Capturing Light... in man and machine

CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015

Etymology

Image Formation

Digital Camera

The Eye

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Interlace vs. progressive scan

Progressive scan

Interlace

Rolling Shutter

The Eye

The human eye is a camera!

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

The Retina

Retina up-close

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Rod / Cone sensitivity

The famous sock-matching problem...

Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Visible Light

The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.

The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser

B. Gallium Phosphide Crystal

C. Tungsten Lightbulb

D. Normal Daylight

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

© Stephen E. Palmer, 2002

There is no simple functional description for the perceived color of all lights under all viewing conditions, but

A helpful constraint:

Consider only physical spectra with normal distributions

Photons

Wavelength

Variance Saturation

Wavelength

Wavelength

Physiology of Color Vision

Three kinds of cones:

WAVELENGTH (nm.)

- Why are M and L cones so close?
- Why are there 3?

Trichromacy

Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number
- How can we represent an entire spectrum with 3 numbers?
- We can't! Most of the information is lost
 - As a result, two different spectra may appear indistinguishable
 - » such spectra are known as metamers

More Spectra

The "photometer metaphor" of color perception: Color perception is determined by the spectrum of light on each retinal receptor (as measured by a photometer).

The "photometer metaphor" of color perception: Color perception is determined by the spectrum of light on each retinal receptor (as measured by a photometer).

The "photometer metaphor" of color perception:
Color perception is determined by the spectrum of light on each retinal receptor (as measured by a photometer).

Do we have constancy over all global color transfermations?

60% blue filter

Complete inversion

Color Constancy: the ability to perceive the invariant color of a surface despite ecological Variations in the conditions of observation.

Another of these hard <u>inverse problems</u>:

Physics of light emission and surface reflection <u>underdetermine</u> perception of surface color

Camera White Balancing

Manual

- Choose color-neutral object in the photos and normalize
- Automatic (AWB)
 - Grey World: force average color of scene to grey
 - White World: force brightest object to white

Color Sensing in Camera (RGB)

3-chip vs. 1-chip: quality vs. cost

Why more green?

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Buff Works

Green is in!

R G B

Practical Color Sensing: Bayer Grid

Estimate RGB at 'G' cels from neighboring values

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Color Image

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

row	col	um	n								\rightarrow	D				
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	1 G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91	1		
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92			
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	
Y	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
•			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.73	0.73	0.89	0.49	0.33	0.78	0.78	0.73	0.73	0.99	0.93	0.82	0.93	
			0.91	0.54	0.03	0.43	0.50	0.78	0.78	0.77	0.83	0.33	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

Color spaces

How can we represent color?

Color spaces: RGB

Default color space

- Easy for devices
- But not perceptual
- Where do the grays live?
- Where is hue and saturation?

G (R=0,B=0)

B (R=0,G=0)

HSV

Hue, Saturation, Value (Intensity)

RGB cube on its vertex

Decouples the three components (a bit) Use rgb2hsv() and hsv2rgb() in Matlab

Color spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

V (H=1,S=0)

Color spaces: L*a*b*

"Perceptually uniform" color space

a

(L=65,b=0)

b (L=65,a=0)

Programming Project #1

Prokudin-Gorskii's Color Photography (1907)

Programming Project #1

Programming Project #1

- How to compare R,G,B channels?
- No right answer
 - Sum of Squared Differences (SSD):

$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

Normalized Correlation (NCC):

$$ncc(u,v) = \frac{\sum\limits_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I}\right] P(x,y) - \overline{P}}{\sqrt{\sum\limits_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I}\right]^2 \sum\limits_{(x,y)\in N} \left[P(x,y) - \overline{P}\right]^2}}$$

