
Chapter 1

Qubits and Quantum
Measurement

1.1 The Double Slit Experiment

A great deal of insight into the quantum theory can be gleaned by addressing
the question, is light transmitted by particles or waves? Until quite recently,
the evidence strongly favored wave-like propagation. Diffraction of light, a
wave interference phenomenon, was observed as long ago as 1655 by Grimaldi.
In fact, a rather successful theory of wave-like light propagation, due to Huy-
gens, was developed in 1678. Perhaps the most striking confirmation of the
wave nature of light was the double-slit interference experiment performed by
Young in 1802. However, a dilemma began in the late 19th century when the-
oreticians such as Wien calculated how might light should be emitted by hot
objects (i.e., blackbody radiation). Their wave-based calculation differed dra-
matically from what was observed experimentally. At about the same time,
the 1890’s, it was noticed that the behavior of electrons kicked out of metals
by light, the photoelectric effect, was strikingly inconsistent with any existing
wave theory. In the first decade of the 20th century, blackbody radiation and
the photoelectric effect were explained by treating light not as a wave phe-
nomenon, but as particles containing discrete packets of energy, which we now
call photons.

To illustrate this seeming paradox, let us recall Young’s double-slit experi-
ment, which consists of a source of light, an intermediate screen with two very
thin identical slits, and a viewing screen; see Figure 1.1. If only one slit is
open then intensity of light on the viewing screen is maximum on the straight
line path and falls off in either direction. However, if both slits are open,
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Figure 1.1: Double- and single-slit diffraction. Notice that in the double-slit
experiment the two paths interfere with one another. This experiment gives
evidence that light propagates as a wave.

then the intensity oscillates according to the familiar interference pattern pre-
dicted by wave theory. These facts can be very convincingly explained, both
qualitatively and quantitatively, by positing that light travels in waves.

Suppose, however, that you were to place photodetectors at the viewing
screen, and turn down the intensity of the light source until the photodetectors
only occasionally record the arrival of a photon, then you would make a very
surprising discovery. To begin with, you would notice that as you turn down
the intensity of the source, the magnitude of each click remains constant,
but the time between successive clicks increases. You could infer that light
is emitted from the source as discrete particles (photons) — the intensity of
light is proportional to the rate at which photons are emitted by the source.
And since you turned the intensity of the light source down sufficiently, it
only emits a photon once every few seconds. You might now ask the question,
once a photon is emitted from the light source, where will it hit the viewing
screen. The answer is no longer deterministic, but probabilistic. You can only
speak about the probability that a photodetector placed at point x detects
the photon. So what is the probability that the photon is detected at point
x in the setup of the double slit experiment with the light intensity turned
way down? If only a single slit is open, then plotting this probability of
detection as a function of x gives the same curve as the intensity as a function
of x in the classical Young experiment. So far this should agree with your
intuition, since the photon should randomly scatter as it goes through the
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slit. What happens when both slits are open? Our intuition would strongly
suggest that the probability we detect the photon at x should simply be the
sum of the probability of detecting it at x if only slit 1 were open and the
probability if only slit 2 were open. In other words the outcome should no
longer be consistent with the interference pattern. If you were to actually carry
out the experiment, you would make the very surprising discovery that the
probability of detection does still follow the interference pattern. Reconciling
this outcome with the particle nature of light appears impossible, and this is
the basic dilemma we face.

Before proceeding further, let us try to better understand in what sense
the outcome of the experiment is inconsistent with the particle nature of light.
Clearly, for the photon to be detected at x, either it went through slit 1 and
ended up at x or it went through slit 2 and ended up at x. And the probability
of seeing the photon at x should then be the sum of the probabilities of the
two cases. The nature of the contradiction can be seen even more clearly at
“dark” points x, where the probability of detection is 0 when both slits are
open, even though it is non-zero if either slit is open. This truly defies reason!
After all, if the photon has non-zero probability of going through slit 1 and
ending up at x, how can the existence of an additional trajectory for getting
to x possibly decrease the probability that it arrives at x?

Quantum mechanics provides a way to reconcile both the wave and particle
nature of light. Let us sketch how it might address the situation described
above. Quantum mechanics introduces the notion of the complex amplitude
ψ1(x) ∈ C with which the photon goes through slit 1 and hits point x on
the viewing screen. The probability that the photon is actually detected at
x is the square of the magnitude of this complex number: P1(x) = |ψ1(x)|2.
Similarly, let ψ2(x) be the amplitude if only slit 2 is open. P2(x) = |ψ2(x)|2.

Now when both slits are open, the amplitude with which the photon
hits point x on the screen is just the sum of the amplitudes over the two
ways of getting there: ψ12(x) = ψ1(x) + ψ2(x). As before the probability
that the photon is detected at x is the squared magnitude of this amplitude:
P12(x) = |ψ1(x) + ψ2(x)|2. The two complex numbers ψ1(x) and ψ2(x) can
cancel each other out to produce destructive interference, or reinforce each
other to produce constructive interference or anything in between.

Some of you might find this “explanation” quite dissatisfying. You might
say it is not an explanation at all. Well, if you wish to understand how Nature
behaves you have to reconcile yourselves to this type of explanation — this
wierd way of thinking has been successful at describing (and understanding)
a vast range of physical phenomena. But you might persist and (quite reason-
ably) ask “but how does a particle that went through the first slit know that
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the other slit is open”? In quantum mechanics, this question is not well-posed.
Particles do not have trajectories, but rather take all paths simultaneously (in
superposition). As we shall see, this is one of the key features of quantum
mechanics that gives rise to its paradoxical properties as well as provides the
basis for the power of quantum computation. To quote Feynman, 1985, “The
more you see how strangely Nature behaves, the harder it is to make a model
that explains how even the simplest phenomena actually work. So theoretical
physics has given up on that.”

1.2 Basic Quantum Mechanics

Feynman also said, “I think I can safely say that nobody understands quantum
mechanics.” Paradoxically, quantum mechanics is a very simple theory, whose
fundamental principles can be stated very concisely and are enshrined in the
three basic postulates of quantum mechanics - indeed we will go through
these postulates over the course of the next two chapters. The challenge lies
in understanding and applying these principles, which is the goal of the rest
of the book (and will continue through more advanced courses and research if
you choose to pursue the subject further):

• The superpostion principle: this axiom tells us what are the allowable
(possible) states of a given quantum system. An addendum to this axiom
tells us given two subsystems, what the allowable states of the composte
system are.

