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Reversibility, Quantum circuits

1 Review of quantum circuit model
Recall that in the quantum circuit model we haven qubits that we can manipulate in the following ways:

1. Initialization: The qubits can be initialized to the state
∣

∣0n
〉

. Preparing a different input state
∣

∣x
〉

,
x∈ {0,1}n can be done by flipping the required bits.

2. Universal set of gates: Certain sets of one- and two-qubitgates can approximate any constant dimen-
sional unitary transformation sufficiently closely. For example, the CNOT gate together with all one
qubit transformations (rotations on the Bloch sphere) forms a universal gate set.

3. Measurement of some (or all) of the qubits output by the quantum circuit. For example if
∣

∣ψ
〉

=

∑x αx

∣

∣x
〉

and we do a full measurement in the standard/computational basis, then we measurex with
probability |αx|2. If we only measure the firstk bits of x, then the probability of measuringz∈
{0,1}k is ∑x:z is a prefix ofx|αx|2. The resulting partially collapsed quantum state is, up to normalization,
∑x:z is a prefix ofx αx

∣

∣x
〉

.

4. Classical postprocessing of the measured value to get thesolution to the problem being solved. Quan-
tum computers are expensive and rare (!), so we would probably prefer to use classical processing as
much as possible.

The size of a quantum circuit is the number of gates in the circuit. We are interested in findingefficient
circuits for problems, i.e., circuits for which the total size of the circuit is polynomially bounded in the
number of input bits. For example, a family of circuits of size c·n5 is good. But exponentially large – 2n –
circuits are bad.

Why do we consider polynomially-bounded circuits to be good? After all, the constantc in the size bound
c·nd could be extremely large! There are two main reasons:

• Qualitatively, a polynomial-size circuit indicates thatwe have had a non-trivial insight into the struc-
ture of the problem, since it is better than a brute force search.

• Quantitatively it has often been found that a polynomial-time algorithm leads to an algorithm with
good constants.

2 Reversible Computation
Quantum evolution is unitary; a quantum circuit corresponds to a unitary operatorU acting on kets in

� 2n
.

Being unitary meansUU† = U†U = I , or equivalently thatU preserves angles.
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Cx C(x)

Figure 1: The classical, possibly nonreversible circuit C

Quantum computation originally (in the late 70s and early 80s) studied to understand whether unitary
constraint on quantum evolution providedlimits beyond those explored in classical computation. A uni-
tary transformation taking basis states to basis states must be a permutation. (Indeed, ifU

∣

∣x
〉

=
∣

∣u
〉

and
U

∣

∣y
〉

=
∣

∣u
〉

, then
∣

∣x
〉

= U−1
∣

∣u
〉

=
∣

∣y
〉

.) Therefore quantum mechanics imposes the constraint thatclassi-
cally it must be reversible computation.

If we are given a classical circuit, for example for primality testing,

M prime or composite

(notice that the length of the inputM is dlog2 Me), can we find a similarly small reversible circuit? Any
classical circuit can be built from three basic pieces: the AND gate∧(a,b) = a·b, the NOT gateNOT(a) =
1−a, and fan-out (copying). The NOT gate is a reversible, unitary one-qubit operation. But the AND gate
clearly cannot be reversible; since it takes two bits to justone, some information must be lost. (In particular,
after applying a NOT gate, we cannot distinguish the cases where the inputs were 00 versus 01 or 10.) The
AND gate erases information, which is not reversible. Copying of quantum states is not unitary, but we can
copy the (mutually orthogonal) classical basis states, andcopying is also reversible.

One way of implementing classical computation is reversible is with an extremely precise, frictionless, bil-
liard ball table, in which the balls collide elastically. Such an algorithm is clearly reversible since reflecting
all the balls simultaneously will cause the computation to run backwards. However, it is also unstable; any
small error will rapidly grow and the computation will breakdown. We’ll give a less picturesque, but stable
method.

