
Tour Into the Picture:

Using a Spidery Mesh Interface to Make Animation from a Single Image

Youichi Horry*‡ Ken-ichi Anjyo† Kiyoshi Arai*

Hitachi, Ltd.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper are available in the papers/horry directory.

ABSTRACT
A new method called TIP (Tour Into the Picture) is presented for
easily making animations from one 2D picture or photograph of a
scene. In TIP, animation is created from the viewpoint of a
camera which can be three-dimensionally "walked or flown-
through" the 2D picture or photograph. To make such animation,
conventional computer vision techniques cannot be applied in the
3D modeling process for the scene, using only a single 2D image.
Instead a spidery mesh is employed in our method to obtain a
simple scene model from the 2D image of the scene using a
graphical user interface. Animation is thus easily generated
without the need of multiple 2D images.

Unlike existing methods, our method is not intended to
construct a precise 3D scene model. The scene model is rather
simple, and not fully 3D-structured. The modeling process starts
by specifying the vanishing point in the 2D image. The
background in the scene model then consists of at most five
rectangles, whereas hierarchical polygons are used as a model for
each foreground object. Furthermore a virtual camera is moved
around the 3D scene model, with the viewing angle being freely
controlled. This process is easily and effectively performed using
the spidery mesh interface. We have obtained a wide variety of
animated scenes which demonstrate the efficiency of TIP.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - viewing algorithms; I.3.7
[Computer Graphics] Three-dimensional Graphics and Realism,
Animation

Additional Keywords: graphical user interface, image-based
modeling/rendering, vanishing point, field-of-view angle

1 INTRODUCTION
Making animation from one picture, painting, or photograph is
not a new idea. Such animations have been mainly used for

∗Central Research Laboratory, 1-280 Higashi-Koigakubo Kokubunji Tokyo 185

{horry, arai}@crl.hitachi.co.jp

†Visualware Planning Department, 4-6 Kanda-Surugadai Chiyoda Tokyo 101

anjyo@cm.head.hitachi.co.jp

‡Currently visiting INRIA Rocquencourt, Domaine de Volceau - Rocquencourt 78153 Le Chesnay Cedex France

horry@bora.inria.fr

art and entertainment purposes, often with striking visual effects.
For instance, 2D animations are commonly seen, where 2D
figures of persons or animals in the original image move around,
with the 2D background fixed. In relatively simple cases, these
animations may be created using traditional cel animation
techniques. If the animations are computer-generated, then 2D
digital effects, such as warping and affine transformations, can
also be employed.

However, it is still hard and tedious for a skilled animator to
make computer animations from a single 2D image of a 3D scene
without knowing its 3D structure, even if established digital

techniques are fully available. When the input image is given in
advance, first of all, the animator has to make the 3D scene
model by trial and error until the projected image of the model
fits well with the input image of the scene. At the very beginning
of this process, the virtual camera position in 3D space must also
be known as one of the conditions for the input image to be
regenerated from the scene model. This poses the question, how
is the camera position known by a single image ? Unfortunately
existing approaches to create models directly from photographs,
such as image-based techniques, require multiple input images of
photographs, and the cases discussed in this paper are outside
their scope. If animating a painting is desired, making the
animation may become more difficult, because a painting does
not give as precise information for creating the 3D scene model
as a photograph does.

The best possible approach currently available to making
animation from a single image therefore depends largely on the
skill, sense, and eye of the animators, though this naivety may
place an excessive and tedious task load on the animators. They
can then develop the scene structure freely, using vague and
incomplete information included in the input to animate the
scene to their liking. The scene structure, however, may still be
incomplete. A more straightforward method is thus desired for
creating the scene animation, in which the 3D modeling process
of the scene is rather simplified or skipped.

In this paper we propose a simple method, which we call TIP
(Tour Into the Picture), for making animations from one 2D
picture or photograph of a scene. This method provides a simple
scene model, which is extracted from the animator’s mind. Thus
the scene model is not exactly 3D structured, but is geometrically
just a collection of “billboards” and several 3D polygons.
Therefore, the animations obtained with our method are not
strictly three-dimensional. However, as we show, the proposed
method allows easy creation of various animations, such as
“walk-through” or “fly-through”, while visually giving
convincing 3D quality.