• The measurement principle: this axiom governs how much information
about the state we can access.

• Unitary evolution: this axoim governs how the state of the quantum
system evolves in time.

In keeping with the philosophy of the book, we will introduce the basic
axioms gradually, starting with simple finite systems, and simplified basis state
measurements, and building our way up to the more general formulations.
This should allow the reader a chance to develop some intuition about these
topics.

1.3 The Superposition Principle

Consider a system with k distinguishable (classical) states. For example, the
electron in a hydrogen atom is only allowed to be in one of a discrete set of
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energy levels, starting with the ground state, the first excited state, the second
excited state, and so on. If we assume a suitable upper bound on the total
energy, then the electron is restricted to being in one of k different energy
levels — the ground state or one of k−1 excited states. As a classical system,
we might use the state of this system to store a number between 0 and k− 1.
The superposition principle says that if a quantum system can be in one of
two states then it can also be placed in a linear superposition of these states
with complex coefficients.

Let us introduce some notation. We denote the ground state of our k-state
system by |0〉, and the succesive excited states by |1〉 , . . . , |k − 1〉. These are
the k possible classical states of the electron. The superposition principle tells
us that, in general, the quantum state of the electron is α0 |0〉+ α1 |1〉+ · · ·+
αk−1 |k − 1〉, where α0, α1, . . . ,αk−1 are complex numbers normalized so that∑

j |αj |2 = 1. αj is called the amplitude of the state |j〉. For instance, if k = 3,
the state of the electron could be

|ψ〉 =
1√
2
|0〉+

1
2
|1〉+

1
2
|2〉

or

|ψ〉 =
1√
2
|0〉 − 1

2
|1〉+

i

2
|2〉

or

|ψ〉 =
1 + i

3
|0〉 − 1− i

3
|1〉+

1 + 2i

3
|2〉 .

The superposition principle is one of the most mysterious aspects about
quantum physics — it flies in the face of our intuitions about the physical
world. One way to think about a superposition is that the electron does not
make up its mind about whether it is in the ground state or each of the k− 1
excited states, and the amplitude α0 is a measure of its inclination towards
the ground state. Of course we cannot think of α0 as the probability that
an electron is in the ground state — remember that α0 can be negative or
imaginary. The measurement priniciple, which we will see shortly, will make
this interpretation of α0 more precise.

1.4 The Geometry of Hilbert Space

We saw above that the quantum state of the k-state system is described
by a sequence of k complex numbers α0, . . . ,αk−1 ∈ C, normalized so that
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∑
j |αj |2 = 1. So it is natural to write the state of the system as a k dimen-

sional vector:

|ψ〉 =





α0

α1
...

αk−1





The normalization on the complex amplitudes means that the state of the
system is a unit vector in a k dimensional complex vector space — called a
Hilbert space.









Figure 1.2: Representation of qubit states as vectors in a Hilbert space.

But hold on! Earlier we wrote the quantum state in a very different (and
simpler) way as: α0 |0〉 + α1 |1〉 + · · · + αk−1 |k − 1〉. Actually this notation,
called Dirac’s ket notation, is just another way of writing a vector. Thus

|0〉 =





1
0
...
0




, |k − 1〉 =





0
0
...
1




.

So we have an underlying geometry to the possible states of a quantum
system: the k distinguishable (classical) states |0〉 , . . . , |k − 1〉 are represented
by mutually orthogonal unit vectors in a k-dimensional complex vector space.
i.e. they form an orthonormal basis for that space (called the standard basis).
Moreover, given any two states, α0 |0〉+α1 |1〉+ · · ·+αk−1 |k − 1〉, and β |0〉+
β |1〉+ · · ·+β |k − 1〉, we can compute the inner product of these two vectors,
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which is
∑k−1

j=0 α∗jβj . The absolute value of the inner product is the cosine of
the angle between these two vectors in Hilbert space. You should verify that
the inner product of any two basis vectors in the standard basis is 0, showing
that they are orthogonal.

The advantage of the ket notation is that the it labels the basis vectors
explicitly. This is very convenient because the notation expresses both that
the state of the quantum system is a vector, while at the same time explic-
itly writing out the physical quantity of interest (energy level, position, spin,
polarization, etc).

1.5 Bra-ket Notation

In this section we detail the notation that we will use to describe a quantum
state, |ψ〉. This notation is due to Dirac and, while it takes some time to get
used to, is incredibly convenient.

Inner Products

We saw earlier that all of our quantum states live inside a Hilbert space. A
Hilbert space is a special kind of vector space that, in addition to all the usual
rules with vector spaces, is also endowed with an inner product. And an inner
product is a way of taking two states (vectors in the Hilbert space) and getting
a number out. For instance, define

|ψ〉 =
∑

k

ak |k〉 ,

where the kets |k〉 form a basis, so are orthogonal. If we instead write this
state as a column vector,

|ψ〉 =





a0

a1
...

aN−1





Then the inner product of |ψ〉 with itself is

〈ψ,ψ〉 =
(

a∗0 a∗1 · · · a∗N1

)
·





a0

a1
...

aN−1




=

N−1∑

k=0

a∗kak =
N−1∑

k=0

|ak|2
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The complex conjugation step is important so that when we take the inner
product of a vector with itself we get a real number which we can associate
with a length. Dirac noticed that there could be an easier way to write this
by defining an object, called a “bra,” that is the conjugate-transpose of a ket,

〈ψ| = |ψ〉† =
∑

k

a∗k 〈k| .

This object acts on a ket to give a number, as long as we remember the rule,

〈j| |k〉 ≡ 〈j|k〉 = δjk

Now we can write the inner product of |ψ〉 with itself as

〈ψ|ψ〉 =




∑

j

a∗j 〈j|




(

∑

k

ak |k〉
)

=
∑

j,k

a∗jak 〈j|k〉

=
∑

j,k

a∗jakδjk

=
∑

k

|ak|2

Now we can use the same tools to write the inner product of any two states,
|ψ〉 and |φ〉, where

|φ〉 =
∑

k

bk |k〉 .

