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1 Planck-Einstein Relation E = hν

This is the equation relating energy to frequency. It was the earliest equation of quantum mechanics, imply-
ing that energy comes in multiples (“quanta”) of a fundamental constanth. It is written as either

E = hν

or

E = h̄ω

whereh̄ = h/2π. ν is linear frequency andω is angular frequency. The fundamental constanth is called
Planck’s constant and is equal to 6.62608×10−34 Js (̄h = 1.05457×10−34 Js, or 1.05457×10−27 erg s).

This relation was first proposed by Planck in 1900 to explain the properties of black body radiation. The
interpretation was that matter energy levels are quantized. At the time this appeared compatible with the
notion that matter is composed of particles that oscillate. The discovery that the energy of electrons in
atoms is given by discrete levels also fitted well with the Planck relation. In 1905 Einstein proposed that the
same equation should hold also for photons, in his explanation of the photoelectric effect. The light incident
on a metal plate gives rise to a current of electrons only when the frequency of the light is greater than a
certain value. This value is associated with the energy required to remove an electron from the metal (the
“work function”). The electron is ejected only when the light energy matches the discrete electron binding
energy. Einstein’s proposal that the light energy is quantized just like the electron energy was more radical
at the time: light quantization was harder for people to accept than quantization of energy levels of matter
particles. (The word “photon” for these quantized packets of light energy came later, given by G. N. Lewis,
of Lewis Hall!)

2 Time evolution of real quantum systems
Given the postulates relating the mathematical framework of quantum to physical systems, together with the
Planck-Einstein relation, we can make a heuristic derivation of the time dependent Schrodinger equation.
One simple but critical leap of “analogy” to classical mechanics will be required.

Time evolution is characterized by a continuous parametert. Because of superposition, this time evolution
must be characterized by a linear transformation in the Hilbert space:∣∣Ψ; t

〉
= Lt

∣∣Ψ;0
〉

Conservation of probability tells us that〈
Ψ; t

∣∣Ψ; t
〉

=
〈
Ψ;0

∣∣Ψ;0
〉

Hence we conclude thatL†
t Lt = 1, i.e.,Lt is unitary, so write asU(t). More precisely then,∣∣Ψ; t ′

〉
= U(t ′, t)

∣∣Ψ; t
〉
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If the time origin is not important,U depends only the the time difference, i.e.,U(t ′− t). We also wantU to
obey the composition law

U(t2)U(t1) = U(t2 + t1).

Then we obtain

U(t) = [U(t/N)]N.

Now consider what happens as we make the time interval infinitesimal. Asδ t = t/N → 0,U(δ t)→ 1. We
can write an expression for this that is unitary to first order as

U(δ t) = 1− i∆(δ t),

where the operator∆ is Hermitian. What physical operator might∆ correspond to? Here comes the physical
leap of analogy. First look at what the units of∆ are; they are time−1, i.e., the units of frequency. What
physical observable has units of frequency? The Planck-Einstein relation says thatE = h̄ω whereω is fre-
quency and̄h = h/2π, with h the fundamental Planck constant. So lets choose our operator∆ to correspond
to energy divided bȳh. Now we know that in classical mechanics that the energy is given by the Hamiltonian
operatorH = KE +PE and that this operator generates the time evolution. So in a simple leap of analogy,
lets takēh∆ to be equal to the quantum mechanical Hamiltonian operator that corresponds to the total energy
of the quantum system, i.e., a sum of kinetic and potential energy operators. Then we have

U(δ t) = 1− i
h̄

Hδ t.

The rest is plain sailing. We can either take the limit asN → ∞ to derive the exponential formexp[−iHt/h̄]
or, more simply, we use the composition law to write

U(t +δ t)−U(t) = [U(δ t)−1]U(t)

= −i
δ tH

h̄
U(t).

Rewriting and taking the limitδ → 0, we obtain

ih̄
∂U
∂ t

= HU(t).