There are a number of ways to show construct a reversible circuit corresponding to a nonreversible circuit.
For example, one can build the necessary pieces out of a controlled swap gate (Fredkin gate), a CNOT gate,
and a NOT gate. Here, we will show how to construct a reversible circuit using the Toffoli gate and the NOT
gate. The Toffoli gate is a doubly-controlled NOT gate; it takes(a,b,c) to (a,b,c+ab mod 2). (It is its own
inverse, so in particular is reversible, and is also unitary.)

We will show how, given a standard circuitC taking inputx to y = C(x), we can use the Toffoli and NOT
gates to build a reversible circuit̂C taking(x,0k) to (x,y). Actually, some number of ancilla bits, initialized
to 0 will also be useful, sôC takes(x,0k

,0m) to (x,y,0m). (Notice that themancilla bits are unchanged. . . )

• To achieve an AND gate onaandb, we use the Toffoli gate on input(a,b,0). The output is(a,b,a∧b),
so the third output wire has the result of the AND.

• To copy a bita, use the Toffoli gate on input(a,1,0). The output is(a,1,a), so we have copieda.
Note that this uses both 0 and 1 ancillas; to get a 1 ancilla, wecan simply apply a NOT gate to a
constant 0 wire.

This method allows us to construct a circuitC′ corresponding toC which reversibly takes(x,0k
,0m) to
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Figure 2: The reversible circuit C’ that produces extra garbage

Figure 3: The clean reversible circuitĈ built out ofC′ and(C′)−1.

(x,C(x),garbagex). The garbage is left over in the original ancilla wires because our operations had extra
inputs and outputs. For example to achieve a NOT we had three output wires, whereas the nonreversible
NOT gate only has one output wire. The extra two wires are justgarbage.

For the purposes of a quantum algorithm, the extra garbage left over is quite significant because it can
prevent desirable destructive interference when we run thecircuit on states which are not just computational
basis states. Fortunately, there is a simple trick for removing all the garbage; we just run the circuit in reverse
to erase it! Of course, we don’t want to forget our final answer, so before runningC′ in reverse we need to
copyy = C(x) to some additional ancilla wires. (This copying just uses one additional 1 ancilla, and does
not create any further garbage.) The sequence of steps is then

(x,0k
,0m

,0k
,1)

C′
−→ (x,y,garbagex,0

k
,1)

copyy−→ (x,y,garbagex,y,1)
(C′)−1

−→ (x,0k
,0m

,y,1) .

Overall, this gives us a clean reversible circuitĈ corresponding toC:

3 Randomized computation
Many important classical algorithms are randomized. For example, primality testing:

For eachx, for most choices ofr, the circuit computes the correct answer.

To simulate quantumly:

1. First create the corresponding reversible circuit with inputsx, r and ancilla 0’s.

2. To randomizer, feed each
∣

∣0
〉

qubit wire through a Hadamard gate, giving1√
2
(
∣

∣0
〉

+
∣

∣1
〉

). Immedi-
ately after applying the Hadamard gate, measure each qubit of r.

3. Instead of measuring the qubits ofr, it is sufficient to copy (with CNOT gates) the outputs of the
Hadamard gates into fresh qubits. For example, we change1√

2
(
∣

∣0
〉

+
∣

∣1
〉

)
∣

∣0
〉

to 1√
2
(
∣

∣00
〉

+
∣

∣11
〉

).
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Figure 4: A circuit for primality testing which takes as additional input a random stringr.

Figure 5: The corresponding quantum circuit; copying with aCNOT the qubits 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

) is equivalent
to measuring them, giving a random stringr.

Since they are entangled, measuring the bits into which we copied each computational basis state ofr
is equivalent to measuring the bits ofr itself.

4. In fact, though, it doesn’t matter whether we measure the fresh qubits before or after running the
quantum circuit. In fact, we can delay their measurement arbitrarily long, or just avoid it altogether.
This is known as the “principle of deferred measurement.” Measurement is equivalent to entanglement
of the system with its environment.
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