Their inner product is,

〈ψ|φ〉 =
∑

j,k

a∗jbk 〈j|k〉 =
∑

k

a∗kbk

Notice that there is no reason for the inner product of two states to be real
(unless they are the same state), and that

〈ψ|φ〉 = 〈φ|ψ〉∗ ∈ C

In this way, a bra vector may be considered as a “functional.” We feed it a
ket, and it spits out a complex number.
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The Dual Space

We mentioned above that a bra vector is a functional on the Hilbert space.
In fact, the set of all bra vectors forms what is known as the dual space. This
space is the set of all linear functionals that can act on the Hilbert space.

1.6 The Measurement Principle

This linear superposition |ψ〉 =
∑k−1

j=0 αj |j〉 is part of the private world of the
electron. Access to the information describing this state is severely limited —
in particular, we cannot actually measure the complex amplitudes αj . This is
not just a practical limitation; it is enshrined in the measurement postulate
of quantum physics.

A measurement on this k state system yields one of at most k possible
outcomes: i.e. an integer between 0 and k− 1. Measuring |ψ〉 in the standard
basis yields j with probability |αj | 2.

One important aspect of the measurement process is that it alters the
state of the quantum system: the effect of the measurement is that the new
state is exactly the outcome of the measurement. I.e., if the outcome of the
measurement is j, then following the measurement, the qubit is in state |j〉.
This implies that you cannot collect any additional information about the
amplitudes αj by repeating the measurement.

Intuitively, a measurement provides the only way of reaching into the
Hilbert space to probe the quantum state vector. In general this is done by
selecting an orthonormal basis |e0〉 , . . . , |ek−1〉. The outcome of the measure-
ment is |ej〉 with probability equal to the square of the length of the projection
of the state vector ψ on |ej〉. A consequence of performing the measurement
is that the new state vector is |ej〉. Thus measurement may be regarded as a
probabilistic rule for projecting the state vector onto one of the vectors of the
orthonormal measurement basis.

Some of you might be puzzled about how a measurement is carried out
physically? We will get to that soon when we give more explicit examples of
quantum systems.
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1.7 Qubits

Qubits (pronounced “cue-bit”) or quantum bits are basic building blocks that
encompass all fundamental quantum phenomena. They provide a mathemat-
ically simple framework in which to introduce the basic concepts of quantum
physics. Qubits are 2-state quantum systems. For example, if we set k = 2,
the electron in the Hydrogen atom can be in the ground state or the first
excited state, or any superposition of the two. We shall see more examples of
qubits soon.

The state of a qubit can be written as a unit (column) vector ( α
β ) ∈ C2.

In Dirac notation, this may be written as:

|ψ〉 = α |0〉+ β |1〉 with α,β ∈ C and |α|2 + |β|2 = 1.

This linear superposition |ψ〉 = α |0〉+ β |1〉 is part of the private world of
the electron. For us to know the electron’s state, we must make a measure-
ment. Making a measurement gives us a single classical bit of information —
0 or 1. The simplest measurement is in the standard basis, and measuring |ψ〉
in this {|0〉 , |1〉} basis yields 0 with probability |α|2, and 1 with probability
|β|2.

One important aspect of the measurement process is that it alters the state
of the qubit: the effect of the measurement is that the new state is exactly
the outcome of the measurement. I.e., if the outcome of the measurement
of |ψ〉 = α |0〉 + β |1〉 yields 0, then following the measurement, the qubit is
in state |0〉. This implies that you cannot collect any additional information
about α, β by repeating the measurement.

More generally, we may choose any orthogonal basis {|v〉 , |w〉} and mea-
sure the qubit in that basis. To do this, we rewrite our state in that basis:
|ψ〉 = α′ |v〉 + β′ |w〉. The outcome is v with probability |α′| 2, and |w〉 with
probability |β′| 2. If the outcome of the measurement on |ψ〉 yields |v〉, then
as before, the the qubit is then in state |v〉.

Examples of Qubits

Atomic Orbitals

The electrons within an atom exist in quantized energy levels. Qualitatively
these electronic orbits (or “orbitals” as we like to call them) can be thought
of as resonating standing waves, in close analogy to the vibrating waves one
observes on a tightly held piece of string. Two such individual levels can be
isolated to configure the basis states for a qubit.
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Figure 1.3: Energy level diagram of an atom. Ground state and first excited
state correspond to qubit levels, |0〉 and |1〉, respectively.

Photon Polarization

Classically, a photon may be described as a traveling electromagnetic wave.
This description can be fleshed out using Maxwell’s equations, but for our
purposes we will focus simply on the fact that an electromagnetic wave has a
polarization which describes the orientation of the electric field oscillations (see
Fig. 1.4). So, for a given direction of photon motion, the photon’s polarization
axis might lie anywhere in a 2-d plane perpendicular to that motion. It is thus
natural to pick an orthonormal 2-d basis (such as &x and &y, or “vertical” and
“horizontal”) to describe the polarization state (i.e. polarization direction)
of a photon. In a quantum mechanical description, this 2-d nature of the
photon polarization is represented by a qubit, where the amplitude of the
overall polarization state in each basis vector is just the projection of the
polarization in that direction.

The polarization of a photon can be measured by using a polaroid film
or a calcite crystal. A suitably oriented polaroid sheet transmits x-polarized
photons and absorbs y-polarized photons. Thus a photon that is in a super-
position |φ〉 = α |x〉+ β |y〉 is transmitted with probability |α|2. If the photon
now encounters another polariod sheet with the same orientation, then it is
transmitted with probability 1. On the other hand, if the second polaroid
sheet has its axes crossed at right angles to the first one, then if the photon is
transmitted by the first polaroid, then it is definitely absorbed by the second
sheet. This pair of polarized sheets at right angles thus blocks all the light. A
somewhat counter-intuitive result is now obtained by interposing a third po-
lariod sheet at a 45 degree angle between the first two. Now a photon that is
transmitted by the first sheet makes it through the next two with probability
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1/4.













Figure 1.4: Using the polarization state of light as the qubit. Horizontal polar-
ization corresponds to qubit state, |x̂〉, while vertical polarization corresponds
to qubit state, |ŷ〉.

To see this first observe that any photon transmitted through the first
filter is in the state, |0〉. The probability this photon is transmitted through
the second filter is 1/2 since it is exactly the probability that a qubit in the
state |0〉 ends up in the state |+〉 when measured in the |+〉 , |−〉 basis. We
can repeat this reasoning for the third filter, except now we have a qubit in
state |+〉 being measured in the |0〉 , |1〉-basis — the chance that the outcome
is |0〉 is once again 1/2.

