C / CS / Phys 191 Reversibility, Quantum circuits 10 / 23 / 03
Fall 2003 Lecture 18

|
Reversibility, Quantum circuits

1 Review of quantum circuit model

Recall that in the quantum circuit model we hawvgubits that we can manipulate in the following ways:

1. Initialization: The qubits can be initialized to the etz#D”>. Preparing a different input statg>,
x € {0,1}" can be done by flipping the required bits.

2. Universal set of gates: Certain sets of one- and two-gattés can approximate any constant dimen-
sional unitary transformation sufficiently closely. Foaexple, the CNOT gate together with all one
qubit transformations (rotations on the Bloch sphere) foenuniversal gate set.

3. Measurement of some (or all) of the qubits output by thentura circuit. For example iftp> =
> x orx\x> and we do a full measurement in the standard/computaticass bthen we measurawnith
probability |ay|?. If we only measure the first bits of x, then the probability of measuringe
{0,13Kis S y2is a prefix ok|Qx|2. The resulting partially collapsed quantum state is, upoionalization,
Xx:z is a prefix ok Ox FX> .

4. Classical postprocessing of the measured value to gebthon to the problem being solved. Quan-
tum computers are expensive and rare (!), so we would prglmbfer to use classical processing as
much as possible.

The size of a quantum circuit is the number of gates in theuitirdVe are interested in findingfficient
circuits for problems, i.e., circuits for which the totaksiof the circuit is polynomially bounded in the
number of input bits. For example, a family of circuits ofesiz n® is good. But exponentially large ? 2
circuits are bad.

Why do we consider polynomially-bounded circuits to be dgoddter all, the constant in the size bound
c-n% could be extremely large! There are two main reasons:

* Qualitatively, a polynomial-size circuit indicates theg have had a non-trivial insight into the struc-
ture of the problem, since it is better than a brute forcectear

» Quantitatively it has often been found that a polynomiialet algorithm leads to an algorithm with
good constants.
2 Reversible Computation

Quantum evolution is unitary; a quantum circuit correspotula unitary operatdy acting on kets ir¢2".
Being unitary meansUT =UTU =1, or equivalently thatl preserves angles.
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Figure 1: The classical, possibly nonreversible circuit C

Quantum computation originally (in the late 70s and earlg)8§tudied to understand whether unitary
constraint on quantum evolution providéits beyond those explored in classical computation. A uni-
tary transformation taking basis states to basis states Ibeua permutation. (Indeed, Lif|x> = |u> and
Uly) =|u), then|x) =U~*u) = |y).) Therefore quantum mechanics imposes the constraintidmsi-
cally it must be reversible computation.

If we are given a classical circuit, for example for primaliesting,

—_— —— prime or composite

(notice that the length of the inpM is [log,M]), can we find a similarly small reversible circuit? Any
classical circuit can be built from three basic pieces: thNbDAyateA (a,b) = a-b, the NOT gatdNOT(a) =
1-—4a, and fan-out (copying). The NOT gate is a reversible, upitare-qubit operation. But the AND gate
clearly cannot be reversible; since it takes two bits togut, some information must be lost. (In particular,
after applying a NOT gate, we cannot distinguish the caseseme inputs were 00 versus 01 or 10.) The
AND gate erases information, which is not reversible. Cogyf quantum states is not unitary, but we can
copy the (mutually orthogonal) classical basis statescapgling is also reversible.

One way of implementing classical computation is reveesiblwith an extremely precise, frictionless, bil-
liard ball table, in which the balls collide elastically. Guan algorithm is clearly reversible since reflecting
all the balls simultaneously will cause the computationuto backwards. However, it is also unstable; any
small error will rapidly grow and the computation will bred&wn. We'll give a less picturesque, but stable
method.

There are a number of ways to show construct a reversiblaicoorresponding to a nonreversible circuit.
For example, one can build the necessary pieces out of atledtswap gate (Fredkin gate), a CNOT gate,
and a NOT gate. Here, we will show how to construct a reversilstuit using the Toffoli gate and the NOT
gate. The Toffoli gate is a doubly-controlled NOT gate; Kes(a, b, c) to (a,b,c+abmod 2. (It is its own
inverse, so in particular is reversible, and is also unitary

We will show how, given a standard circ@ttaking inputx toy = C(x), we can use the Toffoli and NOT
gates to build a reversible circuittaking (x, 0%) to (x,y). Actually, some number of ancilla bits, initialized
to 0 will also be useful, s€ takes(x,0%,0™) to (x,y,0™). (Notice that them ancilla bits are unchanged. . .)

* To achieve an AND gate amandb, we use the Toffoli gate on inp&, b,0). The output iga,b,aAb),
so the third output wire has the result of the AND.

 To copy a bita, use the Toffoli gate on inputa, 1,0). The output is(a, 1,a), so we have copied.
Note that this uses both 0 and 1 ancillas; to get a 1 ancillacavesimply apply a NOT gate to a
constant O wire.

This method allows us to construct a circ@t corresponding te€€ which reversibly takegx,0%,0™) to
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inputs and outputs. For example to achieve a NOT we had thrgmiowires, whereas the nonreversible
NOT gate only has one output wire. The extra two wires aregagbage.

For the purposes of a quantum algorithm, the extra garbdgever is quite significant because it can
prevent desirable destructive interference when we runitbait on states which are not just computational
basis states. Fortunately, there is a simple trick for rengpall the garbage; we just run the circuit in reverse
to erase it! Of course, we don’t want to forget our final answerbefore runnin@’ in reverse we need to
copyy = C(x) to some additional ancilla wires. (This copying just uses additional 1 ancilla, and does
not create any further garbage.) The sequence of stepais the

/ /\—1
(x,0K,0™m 0K, 1) - (x,y,garbage, 0K, 1) 2 (x y, garbage, y, 1) ©); (x,0,0My,1) .

Overall, this gives us a clean reversible circﬁﬁid:orresponding te:

3 Randomized computation

Many important classical algorithms are randomized. Fang{e, primality testing:
For eaclx, for most choices of, the circuit computes the correct answetr.
To simulate quantumly:

1. First create the corresponding reversible circuit wigbuitsx, r and ancilla 0’s.

2. To randomize, feed eachO) qubit wire through a Hadamard gate, givi@(\O} +1]1)). Immedi-
ately after applying the Hadamard gate, measure each duhit o

3. Instead of measuring the qubits mfit is sufficient to copy (with CNOT gates) the outputs of the
Hadamard gates into fresh qubits. For example, we chagf) +|1))|0) to 5(|00) + [11)).
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Figure 5: The corresponding quantum circuit; copying witbNOT the qubit%(\@ + \1>) is equivalent
to measuring them, giving a random string

Since they are entangled, measuring the bits into which weedaeach computational basis state of
is equivalent to measuring the bitsroitself.

4. In fact, though, it doesn’'t matter whether we measure teghf qubits before or after running the
quantum circuit. In fact, we can delay their measuremeritrarlty long, or just avoid it altogether.
This is known as the “principle of deferred measurement.aMeement is equivalent to entanglement
of the system with its environment.
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