~
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 calls to the oracle.   
Bernstein-Vazirani algorithm

The Bernstein-Vazirani quantum algorithm determines whether the parity of an input bit string, the count of 1’s modulo 2, is the same as that of a string encoded in an oracle. Classically, an algorithm to perform this comparison would require examining each bit of the two n-bit binary strings. However, by the advantages gained from using a quantum computer, the Bernstein-Vazirani quantum requires only one access to the oracle per input string.
The algorithm takes an n-bit binary string x, and a binary digit b, and performs the transformation given by
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As mentioned, the Bernstein-Vazirani oracle is encoded with a binary string a, whose parity is given by b. The oracle returns 0 if the parities of x and a are equal, and 1 otherwise. The oracle adds phases to the qubits passed to it; in order to convert this phase information to a measurable amplitude, the qubits are then passed through a Hadamard gate.
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Figure 2: A circuit diagram of an implementation of the Bernstein-Vazirani algorithm
The action of the oracle is to perform a phase shift on each of the n-qubits based on the bit string encoded within it.
Oracle Issues

Although the heart of a quantum algorithm’s work is performed in the oracle, it is important to bear in mind that an oracle is merely a conceptual simplification. At this stage in quantum computing research, depending on the technology beneath the implementation, not all functions of a target algorithm can be implemented equally well. An oracle allows the algorithm to be separated into realizable portions.

Additionally, the oracle provides a basis for measurement and comparison of the efficiencies of quantum and classical algorithms. The two algorithms may be compared in terms of the number of oracle lookups required. In the case of binary string parity comparison, the oracle of the classical algorithm implementation would need to be consulted once per each of the n-bits of the input string x; the Bernstein-Vazirani algorithm requires only one per input.
Moreover, in the design of an algorithm, it becomes important not to hide the complexity of the algorithm within a black box. An oracle can be used to represent a computation step with a yes/no answer, but if accessing that answer is hard, implementing the oracle may not be possible or worthwhile. For example, an algorithm for finding prime numbers could conceivably rely on an oracle to test the primality of a number, and simply running Grover’s search algorithm. However, testing against a potential prime is as difficult as finding one in the first place; any such algorithm would simply disguise its complexity within an oracle, and not actually present any sort of speedup.
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When discussing quantum algorithms, we typically analyze individual instantiations of the problem, i.e. searching for a phone number, analyzing a Boolean function, factoring a number. In general, we would like quantum computers to be able to solve any such instantiation of the problem. In the algorithms described here, the only portion which depends on the specific problem being solved is the oracle. 
Each of the oracle based algorithms we have discussed requires the oracle to check a specific potential solution. Therefore, the oracle must be reconfigurable without undue complexity if the computer is going to be generally useful.  If the physical realization of the quantum system does not allow the oracle to be easily reconfigured, then solving a different query would require the construction of a completely new oracle.  For example, in the Deutsch-Jozsa algorithm, one would like a circuit which can classify any n-bit function.  This is not, however, part of the assumptions in determining the exponential speed advantage of quantum computing and is very implementation dependent.  
If the implementation is capable of scaling to n qubit gates without an exponential scaling in hardware or time, then we call the implementation feasible. Current implementations only scale to 4 or 5 qubits; in such a case, the exponential speedup does not justify the initial high overhead. 
Realizations of the quantum system
Linear Optics
Optical systems have been shown as effective realizations of quantum computing​​​4. In such systems, we encode qubits in photons as polarization, or some other mode. In this scheme, one qubit gates are extremely easy to implement: wave plates perform an arbitrary angle rotation of the qubit. However, multiple qubit gates are far more complicated to implement. In [
], Dodd et al. show that multiple qubit gates, in particular, the two qubit CNOT and CSIGN gates, can be implemented via a nondeterministic circuit. 
The circuit is nondeterministic in the sense that it will not always reliably produce output: instead, there are many outputs which will be marked as incorrect. In fact, the ratio of incorrect outputs to correct outputs is very high: in a typical CNOT gate implementation, like in [7], there are 19 failures for every success. 
Linear optical systems in some sense are not truly quantum systems, since true entanglement requires highly nonlinear optics. In [4], Kwait et al. state that there cannot be distinct entangleable registers. This means that it is impossible to test the Bell inequality to show entanglement; in order to measure both qubits, they must be distinct. This does not mean that the effects of entanglement cannot exist, merely that the Bell inequality cannot be tested. By using destructive measurements, linear optical implementations can realize CNOT gates even though no true entanglement exists.
The advantages of optical systems are many: the qubits are encoded in photons, and thus have almost infinite coherence time; further, since gates are simply wave plates and beam splitters, they are macroscopic. This means it is very easy to manipulate the circuit. However, there are problems to optical systems.  In [7], it is shown that linear optical systems require exponential scaling of hardware, because they do not truly allow entanglement. This exponential increase in hardware obliterates one of the most useful results of quantum computing, that is, an operation on a space of size 2​​​​n requires only n qubits. Secondly, the nondeterministic rate of CNOT gates imply that failure rates for an circuit scale as 
[image: image17.wmf]n