Spins

Like photon polarization, the spin of a (spin-1/2) particle is a two-state system,
and can be described by a qubit. Very roughly speaking, the spin is a quantum
description of the magnetic moment of an electron which behaves like a spin-
ning charge. The two allowed states can roughly be thought of as clockwise
rotations (“spin-up”) and counter clockwise rotations (“spin-down”). We will
say much more about the spin of an elementary particle later in the course.
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Measurement Example I: Phase Estimation

Now that we have discussed qubits in some detail, we can are prepared to
look more closesly at the measurement principle. Consider the quantum
state,

|ψ〉 =
1√
2
|0〉+

eiθ

√
2
|1〉 .

If we were to measure this qubit in the standard basis, the outcome would
be 0 with probability 1/2 and 1 with probability 1/2. This measurement
tells us only about the norms of the state amplitudes. Is there any mea-
surement that yields information about the phase, θ?

To see if we can gather any phase information, let us consider a mea-
surement in a basis other than the standard basis, namely

|+〉 ≡ 1√
2

(|0〉+ |1〉) and |−〉 ≡ 1√
2
(|0〉 − |1〉).

What does |φ〉 look like in this new basis? This can be expressed by first
writing,

|0〉 =
1√
2
(|+〉+ |−〉) and |1〉 =

1√
2
(|+〉 − |−〉).

Now we are equipped to rewrite |ψ〉 in the {|+〉 , |−〉}-basis,

|ψ〉 =
1√
2
|0〉+

eiθ

√
2
|1〉)

=
1
2

(|+〉+ |−〉) +
eiθ

2
(|+〉 − |−〉)

=
1 + eiθ

2
|+〉+

1− eiθ

2
|−〉 .

Recalling the Euler relation, eiθ = cos θ+i sin θ, we see that the probability
of measuring |+〉 is 1

4((1+cos θ)2 +sin2 θ) = cos2 (θ/2). A similar calcula-
tion reveals that the probability of measuring |−〉 is sin2 (θ/2). Measuring
in the (|+〉 , |−〉)-basis therefore reveals some information about the phase
θ.

Later we shall show how to analyze the measurement of a qubit in a
general basis.
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Measurement example II: General Qubit Bases

What is the result of measuring a general qubit state |ψ〉 = α |0〉+β |1〉, in
a general orthonormal basis |v〉 ,

∣∣v⊥
〉
, where |v〉 = a|0〉+ b|1〉 and |v⊥〉 =

b∗|0〉 − a∗|1〉? You should also check that |v〉 and
∣∣v⊥

〉
are orthogonal by

showing that
〈
v⊥|v

〉
= 0.

To answer this question, let us make use of our recently acquired bra-
ket notation. We first show that the states |v〉 and

∣∣v⊥
〉

are orthogonal,
that is, that their inner product is zero:

〈
v⊥|v

〉
= (b∗ |0〉 − a∗ |1〉)† (a |0〉+ b |1〉)

= (b 〈0|− a 〈1|)† (a |0〉+ b |1〉)
= ba 〈0|0〉 − a2 〈1|0〉+ b2 〈0|1〉 − ab 〈1|1〉
= ba− 0 + 0− ab

= 0

Here we have used the fact that 〈i|j〉 = δij .
Now, the probability of measuring the state |ψ〉 and getting |v〉 as a

result is,

Pψ(v) = |〈v|ψ〉|2

= |(a∗ 〈0| + b∗ 〈1|) (α |0〉+ β |1〉)|2

= |a∗α + b∗β|2

Similarly,

Pψ(v⊥) =
∣∣∣
〈
v⊥|ψ

〉∣∣∣
2

= |(b 〈0|− a 〈1|) (α |0〉+ β |1〉)|2

= |bα− aβ|2
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Unitary Operators

The third postulate of quantum physics states that the evolution of a quantum
system is necessarily unitary. Geometrically, a unitary transformation is a
rigid body rotation of the Hilbert space, thus resulting in a transformation of
the state vector that doesn’t change its length.

Let us consider what this means for the evolution of a qubit. A unitary
transformation on the Hilbert space C2 is specified by mapping the basis states
|0〉 and |1〉 to orthonormal states |v0〉 = a |0〉+ b |1〉 and |v1〉 = c |0〉+ d |1〉. It
is specified by the linear transformation on C2:

U =
(

a c
b d

)

If we denote by U † the conjugate transpose of this matrix:

U † =
(

a∗ b∗

c∗ d∗

)

then it is easily verified that UU † = U †U = I. Indeed, we can turn this around
and say that a linear transformation U is unitary if and only if it satisfies this
condition, that

UU † = U †U = I.

Let us now consider some examples of unitary transformations on single
qubits or equivalently single qubit quantum gates:

• Hadamard Gate. Can be viewed as a reflection around π/8 in the real
plane. In the complex plane it is actually a π-rotation about the π/8
axis.

H =
1√
2

(
1 1
1 −1

)

The Hadamard Gate is one of the most important gates. Note that
H† = H – since H is real and symmetric – and H2 = I.

• Rotation Gate. This rotates the plane by θ.

U =
(

cos θ − sin θ
sin θ cos θ

)
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• NOT Gate. This flips a bit from 0 to 1 and vice versa.

NOT =
(

0 1
1 0

)

• Phase Flip.

Z =
(

1 0
0 −1

)

The phase flip is a NOT gate acting in the |+〉 = 1√
2
(|0〉+ |1〉) , |−〉 =

1√
2
(|0〉 − |1〉) basis. Indeed, Z |+〉 = |−〉 and Z |−〉 = |+〉.

How do we physically effect such a (unitary) transformation on a quantum
system? To explain this we must first introduce the notion of the Hamiltonian
acting on a system; you will have to wait for three to four lectures before we
get to those concepts.

1.8 Problems

Problem 1

Show that
HZH = X

Problem 2

Verify that
U †U = UU † = I

for the general unitary operator,

U =
(

a c
b d

)



Chapter 2

Entanglement

What are the allowable quantum states of systems of several particles? The
answer to this is enshrined in the addendum to the first postulate of quan-
tum mechanics: the superposition principle. In this chapter we will consider
a special case, systems of two qubits. In keeping with our philosophy, we
will first approach this subject naively, without the formalism of the formal
postulate. This will facilitate an intuitive understanding of the phenomenon
of quantum entanglement — a phenomenon which is responsible for much of
the ”quantum weirdness” that makes quantum mechanics so counter-intuitive
and fascinating.