1.1 Related work
If a photograph is used as the 2D input image, then image-based
methods, including [2 , 4, 7] may be used effectively. In [2], the
panoramic image is made from overlapping photographs taken
by a regular camera to represent a virtual environment, so that
real-time walk-through animations can be made with the
viewpoint fixed. The method in [7] provides animations, with
many closely spaced images being required as input, and its
theoretical background largely relies on computer vision
techniques. This work can also be considered to belong to the
category of techniques for light field representation [6], which
gives a new framework for rendering new views using large
arrays of both rendered and digitized images. Similarly, in [4] a
"sparse" set of photographs is used for existing architectural
scenes to be animated. Though the input condition is improved
due to architectural use, multiple input images are still required.
Despite successful results with these image-based approaches,
we need a new methodology, especially for dealing with the
situations where the input is a single photograph.

For paintings or illustrations, there are relatively fewer
research reports on their animation. A new rendering technique
was presented in [8] for making painterly animations. Assuming
that the 3D geometric models of the objects in a scene are known
in advance, animations in a painterly style are then made by the
method using 3D particles and 2D brush strokes.

Morphing techniques including [1] provide 3D effects
visually, requiring at least two images as input, although actually

only 2D image transformations are used. For example the view
interpolation technique [3] is an efficient application of
morphing, which generates intermediate images, from images
prestored at nearby viewpoints. View morphing [9] also gives a
strong sense of 3D metamorphosis in the transition between
images of the objects. Then we note that most of these
techniques require no knowledge of 3D shape in morphing.

Existing methods cited above work effectively, when multiple
input images are available, or when the 3D geometric structure of
a scene to be animated is known in advance. Our approach treats
the cases when one input image of a scene is given without any
knowledge of 3D shapes in the scene. Theoretically it is
impossible to create an animation from a single view of the
scene. Instead, our approach actually gives a new type of visual
effect for making various animations, rather than constructing a
rigid 3D model and animation of the scene.

1.2 Main Idea
If we consider traditional paintings or landscape photographs,
their perspective views give a strong impression that the scenes
depicted are 3D. It is hard for us to find an exact position for the
vanishing point of the scene in the picture. In particular, for
paintings or drawings, the vanishing point is not precisely
prescribed, being largely dependent on the artist’s imagination.
Therefore, rigid approaches, such as computer vision techniques,
are not valid for the purpose of exactly finding the vanishing
point. However, it is relatively easy for us to roughly specify the
vanishing point, by manually drawing guide lines for perspective
viewing. Then we can expect that the “visually 3D” geometry of
the scene’s background is defined as a simple model (with
polygons, for instance) centering around the user-specified
vanishing point. Similarly, in many cases, we can easily tell the
foreground objects from the background through our own eyes.
A simple and intuitive model of the foreground object can then
be like a “billboard” that stands on a polygon of the background
model.

The main idea of the proposed method is simply to provide a
user interface which allows the user to easily and interactively

perform the following operations.

(1) Adding “virtual” vanishing points for the scene - The
specification of the vanishing point should be done by the
user, not automatically, as mentioned above.

(2) Distinguishing foreground objects from background - The
decision as to whether an object in the scene is near the
viewer should be made by the user, since no 3D geometry
of the scene is known. In other words, this means that the
user can freely position the foreground object, with the
camera parameters being arranged.

(3) Constructing the background scene and the foreground
objects by simple polygons - In order to approximate the
geometry of the background scene, several polygons should
be generated to represent the background. This model is
then a polyhedron-like form with the vanishing point being
on its base. The “billboard”-like representation and its

variation are used for foreground objects.
These three operations are closely related to each other so that
the interactive user interface should be able to provide their easy
and simultaneous performance. A spidery mesh is the key to
fulfilling this requirement.

The proposed method is outlined as follows. Fig. 1 shows the
process flow.

After an input image is digitized (Fig.1 (a)), the 2D image of
the background and 2D mask image of the foreground objects
are made (Figs. 1 (b), (c)). TIP uses a spidery mesh to prescribe a
few perspective conditions, including the specification of a
vanishing point (Fig. 1 (d)). In the current implementation of
TIP, we can specify one vanishing point for a scene. This is not
restrictive because many paintings, illustrations, or photographs
can actually be considered one-point perspective, and because, as
demonstrated later, the one-point perspective representation
using spidery mesh works very well even for the cases where it is
hard for us to tell if the input is one-point perspective or not.