e

, where 
[image: image18.wmf]e

 is the failure rate for a CNOT gate. 
In [7], Dodd et al. show an implementation of Grover’s algorithm using the optical system. Their oracle is much like others in the literature: simply marking a selected state via a phase shift. In their implementation, they search a 4 state system, thus requiring only two qubits to encode all the states. Still, the circuit required approximately 28 circuit elements, and only correctly identified the marked state once in 180 attempts. The low success rate is mainly due to the nondeterministic CNOT gate implementation. 
Superconductor
Another promising implementation involves the networking of superconducting islands via Josephson junctions, known as Josephson charge qubits.  Solid state implementations are often considered very appealing systems for building a quantum computer thanks to the maturity of semiconductor and lithography technologies, and the promise of scalability.  In the scheme proposed by Schuch and Siewert at the Univeritaet Regensburg, the individual qubit is realized as a superconductor, coupled to a voltage source on one side via a capacitor, and to a superconducting reservoir on the other via a tunable Josephson junction.
  The individual qubits may in turn be coupled to each other via a SQUID loop, which may be tuned by applying an external magnetic flux through the loop.  Similar geometries have also been proposed which utilize currents to control the two-qubit interactions.

  
[image: image19]
Figure 4: 2 qubits implemented via Josephson junctions

When cooled to low enough temperatures, one may treat the lowest two charge states of the island as a two level system, governed by the Hamiltonian:
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Before one can attempt to construct a quantum oracle, a universal gate set is required.  In this case, we need to realize all single qubit unitary operation, as well as various 2 qubit gates, such as a CNOT gate. 

All single qubit gates may seen as rotations on the Bloch sphere. This implies that any one qubit gate can be constructed given the ability to generate arbitrary rotations about any two orthogonal axes.  In the case of Josephson charge qubits, this may be accomplished by manipulating the voltage V and flux (.  By inspecting the Hamiltonian, we can see that by setting the flux to zero we can generate rotations about the z axis.  Similarly, by setting V to zero and allowing the system to evolve, any arbitrary rotation about the x axis may be accomplished.  With the proper choice of V, (, and time, we can now perform any one qubit operation.  For example, a Hadamard gate may be made by 3 successive rotations of 90( about z, x, and z axes.  

To accomplish 2 qubit operations, we must control the interaction between the qubits.  In this implementation, it is very simple to implement an iSWAP gate. The local single qubit controls V and ( are set to 0. The system is allowed to evolve for some time
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Together with the one qubit gates, this is a universal gate set.

Designing an oracle for the evaluation of any single function is straightforward and can easily meet the ease and speed assumptions of the algorithm.  What is desired, however, is an oracle which can be easily “reprogrammed” in situ to evaluate any function on n bits.  Given the rapid scaling of possible functions with the number of qubits (6 qubits yield ~1018 functions), it is indeed necessary for any worthwhile proof of principle experiment that the oracle be general.
The Deutsch oracle may be realized in this scheme as a sequence of nearest neighbor CNOT operations and programmable phase shifts.  While it is worth noting that the authors have created a general oracle for the 4 qubit D-J problem using less than 40 gates, and utilizing only nearest neighbor interactions in a ring geometry, they also uncovered a potentially serious challenge.  The number of programmable phase shifts, those gates which define the function be evaluated, scales as 2n – 1.  Thus for large number of qubits, the complexity of the hardware grows exponentially.  This could potentially ruin the exponential advantage of the quantum algorithm.
Ion Trap