2.1 Two qubits

Now let us examine a system of two qubits. Consider the two electrons in two
hydrogen atoms, each regarded as a 2-state quantum system:

Since each electron can be in either of the ground or excited state, clas-
sically the two electrons are in one of four states – 00, 01, 10, or 11 – and
represent 2 bits of classical information. By the superposition principle, the
quantum state of the two electrons can be any linear combination of these
four classical states:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ,

where αij ≤ C,
∑

ij |αij |2 = 1. Of course, this is just Dirac notation for the
unit vector in C4: 



α00

α01

α10

α11
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Measurement

As in the case of a single qubit, even though the state of two qubits is specified
by four complex numbers, most of this information is not accessible by mea-
surement. In fact, a measurement of a two qubit system can only reveal two
bits of information. The probability that the outcome of the measurement is
the two bit string x ∈ {0, 1}2 is |αx|2. Moreover, following the measurement
the state of the two qubits is |x〉. i.e. if the first bit of x is j and the second
bit k, then following the measurement, the state of the first qubit is |j〉 and
the state of the second is |k〉.

An interesting question comes up here: what if we measure just the first
qubit? What is the probability that the outcome is 0? This is simple. It
is exactly the same as it would have been if we had measured both qubits:
Pr {1st bit = 0} = Pr {00} + Pr {01} = |α00| 2 + |α01| 2. Ok, but how does
this partial measurement disturb the state of the system?

The answer is obtained by an elegant generalization of our previous rule
for obtaining the new state after a measurement. The new superposition is
obtained by crossing out all those terms of |ψ〉 that are inconsistent with the
outcome of the measurement (i.e. those whose first bit is 1). Of course, the
sum of the squared amplitudes is no longer 1, so we must renormalize to obtain
a unit vector:

|φnew〉 =
α00 |00〉+ α01 |01〉√

|α00|2 + |α01|2

Entanglement

Suppose the first qubit is in the state 3/5 |0〉+4/5 |1〉 and the second qubit is in
the state 1/

√
2 |0〉−1/

√
2 |1〉, then the joint state of the two qubits is (3/5 |0〉+

4/5 |1〉)(1/
√

2 |0〉−1/
√

2 |1〉) = 3/5
√

2 |00〉−3/5
√

2 |01〉+4/5
√

2 |10〉−4/5
√

2 |11〉
Can every state of two qubits be decomposed in this way? Our classical

intuition would suggest that the answer is obviously affirmative. After all
each of the two qubits must be in some state α |0〉 + β |1〉, and so the state
of the two qubits must be the product. In fact, there are states such as
|Φ+〉 = 1√

2
(|00〉+ |11〉) which cannot be decomposed in this way as a state

of the first qubit and that of the second qubit. Can you see why? Such a
state is called an entangled state. When the two qubits are entangled, we
cannot determine the state of each qubit separately. The state of the qubits
has as much to do with the relationship of the two qubits as it does with their
individual states.
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If the first (resp. second) qubit of |Φ+〉 is measured then the outcome is
0 with probability 1/2 and 1 with probability 1/2. However if the outcome is
0, then a measurement of the second qubit results in 0 with certainty. This is
true no matter how large the spatial separation between the two particles.

The state |Φ+〉, which is one of the Bell basis states, has a property which
is even more strange and wonderful. The particular correlation between the
measurement outcomes on the two qubits holds true no matter which rotated
basis a rotated basis |v〉 ,

∣∣v⊥
〉

the two qubits are measured in, where |0〉 =
α |v〉+ β

∣∣v⊥
〉

and |1〉 = −β |v〉+ α
∣∣v⊥

〉
. This can bee seen as,

∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉)

=
1√
2

((
α |v〉+ β

∣∣∣v⊥
〉)

⊗
(
α |v〉+ β

∣∣∣v⊥
〉))

− 1√
2

((
−β |v〉+ α

∣∣∣v⊥
〉)

⊗
(
−β |v〉+ α

∣∣∣v⊥
〉))

=
1√
2

((
α2 + β2

)
|vv〉+

(
α2 + β2

) ∣∣∣v⊥v⊥
〉)

=
1√
2

(
|vv〉+ |v⊥v⊥〉

)

Two Qubit Gates

Recall that the third axiom of quantum physics states that the evolution of a
quantum system is necessarily unitary. Intuitively, a unitary transformation
is a rigid body rotation of the Hilbert space. In particular it does not change
the length of the state vector.

Let us consider what this means for the evolution of a two qubit system.
A unitary transformation on the Hilbert space C4 is specified by a 4x4 matrix
U that satisfies the condition UU † = U †U = I. The four columns of U specify
the four orthonormal vectors |v00〉, |v01〉, |v10〉 and |v11〉 that the basis states
|00〉, |01〉, |10〉 and |11〉 are mapped to by U .

A very basic two qubit gate is the controlled-not gate or the CNOT:
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Controlled Not (CNOT)

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





The first bit of a CNOT gate is called the “control bit,” and the second the
“target bit.” This is because (in the standard basis) the control bit does not
change, while the target bit flips if and only if the control bit is 1.

The CNOT gate is usually drawn as follows, with the control bit on top
and the target bit on the bottom:

!
"

Though the CNOT gate looks very simple, any unitary transformation on
two qubits can be closely approximated by a sequence of CNOT gates and
single qubit gates. This brings us to an important point. What happens to
the quantum state of two qubits when we apply a single qubit gate to one of
them, say the first? Let’s do an example. Suppose we apply a Hadamard gate
to the superposition: |ψ〉 = 1/2 |00〉 − i/

√
2 |01〉+ 1/

√
2 |11〉. Then this maps

the first qubit as follows:

|0〉 → 1/
√

2 |0〉+ 1/
√

2 |1〉
|1〉 → 1/

√
2 |0〉 − 1/

√
2 |1〉 .

So

|ψ〉 → 1/2
√

2 |00〉+ 1/2
√

2 |01〉 − i/2 |00〉+ i/2 |01〉+ 1/2 |10〉 − 1/2 |11〉
= (1/2

√
2− i/2) |00〉+ (1/2

√
2 + i/2) |01〉+ 1/2 |10〉 − 1/2 |11〉 .