Next, the background is modeled with less than five 3D
rectangles (Fig. 1 (e)), and simple polygonal models for the
foreground objects are also constructed (Fig. 1 (f)). Finally, by

(b) Background image

(a) Input image (d) Fitting perspective
 projection

(e) Modeling the
 background

(f) Modeling
 foreground objects

(g) Camera positioning

(c) Foreground mask

(h) Rendered image
Figure 1. Process flow diagram

changing the virtual camera parameters (Fig. 1 (g)), images at
different views are rendered (Fig. 1 (h)), so that the desired
animation is obtained.

In section 2 the modeling process of the 3D scene (Figs. 1 (a) -
(f)) in TIP is described. In section 3, after the rendering
technique (Figs. 1 (g), (h)) is briefly mentioned, several
animation examples are shown, which demonstrate well the
efficiency and usefulness of the proposed method. Conclusions
and future research directions of the method are summarized in
section 4.

2 SCENE MODELING FROM A SINGLE IMAGE
In our method we use one picture or photograph of a 3D scene
as input, from which we wish to make a computer animation.
Then we specify one “virtual” (i.e. “user-specified”) vanishing
point for the scene. As described later, this does not always
mean that the input image must be one-point perspective. For
convenience, the line that goes through the vanishing point and
view point is vertical to the view plane. As for camera
positioning, default values of camera position, view-plane
normal, and view angle (field-of-view angle) are assigned in
advance (see [5] for technical terms). These parameters are
changed later using our GUI (Graphical User Interface) in 3.1
for making animations. For simplicity, the input images used are
taken by the virtual camera without tilting, (though actually this
condition can easily be eliminated). This means that the view up
vector, which is parallel to the view plane in this paper, is
vertical to the ground of the 3D scene to be modeled.

2.1 Foreground Mask and Background Image
In the modeling process we first derive two types of image
information from the input 2D image: foreground mask and
background image. Let F1, F2 ,..., Fp be subimages of the input
image I, each of which is supposed to correspond to a
foreground object in the 3D scene and is relatively close to the
virtual camera. In practice the subimages {Fi} 1_i_p are specified
by a user and are modeled as polygonal objects in the
corresponding 3D scene (see 2.3). The foreground mask is then
defined as the 2D image consisting of {α

 i
} 1_i_p

, where α
 i
 is a

grey-scaled masking value (α

-value) of Fi. The background

image is the 2D image which is made from I by retouching the
traces of {Fi} after the subimages {Fi} are removed from I. The
retouching process consists of occluding the traces of these
subimages using color information for the neighborhood of each
point (pixel) in Fi.

There is commercially available software, such as 2D paint
tools, that enable us to easily make 2D images for the
foreground mask and the background, from an input image.
Fig.1 presented an example. Fig.1(a) showed the input image (of
a photograph). The background image in Fig. 1 (b), as well as
the foreground mask in Fig. 1 (c), were obtained using a
standard 2D paint tool. To get the foreground mask in Fig. 1 (c),
a street lamp and two persons were selected by the user, as the
subimages {Fi} mentioned above.

2.2 Specifying the Vanishing Point and Inner Rectangle
In order to model the 3D scene from the input image, we use our
software called TIP, starting with the specification of the
vanishing point of this image. TIP employs a unique GUI with a
spidery mesh, which plays an essential role not only in the
specification process but also in the processes thereafter.

