
Quantum Search + quantum Zeno effect

0.0.1 NP-Completeness

Most interesting computational search problems share an important feature: given a proposed solution, it is easy to
verify whether its correctness. i.e. it is possible to checkin polynomial time whether a proposed solution is indeed a
solution to the problem. Unfortunately there are exponentially many potential solutions to choose from, and this is the
combinatorial explosion that makes the design of efficient algorithms so challenging.

Let us consider an example — satisfiability. Here we are givena boolean functionf (x1, . . . ,xn) mapping{0,1}n to
{0,1}. The challenge is to find an input(a1, . . . ,an) such thatf (a1, . . . ,an) = 1. Such an input is called a satisfying
assignment. In the satisfiability problem the boolean function is specified very explicitly via a formula (or sometimes
even a circuit). For example, in the case 3SAT (or 3-satisfiability), the function f (x1, . . . ,xn) = c1 ∧ . . .∧ cm, where
each of theci’s (called clauses) are simple functions of three of thex j ’s. More precisely each clause is of the form
(u∨ v∨w), whereu,v,w (called literals) each stand for either a variablex j or its complement (1− x j). The clause
evaluates to 1 if any ofu, v or w is 1.

3SAT is a prototypical example of an NP-complete problem. What this term means is that 3SAT is in the class NP
of problems where a proposed solution can be efficiently checked — in this case by checking that for each clause
there is a literal that evaluates to 1. The challenge, of course, is finding a satisfying assignment among the 2n possible
assignments of values tox1, . . .xn. Saying that 3SAT is NP-complete means that it is one of the hardest problems in
NP, in the sense that if you can solve 3SAT efficiently (i.e. inpolynomial time) then you can solve any problem in
NP efficiently. There are now thousands of useful computational problems that are known to be NP-complete. Coping
with them in practice is one of the big challenges in the field of Algorithms.

The question we will focus on today is whether the exponential power of quantum algorithms can help solve NP-
complete problems efficiently. The most naive hope is this: start with ann-qubit register in the state
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. Now compute the functionf to get the superposition

∑x∈{0,1}n
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. The quantum computer has now ”in parallel” computedf (x) for every value ofx and ”should
somehow” be able to find an assignment such thatf (a) = 1. The problem with this naive hope is that we have no
interference between the different values ofx, and if we were to measure the quantum computation would be no
different than it would have been if we had just randomly chosenx. So is there any quantum algorithm that can do
better? How much better?

0.0.2 Unstructured Search

To answer these questions we will abstract our problem as follows: we representf by a table ofN = 2n entries (one
for each input) where exactly one of the entries is 1, and all the rest are 0. The task is to find index of the unique entry
that is 1. Ideally we want to solve the problem in polynomial time. i.e.O(poly(n)). The quantum algorithm is allowed
to query the table in superposition. i.e. it is allowed to create an arbitrary superposition∑x∈{0,1}n αx
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table to get the answer∑x∈{0,1}n αx
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.

Unfortunately we can show that any quantum algorithm to solve this problem must make at least
√

N = 2n/2 queries
to the table. The proof of this fact is beyond the scope of thiscourse. What we will see is an algorithm, due to Grover,
that matches this bound. It give a quantum algorithm for solving this problem inO(

√
N) steps.

Here’s the problem: You are given a boolean functionf : {1, . . . ,N} → {0,1}, and are promised that for exactly one
a ∈ {1, . . . ,N}, f (a) = 1. Think of this as a table of sizeN, where exactly one element has value 1, and all the others
are 0. Since we assumef can be computed classically in polynomial time, we can also compute it in superposition:
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As we saw before, we can use circuit forf to put information aboutf (x) in the phase by effecting the transformation:

∑
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αx
∣

∣x
〉

→ ∑
x

αx(−1) f (x)
∣

∣x
〉

0.1 Grover’s Algorithm

The quantum search algorithm starts with the superposition
∣

∣ψ0
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= ∑x
1√
N
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. For sqrtN iterations it applies a se-

quence of two operations. Each such iteration increases theamplitude of
∣

∣a
〉

by at least 1
2
√

N
. It follows that at the

end of the algorithm the amplitude ofketa is a constant, and therefore measuring the register yieldsa with constant
probability.

The first operation is a phase reflection ofketa: i.e. it maps the superposition
∣
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to
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−
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. Exercise: show how to use the quantum circuit for computingf to implement a phase reflection of
∣

∣a
〉

.

The second operation is a reflection about the mean. Before describing this operation let us imagine that we wanted
to perform a reflection about

∣

∣0
〉

. i.e.
∣

∣0
〉

remains unchanged, but every vector orthogonal to it gets reflected. This
is implemented by the operator that looks like negative identity except that its top left entry is 1 rather than−1.
i.e. the operator isR = −I + 2
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〉〈
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∣ . To perform a reflection about the mean, we have to do a reflection about
∣
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rather than about
∣
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. This is carried out by first mapping
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to
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by applyingH⊗n then

applyingR and then mapping
∣

∣0n
〉

back to
∣

∣ψ0
〉

by applyingH⊗n. i.e. we apply an operatorD = H⊗nRH⊗n. Exercise:
show that the operatorD maps the superposition

∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

to
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, whereβx = 2µ −αx. Explain in
what senseβx is a reflection ofαx aboutµ .

Grover’s algorithm consists of starting in the stateψ0 and applying
√

N iterations of:

1. Implement a phase reflection of
∣

∣a
〉

2. Reflect about the mean using the operatorD

This process is illustrated in Figure 0.1.

Suppose we just want to finda with probability 1
2. Until this point, the rest of the basis vectors will have amplitude at

least 1√
2N

. In each iteration of the algorithm,αa increases by at least2√
2N

=
√

2
N . Eventually,αa = 1√

2
. The number

of iterations to get to thisαa is≤
√

N.
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Figure 0.1: The first three steps of Grover’s algorithm. We start with a uniform superposition of all basis vectors in
(a). In (b), we have used the functionf to invert the phase ofαk. After running the diffusion operatorD, we amplify
αk while decreasing all other amplitudes.
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