Bell states

We can generate the Bell states |Φ+〉 = 1√
2
(|00〉+ |11〉) with the following

simple quantum circuit consisting of a Hadamard and CNOT gate:

H !
"
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The first qubit is passed through a Hadamard gate and then both qubits
are entangled by a CNOT gate.

If the input to the system is |0〉 ⊗ |0〉, then the Hadamard gate changes
the state to

1√
2
(|0〉+ |1〉)⊗ |0〉 = 1√

2
|00〉+ 1√

2
|10〉 ,

and after the CNOT gate the state becomes 1√
2
(|00〉 + |11〉), the Bell state

|Φ+〉.
Notice that the action of the CNOT gate is not so much copying, as our

classical intuition would suggest, but rather to entangle.
The state |Φ+〉 = 1√

2
(|00〉+ |11〉) is one of four Bell basis states:

∣∣Φ±〉
= 1√

2
(|00〉±| 11〉)

∣∣Ψ±〉
= 1√

2
(|01〉±| 10〉) .

These maximally entangled states on two qubits form an orthonormal basis
for C4. Exercise: give a simple quantum circuit for generating each of these
states, and prove that the Bell basis states form an orthonormal basis for C4.

So far we have avoided a discussion of the addendum to the superposition
axiom, which tells us the allowable states of a composite quantum system
consisting of two subsystems. The basic question for our example of a two
qubit system is this: how do the 2-dimensional Hilbert spaces corresponding to
each of the two qubits relate to the 4-dimensional Hilbert space corresponding
to the composite system? i.e. how do we glue two 2-dimensional Hilbert
spaces to get a 4-dimensional Hilbert space? This is done by taking a tensor
product of the two spaces.

Let us describe this operation of taking tensor products in a slightly
more general setting. Suppose we have two quantum systems - a k-state
system with associated k-dimensional Hilbert space V with orthonormal ba-
sis |0〉 , . . . , |k − 1〉 and a l-state system with associated l-dimensional Hilbert
space W with orthonormal basis |0〉 , . . . , |l − 1〉. What is resulting Hilbert
space obtained by gluing these two Hilbert spaces together? We can answer
this question as follows: there are kl distinguishable states of the composite
system — one for each choice of basis state |i〉 of the first system and basis
state |j〉 of the second system. We denote the resulting of dimension kl Hilbert
space by V ⊗W (pronounced “V tensor W”). The orthonormal basis for this
new Hilbert space is given by:

{|i〉 ⊗ |j〉 : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ l − 1},
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So a typical element of V ⊗W will be of the form
∑

ij αij(|i〉 ⊗ |j〉).
In our example of a two qubit system, the Hilbert space is C2⊗C2, which is

isomorphic to the four dimensional Hilbert space C4. Here we are identifying
|0〉 ⊗ |0〉 with |00〉.

EPR Paradox:

Everyone has heard Einstein’s famous quote “God does not play dice with the
Universe”. The quote is a summary of the following passage from Einstein’s
1926 letter to Max Born: ”Quantum mechanics is certainly imposing. But an
inner voice tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the Old One. I, at any
rate, am convinced that He does not throw dice.” Even to the end of his life,
Einstein held on to the view that quantum physics is an incomplete theory
and that some day we would learn a more complete and satisfactory theory
that describes nature.

In what sense did Einstein consider quantum mechanics to be incomplete?
To understand this better, let us imagine that we were formulating a theory
that would explain the act of flipping a coin. A simple model of a coin flip is
that its outcome is random — heads 50% of the time, and tails 50% of the
time. This model seems to be in perfect accordance with our experience with
flipping a coin, but it is incomplete. A more complete theory would say that
if we were able to determine the initial conditions of the coin with perfect
accuracy (position, momentum), then we could solve Newton’s equations to
determine the eventual outcome of the coin flip with certainty. The coin flip
amplifies our lack of knowledge about the initial conditions, and makes the
outcome seem completely random. In the same way, Einstein believed that
the randomness in the outcome of quantum measurements reflected our lack
of knowledge about additional degrees of freedom of the quantum system.

Einstein sharpened this line of reasoning in a paper he wrote with Podolsky
and Rosen in 1935, where they introduced the famous Bell states. Recall that
for Bell state 1√

2
(|00〉+ |11〉), when you measure first qubit, the second qubit

is determined. However, if two qubits are far apart, then the second qubit
must have had a determined state in some time interval before measurement,
since the speed of light is finite. By the rotational symmetry of the Bell state,
which we saw earlier, this fact holds in every basis. This appears analogous
to the coin flipping example. EPR therefore suggested that there is a more
complete theory where “God does not throw dice.” Until his death in 1955,
Einstein tried to formulate a more complete ”local hidden variable theory”
that would describe the predictions of quantum mechanics, but without re-
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sorting to probabilistic outcomes. But in 1964, almost three decades after the
EPR paper, John Bell showed that properties of Bell (EPR) states were not
merely fodder for a philosophical discussion, but had verifiable consequences:
local hidden variables are not the answer. He showed that there is a partic-
ular experiment that could be performed on two qubits entangled in a Bell
state such no local hidden variable theory 1 could possibly match the outcome
predicted by quantum mechanics. The Bell experiment has been performed
to increasing accuracy, originally by Aspect, and the results have always been
consistent with the predictions of quantum mechanics and inconsistent with
local hidden variable theories.

2.2 Bell’s Thought Experiment

Bell considered the following experiment: let us assume that two particles
are produced in the Bell state |Φ+〉 in a laboratory, and the fly in opposite
directions to two distant laboratories. Upon arrival, each of the two qubits is
subject to one of two measurements. The decision about which of the two ex-
periments is to be performed at each lab is made randomly at the last moment,
so that speed of light considerations rule out information about the choice at
one lab being transmitted to the other. The measurements are cleverly chosen
to distinguish between the predictions of quantum mechanics and any local
hidden variable theory. Concretely, the experiment measures the correlation
between the outcomes of the two experiments. The choice of measurements
is such that any classical hidden variable theory predicts that the correlation
between the two outcomes can be at most 0.75, whereas quantum mechanics
predicts that the correlation is cos2 π/8 ≈ 0.8. Thus the experiment allows us
to distinguish between the predictions of quantum mechanics and any local
hidden variable theory! We now describe the experiment in more detail.