Fig. 2 (a) shows the initial state of the spidery mesh in
applying it to the input image in Fig. 1 (a). In general, as
illustrated in Fig. 2 (a), the spidery mesh is defined as the 2D

figure consisting of: a vanishing point; and an inner rectangle,
which intuitively means the window out of which we look at
infinity; radial lines that radiate from the vanishing point; an
outer rectangle which corresponds to the outer frame of the
input image. Each side of the inner rectangle is made to be
parallel to a side of the outer rectangle. In TIP, the specification
of the inner rectangle is done as well as that of the vanishing
point. It should then be noted that, as described later, the inner
rectangle is also used to specify the rear window in the 3D space
(see 2.3 and 2.4). The rear window is a border that the virtual
camera, which will be used in making an animation, cannot go
through. The inner rectangle is consequently defined as the 2D
projection of this window onto the 2D image space (i.e., the
projection plane). In practice the 3D window is considered to be
so distant from the current (initial) position of the virtual
camera, that the camera does not zoom in beyond this window

from the current position.
We now describe how to use the spidery mesh in order to

specify the vanishing point. As described above, we then
position the inner rectangle, along with the vanishing point. First
we consider typical cases where the vanishing point is located in
the input image (i.e., within the outer rectangle of the spidery
mesh). Fig. 3 (a) is such a case. Then, using a pointing device (a
mouse in the current implementation), we can control the
geometry of the spidery mesh using the following functions.

[a] Deformation of the inner rectangle - If the right-bottom
edge of the inner rectangle is dragged with the pointing
device, then the left-top edge of the rectangle is fixed, and
the right-bottom edge is moved according to the dragging
(see Fig. 3 (a)).

[b] Translation of the inner rectangle - If we drag a point on
one of the sides of the rectangle (except the point at the
right-bottom corner), then the rectangle is moved by the
dragging distance (Fig. 3 (b)).

[c] Translation of the vanishing point - If the vanishing point
is dragged, then it is translated. The four radial lines, which
are drawn boldly in Fig. 3, are also moved under the
condition that these radial lines always go through the four
edges of the inner rectangle, respectively (Fig. 3 (c)). If the
cursor is dragged out of the inner rectangle, then the
vanishing point is moved in the direction, and by the
distance of, the dragging. Conversely, if one of these bold
radial lines is translated by moving its edge on the outer
rectangle, the vanishing point is moved based on a certain
rule that we call servility of the vanishing point to the four
(bold) radial lines. This means, for example, that, if we drag
the edge of radial line L1 in Fig. 3 (d) along the outer
rectangle, then radial line L2 is fixed and the vanishing point

(b) Specification result(a) Initial state

Figure 2. Spidery mesh on the 2D image

Inner rectangle Vanishing point

Outer rectangle

is moved along L2. The dotted lines in Fig. 3 (d) show the
new positions of the bold radial lines with the source point
of the dotted lines obtained as a result for the vanishing
point.

Using these functions in our GUI, we can specify the
vanishing point and the inner rectangle. In practice the radial
lines are very helpful in the specification process. For example a
user can specify the vanishing point, while controlling the radial
lines so that they go along the borderlines between buildings and
roads (see Fig. 2 (b)). Then servility of the vanishing point in [c]
is useful in controlling the radial lines. It should also be noted
that the concept of the spidery mesh is totally 2D, which assures
easy-to-use and real-time feedback in the specification process.

As for the cases when the vanishing point is out of the input
image (outer rectangle), functions similar to those described
above can be applied, so that the inner rectangle is specified in
the outer rectangle.

2.3 Modeling the 3D Background
The next thing we do is to model the 3D background of the
scene using very few polygons.

Let us suppose that the vanishing point and the inner rectangle

are specified as shown in Fig. 4 (a). We can then make a 2D
decomposition of the outer rectangle into five smaller regions
each of which is a 2D polygon in the outer rectangle. As
illustrated in Fig.4 (b), the five 2D rectangles may be deduced
from these regions, and the rectangles are tentatively called the
floor, right wall, left wall, rear wall, and ceiling, respectively
(the rear wall is actually the inner rectangle). We define the
textures of these 2D rectangles to be taken from the background
image. Suppose that these rectangles are the projection of the 3D
rectangles. We name each of these 3D rectangles the same as the
2D corresponding projection. We then define the 3D
background model in 3D space as being these five 3D
rectangles, assuming that the following conditions hold:

[A-1] Every adjacent 3D rectangle mentioned above is
orthogonal to the others.

[A-2] The 3D rear wall is parallel to the view plane.
[A-3] The 3D floor is orthogonal to the view up vector.
[A-4] The textures of the 3D rectangles are inherited from

those of the corresponding 2D rectangles.