This is the Schrodinger equation for the time evolution operatorU(t). Rewriting the evolution operator in
its full form asU(t, t0) and multiplying on the right by

∣∣Ψ; t0
〉

, we find

ih̄
∂U(t, t0)

∂ t

∣∣Ψ; t0
〉

= HU(t, t0)
∣∣Ψ; t0

〉
,

which is equivalent to

ih̄
∂
∣∣Ψ; t

〉
∂ t

= H
∣∣Ψ; t

〉
.

So we have arrived at the time dependent Schrodinger equation for the time evolution of the wave function
of a quantum system.
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3 Position Representation of Quantum State Function
We will motivate this using the framework of measurements. Consider first the simpler example of a photon.
The polarization of the photon can be either horizontal (H) or vertical (V), from which we have a discrete
basis of two states

∣∣H〉
and

∣∣V〉
. We can measure the polarization by passing the photon through a polarizer

crystal, which passes eitherH or V light depending on its orientation. The measurement operators for this
simple 2-state basis are

MH =
∣∣H〉〈

H
∣∣ ,MV =

∣∣V〉〈
V

∣∣ .
A single measurement on an arbitrary state

∣∣ψ〉
will collapse

∣∣ψ〉
onto one of the two orthonormal basis

vectors. For example, if theH measurement is made, the state after measurement will be

∣∣H〉  〈
H

∣∣ψ
〉√〈

ψ
∣∣H

〉〈
H

∣∣ψ
〉
 .

If the measurement is repeated many times, this state will be obtained with probability

PH = |
〈
H

∣∣ψ
〉
|2.

Now consider a particle in a quantum state, e.g., the energy level of a hydrogen atom. The hydrogen atom
consists of 1 positively charged proton in the nucleus and 1 negatively charged electron. The electron is
∼ 1800 times lighter than the proton, so to a first approximation the electron can be regarded as moving
around a stationnary proton. The possible energy levels for this electronic motion form a discrete, infinite
set of levels of negative total energy (indicating overall binding to the proton), and are given by the relation
En ∼ −1/n2, n = 1,2,3, ...... The energy eigenvectors

∣∣n〉
formed by these energy levels form an infinite

dimensional Hilbert space. Now what if we want to observe the electron? It is moving in configuration
space, so lets consider the effect of the measurement operator corresponding to a locationr in configuration
space. The measurement operator is

Pr =
∣∣r〉〈

r
∣∣

and a measurement on the ket
∣∣ψ〉

collapses this onto the state
∣∣r〉〈

r
∣∣ψ

〉
, with probability

|
〈
r
∣∣ψ

〉
|2 = |ψ(r)|2.

So |ψ(r)| is the probability amplitude of finding an electron atr , i.e., “the wave function in the position
representation”. Note that the state after measurement is the position ket

∣∣r〉 .

We can understand this in a pictorial manner by imagining a basis consisting of a very densely spread set of
delta functions: the wave function is the amplitude of the the expansion of the quantum state in this basis.

∣∣ψ〉
= ∑

i

αi
∣∣r i

〉
〈
r
∣∣ψ

〉
= ∑

i

αi
〈
r
∣∣ r i

〉
= αiδ (r − r i)
= ψ(r).
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The position representation is defined by the continuous set of basis vectors
∣∣r〉 , satisfying∫

dr
∣∣r〉〈

r
∣∣ = 1 (completeness)〈

r
∣∣ r ′

〉
= δ (r − r ′),

whereδ (r − r ′) is the Dirac delta function. This is defined by the relation (shown here for 1D)∫ +∞

−∞
f (x′)δ (x−x′)dx′ = f (x).

Setting f (x) = 1 shows that the integral under the delta function is equal to unity. The three dimensional
delta function is given by

δ (r − r ′) = δ (x−x′)δ (y−y′)δ (z−z′).

We can regard the Dirac delta function as the limit of a sequence of functions possessing unit norm, e.g., a
sequence of Gausssians with variable widthλ :

fλ =
1

λ
√

2π
exp−(x−x′)2/2λ 2

.