The two experimenters A and B (for Alice and Bob) each receives one qubit
of a Bell state |Φ+〉, and measures it in one of two bases depending upon the
value of a random bit rA and rB respectively. Denote by a and b respectively
the outcomes of the measurements. We are interested in the highest achievable
correlation between the two quantities rA × rB and a + b(mod2). We will see
below that there is a particular choice of bases for the quantum measurements
made by A and B such that P [rA×rB = a+b(mod2)] = cos2 π/8 ≈ .8. Before
we do so, let us see why no classical hidden variable theory allows a correlation
of over 0.75. i.e. P [rA × rB = a + b(mod2)] ≤ 0.75.

1We will describe what we mean by a local hidden variable theory below after we start
describing the actual experiment
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We can no longer postpone a discussion about what a local hidden variable
theory is. Let us do so in the context of the Bell experiment. In a local hidden
variable theory, when the Bell state was created, the two particles might share
an arbitrary amount of classical information, x. This information could help
them coordinate their responses to any measurements they are subjected to
in the future. By design, the Bell experiment selects the random bits rA

an rB only after the two particles are too far apart to exchange any further
information before they are measured. Thus we are in the setting, where A
and B share some arbitrary classical information x, and are given as input
independent, random bits xA an xB as input, and must output bits a and b
respectively to maximize their chance of achieving rA × rB = a + b(mod2).
It can be shown that the shared information x is of no use in increasing this
correlation, and indeed, the best they can do is to always output a = b = 0.
This gives P [rA × rB = a + b(mod2)] ≤ .75.

Let us now describe the quantum measurements that achieve greater cor-
relation. They are remarkably simple to describe:

• if rA = 0, then Alice measures in the −π/16 basis.

• if rA = 1, then Alice measures in the 3π/16 basis.

• if rB = 0, then Bob measures in the π/16 basis.

• if rB = 1, then Bob measures in the −3π/16 basis.

The analysis of the success probability of this experiment is also beautifully
simple. We will show that in each of the four cases rA = rB = 0, etc, the
success probability P [rA × rB = a + b(mod2)] = cos2 π/8.

We first note that if Alice and Bob measure in bases that make an angle
θ with each other, then the chance that their measurement outcomes are the
same (bit) is exactly cos2 θ. This follows from the rotational invariance of |Φ+〉
and the following observation: if the first qubit is measured in the standard
basis, then the outcome is outcome is an unbiased bit. Moreover the state of
the second qubit is exactly equal to the outcome of the measurement — |0〉 if
the measurement outcome is 0, say. But now if the second qubit is measured
in a basis rotated by θ, then the probability that the outcome is also 0 is
exactly cos2 θ.

Now observe that in three of the four cases, where xA · xB = 0, Alice and
Bob measure in bases that make an angle of π/8 with each other. By our
observation above, P [a + b ≡ 0 mod 2] = P [a = b] = cos2 π/8.
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In the last case xA ·xB = 1, and they measure in bases that make an angle
of 3π/8 with each other. Now, P [a + b ≡ 1 mod 2] = P [a ,= b] = sin2 3π/8 =
cos2 5π/8.

2.3 No Cloning Theorem and Quantum
Teleportation

The axioms of quantum mechanics are deceptively simple. Our view is that
to begin to understand and appreciate them you have to be exposed to some
of their most counterintuitive consequences. Paradoxically, this will help you
build a better intuition for quantum mechanics.

In this chapter we will study three very simple but counterintuitive conse-
quences of the laws of quantum mechanics. The theme of all three vignettes
is the copying or transmission of quantum information.

No Cloning Theorem

Given a quantum bit in an unknown state |φ〉 = α0 |0〉+ α1 |1〉, is it possible
to make a copy of this quantum state? i.e. create the state |φ〉 ⊗ |φ〉 =
(α0 |0〉+ α1 |1〉)⊗ (α0 |0〉+ α1 |1〉)? The axioms of quantum mechanics forbid
this very basic operation, and the proof of the no cloning theorem helps gain
insight into this.

To be more precise, we are asking whether it is possible to start with two
qubits in state |φ〉 ⊗ |0〉 and transform them to the state |φ〉 ⊗ |φ〉? By the
third axiom of quantum mechanics, for this to be possible there must be a
unitary transformation U such that U |φ〉⊗ |0〉 = |φ〉⊗ |φ〉. We will show that
no unitary transformation can achieve this simultaneously for two orthogonal
states |φ〉 and |ψ〉.

Recall that a unitary transformation is a rotation of the Hilbert space,
and therefore necessarily preserves angles. Let us make this more precise.
Consider two quantum states (say on a single qubit): |φ〉 = α0 |0〉+α1 |1〉 and
|ψ〉 = β0 |0〉 + β1 |1〉. The cosine of the angle between them is given by (the
absolute value of) their inner product: α∗0β0 + α∗1β1.

Now consider the quantum states (on two qubits) |φ〉 ⊗ |φ〉 = (α0 |0〉 +
α1 |1〉)(α0 |0〉+ α1 |1〉) and |ψ〉 ⊗ |φ〉 = (β0 |0〉+ β1 |1〉)(β0 |0〉+ β1 |1〉). Their
inner product is: (α∗0β0 + α∗1β1)2. i.e. 〈φ|ψ〉2 = 〈φφ|ψψ〉.

We are now ready to state and prove the no cloning theorem:
Assume we have a unitary operator U and two quantum states |φ〉 and
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|ψ〉:

|φ〉 ⊗ |0〉 U−→ |φ〉 ⊗ |φ〉

|ψ〉 ⊗ |0〉 U−→ |ψ〉 ⊗ |ψ〉 .

Then 〈φ|ψ〉 is 0 or 1.
〈φ|ψ〉 = (〈φ|⊗〈0|)(|ψ〉⊗|0〉) = (〈φ|⊗〈φ|)(|ψ〉⊗|ψ〉) = 〈φ|ψ〉2. In the second

equality we used the fact that U , being unitary, preserves inner products.