The vertices of these 3D rectangles are therefore easily
estimated. For simplicity, we set the coordinate system of the 3D
space so that the view up vector = (0, 1, 0) and the 3D floor is
on the plane y = 0. Then the vertices of the 3D rectangles, which

are numbered as shown in Fig. 4 (c), are calculated as follows
(also see calculation flow in Fig. 4 (c)). First we note that the 3D
coordinate values of a point are easily obtained, if we know that
it is on a certain (known) plane, and that its view plane
coordinate values are known. Since we see the 2D positions of
vertices 1 - 4 in Fig. 4 (c), we get the 3D positions of these four
points, considering that these are on the plane y = 0. Similarly
we get the values of vertices 5 and 6. Next we consider the plane
which the 3D rear wall is on. The equation of this plane is then
known, because it is vertical to the plane y = 0 containing the
known vertices 1 and 2. Since vertices 7 and 8 are on this known
plane, we can get the values of these two vertices. Then we
estimate the "height" of the 3D ceiling. Since the 3D ceiling is
on the plane parallel to the plane y = 0, we may assume that the
3D ceiling is on the plane y = H, for some H. If calculation of

Figure 3. Controlling the spidery mesh

(a) Deformation of the
inner rectangle

(b) Translation of the
inner rectangle

(c) Translation of the
vanishing point

L2

(d) Servility of the
vanishing point

L1

(fixed)

(c) Estimating the vertices of the 3D rectangles

(b) Deduced 2D polygons(a) Specified spidery mesh

(d) 3D background model obtained

Figure 4. Modeling the 3D background

Vertices to be calculated

7 8 H

9 10 11 12

1 2 3 4 5 6

Calculation flow

Vanishing point

Left
wall

Right
wall

Floor

Ceiling

Rear
wall

1 2
3

4
5

6

7 8

9

10
11

12

(y = 0)

(y = H)

the y-values of vertices 7 and 8 contained no error, the y-values
would be equal to H. However, in our implementation, we set H
as the mean of the two y-values, in order to avoid errors.
Thereafter, the y-values of vertices 7 and 8 are reset as being H.
Consequently the remaining vertices 9 -12 are estimated.

The 3D background model described above employs five
rectangles, as shown in Figs.4 (c), (d). There are, however, some
other cases when the background model uses fewer 3D
rectangles. Treatments including these special cases are briefly
described later in 3.3, along with the application examples.

2.4 Hierarchical Polygonal Models for the Foreground Objects
For the foreground objects in the scene, the foreground mask is
prepared in advance. Based on the mask information, we
construct the 3D polygonal model for a foreground object in the
scene as described below. For simplicity, this model is hereafter
referred to as a foreground object model.

First we consider the case in which the foreground object
model is a quadrangle. The 2D quadrangle in the input image is

then specified, so as to surround the 2D image of a foreground
object (i.e., F

i
 in 2.1). Next we specify the 3D position of the

quadrangle in the 3D background model, under the condition
that the quadrangle should be perpendicularly put on one of the
five 3D regions: floor, right wall, left wall, rear wall, and
ceiling. In the example of Fig. 5 (a), the person is a foreground
object to be modeled, and is surrounded by the quadrangle
(which is a rectangle in this case). The quadrangle in the 3D
scene is perpendicularly attached to the 3D floor. By an
argument similar to that in 2.3, we know the 3D positions of P0
and P1 in Fig. 5 (b). Then we get the equation of the plane
which the quadrangle is on, and consequently the 3D positions
of P2 and P3 are known. Thus the 3D quadrangle, which is the
polygonal model for the person in Fig. 5 (a), is explicitly
specified. In Fig. 5 (c), each of the three foreground objects (see

Fig. 1 (a)) is modeled with a single 3D polygon, which has a
fine mesh for clarity.

If the foreground object models are all quadrangles, the
models may be restrictive in dealing with more complicated
objects. The foreground object models in our method are
therefore endowed with a hierarchical structure in the sense that

1) Each model consists of one or more polygons. In particular
a single polygon itself is a foreground object model.

2) For any polygon F1 belonging to the model, another
polygon F2 can be added to the model, if F2 is
orthogonally attached to F1 so that one side of F2 is on F1.
Then F2 is called a child of F1 (or F1 is a parent of F2).
This constitutes a hierarchy among the polygons belonging
to a foreground object model.