Note that the norm of the basis states
∣∣r〉 is ill-defined, unless one agrees to implicitly integrate over the

position coordinate and make use of the delta function property.

To summarize, the ket
∣∣ψ〉

can be expanded in the position representation as∣∣ψ〉
=

∫
dr ′

∣∣r ′〉〈
r ′

∣∣ ∣∣ψ〉
The inner product between two state

∣∣ψ〉
and

∣∣φ〉
can be expressed in terms of the corresponding wave

functions in the position representation:

〈
φ
∣∣ψ

〉
=

∫
dr

〈
φ
∣∣ r

〉〈
r
∣∣ψ

〉
=

∫
drφ

∗(r)ψ(r).

Now the norm is well-behaved〈
ψ

∣∣ψ
〉

=
∫

ψ
∗(r)ψ(r)dr = 1.

This implies we can choose a set of functionsφn(r) satisfying∫
φ
∗
n(r)φm(r)dr = δmn

which is just the orthonormality condition between
∣∣φn

〉
and

∣∣φm
〉

. We can make this set of functions a
basis for the Hilbert space spanned by the energy eigenstates

∣∣n〉
. This basis of wave functions in position

representation has a well behaved norm

||φn||2 =
∫
|φn(r)|2dr = 1.
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These functions are therefore a set of square integrable functions, often also calledL2 functions.

Similar arguments lead to the definition of the momentum representation. The ket
∣∣ψ〉

can be expanded in
the momentum representation as∣∣ψ〉

=
∫

dp′
∣∣p′〉〈

p′
∣∣ψ

〉
where

〈
p′

∣∣ψ
〉

= ψ(p′) is the probability amplitude to find the particle with momentump′. It is the wave
function in the momentum representation. Note that equivalently, it can be understood as the expansion
coefficient in the expansion in momentum eigenstates

∣∣p′〉 .

Projecting this expansion into the position representation yields the basic equation relating position and
momentum representations of a quantum state

∣∣ψ〉
:

ψ(r) =
〈
r
∣∣ψ

〉
=

∫
dp′

〈
r
∣∣p′

〉
ψ(p′).

Note that using the Dirac notation we are correct in writingψ on both right and left hand sides of this
equation. However, the two functions may have very different dependence on their respective variablesr
andp. To avoid confusion, one usually gives these different names, e.g.,ψ(r) andψ̃(p).

Transformation between position and momentum representations

What is the transformation element
〈
r
∣∣p′

〉
in the above equation? If we set this equal toeip·r then the

equation looks like a Fourier transform of the wave function in momentum space,ψ̃(p), i.e.,

ψ(r) =
∫

dpeip·r
ψ̃(p).

This is not quite a Fourier transform, since we have momentump rather than wave vectork in the integral.
However,p andk satisfy thede Broglierelation,

p = h̄k

which leads to the Fourier transform relation

ψ(r) =
∫

dkeik·r
ψ̃(k)

where we have omitted factors ofh̄ and 2π.

4 The Hamiltonian
What is the Hamiltonian operator? Classically, the Hamiltonian is the energy operator,H = p2

2m +V(x).
Quantum mechanically, we would like to use either the position or momentum basis to represent the oper-
ator since then eitherx or p will be diagonal, and consequently also any corresponding functions of these
operators that occur in the Hamiltonian. Thus in a position representationV(x) is diagonal, while in a

momentum representationp
2

2m is diagonal. E.g.,

V̂ =
∫

dxdx′
∣∣x〉〈

x
∣∣V∣∣x′〉〈

x′
∣∣

=
∫

dxdx′
∣∣x〉V(x)δ (x−x′)

〈
x
∣∣

=
∫

dx
∣∣x〉V(x)

〈
x
∣∣
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We usually have a more complicated potential energy term than kinetic term, so prefer to work in the
position representation - will illustrate with an example below. So, we need to express ˆp2/2m in the position
representation. The definition of the momentum operator in position representation is

p̂ =
h̄
i
∇.