Superdense Coding

Suppose Alice and Bob are connected by a quantum communications channel.
By this we mean, for example, that they can communicate qubits over an opti-
cal fibre using polarized photons. Is this much more powerful than a classical
communication channel, over which only classical bits may be transmitted?
The answer seems obvious, since a classical bit is a special case of a quantum
bit. And a qubit appears to encode an infinite number of bits of information,
since to specify its state we must specify two complex numbers. However,
the truth is a little more subtle, since the axioms of quantum mechanics also
severely restrict how we may access information about the quantum state by
a measurement.

So the question we wish to ask is ”how many classical bits can Alice trans-
mit to Bob in a message consisting of a single qubit?” We will show that if
Alice and Bob share entanglement in the form of a Bell state, then Alice can
transmit two classical bits by transmitting just one qubit over the quantum
channel.

The overall idea is this: say Alice and Bob share |Φ+〉 = 1√
2
(|00〉 + |11〉).

Alice can transform this shared state to any of the four Bell basis states |Φ+〉,
|Φ−〉, |Ψ+〉, |Ψ−〉 by applying a suitable quantum gate just to her qubit. Now
if she transmits her qubit to Bob, he holds both qubits of of a Bell basis state
and can perform a measurement in the Bell basis to distinguish which of the
four states he holds.

Let’s now see the details of Alice’s protocol: if Alice wishes to transmit
the two bit message b1b2, she applies a bit flip X to her qubit if 1 = 1 and a
phase flip Z to her qubit if b2 = 1. You should verify that in the four cases 00,
01, 10, 11 this results in the two qubits being in the state |Φ+〉, |Φ−〉, |Ψ+〉,
|Ψ−〉 respectively.

After receiving Alice’s qubit, Bob measures the two qubits in the Bell
basis by running the circuit we saw in chapter 2 backwards (i.e., applying
(H ⊗ I) ◦ CNOT ), then measuring in the standard basis.
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Note that Alice really did use two qubits total to transmit the two classical
bits. After all, Alice and Bob somehow had to start with a shared Bell state.
However, the first qubit – Bob’s half of the Bell state – could have been sent
well before Alice had decided what message she wished to send to Bob.

One can show that it is not possible to do any better. No more than two
classical bits can be transmitted by sending just one qubit. To see why you
will have to understand our next example.

Quantum Teleportation

After months of effort, Alice has managed to synthesize a special qubit, which
she strongly suspects has some wonderful physical properties. Unfortunately,
she doesn’t explicitly know the state vector |ψ〉 = a0|0〉+ a1|1〉. And she does
not have the equipment in her lab to carry out a crucial next phase of her
experiment. Luckily Bob’s lab has the right equipment, though it is at the
other end of town. Is there a way for Alice to safely transport her qubit to
Bob’s lab?

If Alice and Bob share a Bell state, then there is a remarkable method
for Alice to transmit her qubit to Bob. The method requires her to make
a certain measurement on her two qubits: the qubit she wishes to transmit
and her share of the Bell state. She then calls up Bob on the phone and tells
him the outcome of her measurement — just two classical bits. Depending
upon which of four outcomes Alice announces to him on the phone, Bob
performs one of four operations on his qubit, and voila, his qubit is in the
state |ψ〉 = a0|0〉+ a1|1〉!

But hold on a moment, doesn’t this violate the no cloning theorem?! No,
because Alice’s qubit was destroyed by measurement before Bob created his
copy. Let us build our way to the teleportation protocol in a couple of simple
stages:

Let us start with the following scenario. Alice and Bob share two qubits
in the state a |00〉+ b |11〉. Alice and Bob don’t know the amplitudes a and b.
How can Bob end up with the state a |0〉+ b |1〉? An easy way to achieve this
is to perform a CNOT gate on the two qubits with Bob’s qubit as the control,
and Alice’s qubit as the target. But this requires an exchange of quantum
information. What if Alice and Bob can only exchange classical information?

Here is a way. Alice performs a Hadamard on her qubit. The state of the
two qubits is now a/

√
2(|0〉+ |1〉) |0〉+ b/

√
2(|0〉 − |1〉) |1〉 = 1/

√
2 |0〉 (a |0〉+

b |1〉) + 1/sqrt2 |1〉 (a |1〉 − b |1〉). Now if Alice measures her qubit in the stan-
dard basis, if the measurement outcome is 0, then Bob’s qubit is the desired
a |0〉+ b |1〉. If the measurement outcome is 1, then Bob’s qubit is a |0〉− b |1〉.
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But in this case if Bob were to apply a phase flip gate (Z) to his qubit, it
would end up in the desired state a |0〉+ b |1〉.

Back to teleportation. Alice has a qubit in state a |0〉 + b |1〉, and Alice
and Bob share a Bell state. Is there any way for them to convert their joint
state to a |00〉+ b |11〉, without exchanging any quantum information? If they
succeed, then by our previous discussion Alice can teleport her qubit to Bob.

Consider what happens if Alice applies a CNOT gate with her qubit a |0〉+
b |1〉 as the control qubit, and her share of the Bell state as the target qubit.

!
" M

|φ〉 ⊗ |ψ〉 =
∑

i=0,1

ai|i〉 ⊗
∑

j=0,1

1√
2
|j, j〉.

After passing through the CNOT gate this becomes
∑

i,j

ai

∣∣i, i⊕ j, j
〉
.

Now A measures the middle qubit. Suppose it is measured as l; then l = i⊕ j.
The state is now ∑

j

aj⊕l

∣∣j ⊕ l, j
〉
.

Next, A transmits l to B. If l = 0, B takes no action, while if l = 1, then B
performs a bit flip on his qubit (the bottom qubit in the diagram.) A bit flip

is just the transformation
(

0 1
1 0

)
. Thus we have

∑

j

aj⊕l

∣∣j, j
〉
.

Finally, B does a phase flip on his qubit, yielding
∑

j

aj

∣∣j, j
〉
.

The correct solution is to go back and modify the original diagram, insert-
ing a Hadamard gate and an additional measurement:
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!
" M

H M

Now the algorithm proceeds exactly as before. However A’s application of the
Hadamard gate now induces the transformation

∑

j

aj

∣∣j, j
〉
−→

∑

ij

aj(−1)ij
∣∣i, j

〉
.

Finally A measures i and sends the measurement to B. The state is now:
∑

j

aj(−1)ij |j〉.

If i = 0 then we are done; if i = 1 then B applies a phase flip. In either case
the state is now a0|0〉+ a1|1〉.

So A has transported the quantum state to B simply by sending two
classical bits.