3) If a polygon of the model is at the highest level in the
hierarchy, it is orthogonally attached to one of the five 3D
regions of the 3D background. Then only one side of the
highest level is only on the region.

Fig. 6 illustrates how to construct the foreground object
models. First, two quadrangles F0 and F1 are defined on the 3D
floor (top sketch). Then F 2 is added to F 1(middle sketch); and

F 3 is added to F 2 (bottom sketch). In this way the foreground
object models become more flexible (see 3.3 for a more concrete
example).

3 ANIMATING AND RENDERING THE 3D SCENE

3.1 Camera Positioning
This section describes how to decide the virtual camera position
for making an animation of the 3D scene. In using the virtual
camera in our method, three parameters can be controlled:
camera position, view-plane normal (vector), and view angle
(i.e., field-of-view angle).

(a) Specifying of a
foreground object

(c) Three foreground object models

X

Y

Z

P0 P1

P2
P3

(b) Estimating the vertices of the
foreground object model

Figure 5. Modeling foreground objects
 Hierarchical positioning Å
of the foreground objects

Floor

F0F1

F2

F1
F0

Floor

F3

F1
F0

F2

Floor

Figure 6.

To visually control these parameters, the following commands
are supported by our GUI in TIP, so that they are specified using
pointing-device operations.

[a] Rotation: The view-plane normal is changed by rotations.
This essentially means panning and tilting at a fixed camera
position.

[b] Translation: With the view-plane normal fixed, the
viewpoint (camera position) goes up and down; and right
and left.

[c] Zoom: The viewpoint is moved in the direction of the
fixed view-plane normal.

[d] View angle: The magnitude of the view angle is controlled
with the viewpoint and the view-plane normal fixed.

[e] Look around: After selecting the center of attention at an

object in the scene, the viewpoint is changed on a sphere
whose center is the center of attention and whose radius is
equal to the distance between the viewpoint and the center
of attention.

3.2 Rendering via 2D-3D Transformations
The rendering method in TIP which is briefly described below is
useful in making animation, particularly on a standard PC. The

rendering procedure essentially involves an ordinary texture
mapping technique. Of course much faster rendering techniques
are available when using a powerful workstation.

Let (h
0
, v

0
) be an arbitrary point (pixel) in the 2D image to be

rendered. Since we have the simple models for the 3D scene, as
described in 2.3 and 2.4, we can get the 3D point P which is
projected to (h

0
, v

0
). We also know the 2D point (h

1
, v

1
) that is

the 2D projection of P with the initial camera position. If P is a
point on the 3D background model, then the color at (h

0
, v

0
) in

the output image is the color CA at (h
1
, v

1
) in the background

image mentioned in 2.1. (CA is the mean value of the colors at
the four pixels nearest to (h

1
, v

1
).) If P is a point on a foreground

object model, we also know the color CB at (h
1
, v

1
) in the input

image and that there exists the subimage Fi including (h
1
, v

1
).

The color at (h
0
, v

0
) in the output image is then defined as (1 - αi

) CA + αi CB, where αi is taken from the foreground mask.

3.3 Animation Examples
The camera positioning and the rendering processes described
above are performed by turns, in order to get a desired
animation. The animation is then made by a key-framing
method, based on the camera positioning information. The

Figure 7. Animation example preserving the view angle

(a) Input imageÅ@(b)-(d) Rendered images

(b)(a)

(c) (d)

rendering process may still be rather time-consuming, compared
to the camera positioning, and may be a bottleneck especially
when performing a real-time walk-through by TIP on a standard
PC. Previewing at lower resolutions would then be effective.

The following animations are TIP-implemented on a standard
PC. The pixel resolutions of all the images in the animations
have resolutions of 640×480 pixels. The wall clock time for
rendering per frame is on average 0.1 sec, while real-time
previewing is performed at 320×240 pixels.