Laser-cooled trapped ions are excellent vehicles for quantum information processing; trapped ions provide the following properties
: 1) trapped ions are confined to extremely small spaces, on the order of 10 nanometers, 2) there exists a strong ability to physically contain the ions, 3) the particles are highly insulated from environmental influence, 4) detection of a particle’s quantum state with a high-degree of accuracy.
In [10], Gulde et al. demonstrate an implementation of the Deutsch-Jozsa trapped ion 2-qubit quantum computer. The computer was able to test for four functions by way of an oracle which could be reconfigured into different combinations of gates. Single and multiple qubit gates are achieved by Bloch sphere rotations induced by the application of laser pulses to the trapped atom. 
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Figure 5: Implementations of different oracles
The photons emitted by the laser excite the atom to higher states, which correspond to different logical states of the first qubit. The Bloch sphere south pole corresponds to the D orbital, while the S orbital is correlated with the north pole. The second qubit is encoded in the vibrational mode of the atom. The phonon number nz=0z encodes the state 
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, while nz=1z encodes 
[image: image25.wmf]0

. Two-qubit interactions and manipulations are achieved by manipulating both qubits simultaneously: both the ener
gy and motional states of the atom are altered by the laser pulses.
Gulde et al. found that the error rates for ion trap read-out were acceptably low; detection of the two states (S1/2 and D​5/2​) was distinguished with 99.9% fidelity and in less than 3 ms.  This in turn led to overall error rates of less then 10% over 1000 runs of the Deutsch-Jozsa algorithm.
Discussion
The oracle for Grover’s algorithm picks out the state that matches the input, and applies a phase transform. In the literature, this state (the “marked” state) is encoded in the oracle itself. For example, a Grover’s search on 4 state database, an encoding of 
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 in the oracle picks out the 2nd state. But as far as we are aware, no one has implemented an oracle that matches an input to some database entry. For example, the original motivation that Grover used was a reverse search, i.e. matching a name to a given telephone number in a telephone book. But encoding the state 
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 in the oracle implies you already know which entry is the correct match! Then running Grover’s search simply produces what you already know: that 
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, indeed, was the number you were searching for. To truly implement a telephone book lookup, one must do a lookup on a superposition of all input states in a database (the telephone book) simultaneously. This problem has yet to be addressed, and is important problem that needs to be solved before widely useable implementations can be realized.
Furthermore, the Bernstein-Vazirani oracle offers a tremendous speedup over classical parity comparison algorithms. However, it is difficult to envision an application where the expense of building a quantum computer to compare parities is justified: the need for efficient parity comparison is simply not so great that one cannot afford to perform an O(n) classical operation.
However, the most interesting detail is the scaling of hardware required for quantum algorithms to be implemented. For example, in optical implementations, although the use of superposition and interference provides a quantum search, because entanglement does not truly exist4, exponential scaling in hardware is required. Exponential scaling is also found in general oracle implementations. In the Josephson junction implementation of Deutsch-Jozsa, to implement a generalized oracle capable of representing any arbitrary n qubit function, 2n​ gates are required. However, this is due to a physical limitation of Josephson junctions: because two arbitrary qubits cannot be operated on unless they are physically adjacent, additional phase shift gates are required. In general, care should be taken to note the scaling of the proposed implementation as the system approaches a general, feasible system of large number of qubits.
Conclusion

We have surveyed several different implementations of quantum systems. Each has implemented oracle based quantum algorithms: Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s search. At first glance, all of the implementations provide the promised quantum speedups. However some pitfalls remain. Linear optical systems require an exponential (in n) scaling in hardware, have an extremely low success rate, and cannot truly implement entanglement. Josephson charge qubits implementing Deutsch-Jozsa, while demonstrating true entanglement, still have not overcome the challenge of generalizability. An oracle capable of encoding any n qubit Boolean function requires a 2​​​​​​​n​ scaling in gates. Implementing a general oracle for Grover’s algorithm is also potentially tricky. Ion trap realizations provide a hybrid of true, physically separate qubits, and the use of optics for control. This provides many of the advantages of linear optical systems, but without any hidden exponential scaling in hardware. Further, because the oracle is implemented using externally applied laser pulses, it is inherently reprogrammable. 
Quantum computing using oracle based algorithms is a promising approach to solving classically intractable problems.  While many challenges and pitfalls remain, the great diversity of approaches and implementations leave much hope that they will eventually be understood and overcome.
Figure � SEQ Figure \* ARABIC �1�: Deutsch-Jozsa circuit. Uf is the oracle.











Figure � SEQ Figure \* ARABIC �3�: Nondeterministic CNOT gate implemented using linear optics
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