For the derivation see ”Quantum Mechanics”, vol. 1, page 149, by Cohen-Tannoudji; ”Modern Quantum
Mechanics”, page 54, by Sakurai; ”Quantum mechanics”, chapter 4, by Dirac.

Hence the kinetic energy operator in the position representation ish̄2/2m∇2.

So, what if we had used the momentum representation? Then the kinetic energy would be simple, merely
the diagonal formp2/2mand we would need to evaluatex in the momentum representation. This is given by
x= ih̄d/dp. Now suppose we had some non-trivial potential energy, e.g.,V(x) = 1/cosh2(x). This happens.
Then the potential energy would be given byV(p) = 1/cosh2(ih̄d/dp) which is really not something that
you want to deal with in your partial differential equation for the wave function!

5 The Schrodinger Equation and its Solutions
What is the role of energy here?It is very intertwined with time dependence. Let’s examine how...

First, let’s consider the Schrodinger equation for a free particle,V(x) = 0:

ih̄
∂

∂ t
ψ(x, t) =− h̄2

2m
∂ 2ψ

∂x2 ψ(x, t) (1)

with m the particle’s mass and̄h= h
2π

. Recall that Planck’s constant has a value ofh= 6.6×10−34J ·s. This
is a very small quantity with respect to ordinary macroscopic levels, and is the main reason why quantum
effects are not usually noticeable.

If we take this Schrodinger equation and plug in our trial solutionψ(x, t) = ei(kx−ω(k)t), we find that this trial
solution works provided thatω(k) = h̄k2

2m . This is known as the dispersion relation for a free particle. Now,
notice that the most general solution is a linear superposition of such functions for many differentk values:

ψ(x, t) =
∫

dkAke
i(kx−ω(k)t) (2)

This superposition solution is known as awave packet. The velocity of a wave packet isv= ∂ω

∂k = ∂

∂k

(
h̄k2

2m

)
=

h̄k
m . This is the ”group velocity”. We can also quickly rearrange this to note thatmv= h̄k. But what is ”mv”?
It’s the momentum,p! Therefore we conclude thatp = h̄k. This is a relationship between the physical
momentum of a particle and the wave-vector of a wavefunction. We can illuminate this further as follows:

p = h̄k=
(

h
2π

)(
2π

λ

)
=

h
λ

(3)

This is known as the DeBroglie relation, and it actually predates the Schrodinger equation.
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Now we will consider how to solve the Schrodinger equation in general, when there is also a non-zero
potential energy term,V(x) (say, due to an electric field). If there is a potential energy in the system, then
the Hamiltonian becomes:

Ĥ = KE +PE =− h̄2

2m
∂ 2

∂x2 +V(x) (4)

To be clear about the distinction between operators and functions, we’ll denote quantum mechanical opera-
tors with ”hats”, e.g.Ĥ or p̂.

The Schrodinger Equation

ih̄
∂

∂ t
ψ(x, t) = Ĥψ(x, t) (5)

defines the relationship between the energy of a system ( throughĤ) and its time development. Can we
understand this relationship better?

First, we note that this is a partial differential equation, which means that it is a differential equation with
more than one variable (x and t in this case). We now employ a handy math trick for partial differential
equations, and assume that the solution to the Schrodinger Equation can be written as the productψ(x, t) =
ψ(x)φ(t). This is calledseparation of variables. If we plug this into the Schr. Eqn. and divide both sides
by ψ(x)φ(t) :

ih̄ψ(x)
∂

∂ t
φ(t) = φ(t)Ĥψ(x)→ ih̄

∂φ

∂ t

φ(t)
=

Ĥψ(x)
ψ(x)

(6)

The left hand side (LHS) is a function of t, and the right hand side (RHS) is a function of x. Therefore, for
this solution to make sense for all possible x and t, both sides must equal aconstant. What is that constant?
Why, energy, of course!

So, the Schr. eqn. breaks into two equations, one in time (t) and one in space (x):

space: Ĥψ(x) = Eψ(x) (7)

time: ih̄
∂φ(t)

∂ t
= Eφ(t) (8)
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