The first animation example is made from the landscape
painting in Fig. 7 (a)

§
 , which we can clearly take for a one-

perspective projection. The frames in Figs. 7 (b) - (d), following
the input image in Fig. 7 (a), are excerpts from the animation.
Since the trees at the left-front of the input image are modeled as
a foreground object (with a single quadrangle), the scene in Fig.7
(b) is generated by setting the virtual camera in front of the trees.
In Fig. 7 (c) the camera goes up toward the top of the trees, using
the translation of camera movement (see [b] in 3.1). Then the
camera zooms in toward the figures in the center, which are a
foreground object model defined as a single quadrangle. The
natural perspective views, with the view angle fixed, which
cannot be achieved by traditional 2D image extension operations,
are obtained in this animation. It should be noted that the
vanishing point cannot be uniquely specified. This may be a
drawback for knowing the exact position of the vanishing point.
However, if we wish to have a variety of animations from one
2D picture, the non-uniqueness of the vanishing point is a big
advantage. Actually, just by changing the geometry of the
spidery mesh, different types of animations from the same input
image are provided.

The next animation example is made from the input image in
Fig. 8 (a), which is not clearly identified with a one-point
perspective projection. However, we can model the scene from
this image, by specifying the vanishing point. The dynamic
changes in Figs. 8 (b)-(d) are then obtained by our method.
Though we may apply the spidery mesh in Fig. 4 (a) to this case,
specifying the five rectangles as the 3D background in Fig. 4 (c),
a simplified spidery mesh in Fig. 8 (e) is more convenient for
practical use. In addition, the 3D background model is rather
simple, as shown in Fig. 8 (f). It actually consists of only two
rectangles for the floor and the rear wall.

The third example in Fig. 9 illustrates the efficiency of the
foreground object model. In Fig. 9 (a), the input image is shown,
and the linework in Fig. 9 (b) presents the modeled scene. The
box-like object and the plant in Fig. 9 (a) are then considered as
one foreground object which has an hierarchical structure (see
2.4). As shown with the linework, the box-like object is modeled
with several polygons, while a single polygon is used for the
plant. The polygonal models in Fig. 9 (c) are used for
previewing, and then Fig. 9 (d) gives a different view in the
obtained animation.

§ Hitachi Viewseum image (http://www.viewsium.com); The Hudson River Portfolio Engraved

by J.R. Smith (1775-1849) and John Hill (1770-1850) from watercolors by William GuyWall
(1792-c.1862) View Near Fishkill, c. 1821-25
Engraving/acquatint with hand-painted watercolor, 13 15/16 x 21

1/8” (image only, no text) Published by Henry I. Megary & W.B.

Gilley, New York, and John Mill, Charleston, S.C., 1823

Gift of Miss Susan D. Bliss Collection The Hudson River Museum of

Westchester Photo: Quesada/Burke

The final example in Fig. 10 shows view angle effects. It is
very interesting that, in a one-point perspective view, the view
angle can be specified independently of the other parameters.

Based on the photograph in Fig.10 (a), completely different

Figure 9. Animation example with the foreground
object model hierarchically positioned

(a) Input image (b) 3D scene model obtained
(c) Different view of the 3D scene model (d) Rendered image

(a) (b)

(c) (d)

Figure 8. Animation example using the 3D
background modeled with two rectangles

(a) Input image (b)-(d) Rendered images

Rear
wall

Floor

(f) Deduced 2D polygons

Vanishing
point

(e) Simplified spidery mesh

(a) (b)

(c) (d)

animations can be generated just by changing the view angles.
Figs.10 (b) and (c) show different views with different view
angles, both of which are excerpts from the animations starting
with the same frame in Fig. 10 (a).

4 CONCLUSION AND FUTURE WORK
Creating 3D animations from one 2D picture or photograph of a
3D scene is possible for a skilled animator but often very
laborious, since precise information for making the 3D scene
model cannot be extracted from the single 2D image. However,
the incompleteness of 3D information derived from one image
allows animators to create the 3D scene model in a more flexible
way. In this paper we have proposed a new technique called TIP
which provides a simple scene model that transforms the
animator's imaginings into reality. The key to our method lies in
the GUI using a spidery mesh, which allows animators to easily
model the 3D scene. This lets animators utilize the incomplete
3D scene information to freely create scenery to their liking and
obtain enjoyable and “visually 3D” animations.

In this paper we restricted ourselves to the cases where only
one vanishing point is specified by the animator. The animation
examples demonstrated that our method works very well,
without insisting that an input image is strictly one-point
perspective projection. Actually, we showed that relaxing use of
the one-point perspective representation can allow new visual
effects for animations. For example, we can get various
background and foreground models just by changing the
geometry of the spidery mesh, which therefore provides different
types of animations from the same input image. Changing field-
of-view angle also provides a new visual deformation effect.

Of course there are many things to do next. Hierarchical
foreground mask information would be more powerful in
describing the scenes with more complex foreground objects.
Multiresolution images would support finer zooming. We are
currently extending our method, in order to treat two-point
perspective projections. Two-point perspective is commonly
used in the various fields of engineering, industrial design and
advertising drawings. Unlike one-point perspective, the field- of-
view angle is uniquely fixed so that the animations obtained will
be more rigid, but still have many applications. Such an extended
version of TIP would thus be used mainly for engineering or

industrial design, whereas the current version provides new and
easy-to-use visual effects for making animations in art and
entertainment.

ACKNOWLEDGMENTS
We are very grateful to the anonymous reviewers for their
invaluable suggestions which made this a significantly better
paper. Many thanks go to Tsuneya Kurihara and Hiroyuki
Nomura for discussions at the early stages of this work. Thanks
to Carol Kikuchi and Peter Lee for proofreading and comments.
Thanks also to KimuAyu for her help and encouragement.

REFERENCES
[1] Beier, T., and Neely, S. "Feature-Based Image

Metamorphosis" Proc. SIGGRAPH '92 (Chicago, Illinois,
July 26 - 31, 1992). In Computer Graphics, 26, 2 (July
1992), pp. 35-42.

[2] Chen, S. E. "Quicktime VR - An Image-based Approach to
Virtual Environment Navigation" Proc. SIGGRAPH '95
(Los Angels, California, August 6 -11, 1995). In Computer
Graphics Proceedings, Annual Conference Series, 1995.
ACM SIGGRAPH, pp. 29-38.

[3] Chen, S. E. and Williams, L. “View Interpolation for Image
Synthesis” Proc. SIGGRAPH '93 (Anaheim, California,
August 1 - 6, 1993). In Computer Graphics Proceedings,
Annual Conference Series, 1993. ACM SIGGRAPH, pp.
279-288.

[4] Devebec, P.E., Taylor C.A., and Malik J. "Modeling and
Rendering Architecture from Photographs: A Hybrid
Geometry- and Image- based Approach" Proc. SIGGRAPH
'96 (New Orleans, Louisiana, August 4 - 9, 1996). In
Computer Graphics Proceedings, Annual Conference Series,
1996. ACM SIGGRAPH, pp. 11-20.

[5] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F.
Computer Graphics: Principles and Practice, Addison-
Wesley, Reading, Mass., 1990.

[6] Levoy, M. and Hanrahan, P. “Light Field Rendering” Proc.
SIGGRAPH '96 (New Orleans, Louisiana, August 4 - 9,
1996). In Computer Graphics Proceedings, Annual
Conference Series, 1996. ACM SIGGRAPH, pp. 31- 42.

[7] McMillan, L. and Bishop, G. “Plenoptic Modeling: An
Image-based Rendering System” Proc. SIGGRAPH '95 (Los
Angels, California, August 6 -11, 1995). In Computer
Graphics Proceedings, Annual Conference Series, 1995.
ACM SIGGRAPH, pp. 39-46.

[8] Meier, B.J. “Painterly Rendering for Animation” Proc.
SIGGRAPH '96 (New Orleans, Louisiana, August 4 - 9,
1996). In Computer Graphics Proceedings, Annual
Conference Series, 1996. ACM SIGGRAPH, pp. 477-484.

[9] Seitz, S. M., and Dyer, C.R. "View Morphing" Proc.
SIGGRAPH '96 (New Orleans, Louisiana, August 4 - 9,
1996). In Computer Graphics Proceedings, Annual
Conference Series, 1996. ACM SIGGRAPH, pp. 21-30.

(a) Input image

(b) View angle = 54 (deg.) (c) View angle = 150 (deg.)

Figure 10. View-angle effects

