### High Dynamic Range Images



© Alyosha Efros

CS194: Image Manipulation & Computational Photography ...with a lot of slides Alexei Efros, UC Berkeley, Fall 2018 stolen from Paul Debevec

# Why HDR?



## **Problem: Dynamic Range**



#### Image



### pixel (312, 284) = 42

#### 42 photos?

## Long Exposure



## Short Exposure



### **Camera Calibration**

#### • Geometric

How pixel coordinates relate to directions in the world

- Photometric
  - How pixel values relate to radiance amounts in the world



The Image Acquisition Pipeline



### Imaging system response function



log Exposure = log (Radiance  $* \Delta t$ ) (CCD photon count)

## Varying Exposure



### Camera is not a photometer!

- Limited dynamic range
   ⇒ Perhaps use multiple exposures?
- Unknown, nonlinear response
   ⇒ Not possible to convert pixel values to radiance
- Solution:
  - Recover response curve from multiple exposures, then reconstruct the *radiance map*

Recovering High Dynamic Range Radiance Maps from Photographs



Paul Debevec Jitendra Malik



Computer Science Division University of California at Berkeley

August 1997

## Ways to vary exposure

Ways to vary exposure
Shutter Speed (\*)

F/stop (aperture, iris)





Neutral Density (ND) Filters



### **Shutter Speed**

- Ranges: Canon D30: 30 to 1/4,000 sec.
- Sony VX2000: <sup>1</sup>/<sub>4</sub> to 1/10,000 sec.
- Pros:
- Directly varies the exposure
- Usually accurate and repeatable
- Issues:
- Noise in long exposures

## **Shutter Speed**

- Note: shutter times usually obey a power series each "stop" is a factor of 2
- <sup>1</sup>/<sub>4</sub>, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
- Usually really is:
- <sup>1</sup>/<sub>4</sub>, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

## The Algorithm

#### Image series



Pixel Value Z = f(Exposure)Exposure = Radiance  $\Delta t$ log Exposure = log Radiance + log  $\Delta t$ 

#### Response Curve

# Assuming unit radiance for each pixel

# After adjusting radiances to obtain a smooth response



## The Math

- Let g(z) be the *discrete* inverse response function
- For each pixel site *i* in each image *j*, want:

$$\ln Radiance_i + \ln \Delta t_j = g(Z_{ij})$$

• Solve the overdetermined linear system:



## Matlab Code

function [g,lE]=gsolve(Z,B,l,w)

```
n = 256;
A = \operatorname{zeros}(\operatorname{size}(Z,1) * \operatorname{size}(Z,2) + n + 1, n + \operatorname{size}(Z,1));
b = zeros(size(A,1),1);
k = 1;
                         %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
    k=k+1;
  end
end
A(k, 129) = 1;
                         %% Fix the curve by setting its middle value to
k=k+1;
for i=1:n-2
                       %% Include the smoothness equations
  A(k,i)=1*w(i+1); A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
 k=k+1;
end
x = A \setminus b;
                         %% Solve the system using SVD
g = x(1:n);
```

```
lE = x(n+1:size(x,1));
```

## **Results: Digital Camera**

#### Kodak DCS460 1/30 to 30 sec

Recovered response curve



log Exposure

#### Reconstructed radiance map



### **Results: Color Film**

• Kodak Gold ASA 100, PhotoCD



## **Recovered Response Curves**



# The Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.021 0.005





## Now What?

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005



## **Tone Mapping**

#### • How can we do this?

Linear scaling?, thresholding? Suggestions?



## **Simple Global Operator**

• Compression curve needs to

Bring everything within rangeLeave dark areas alone

• In other words

Asymptote at 255Derivative of 1 at 0

## Global Operator (Reinhart et al)

$$L_{display} = \frac{L_{world}}{1 + L_{world}}$$



## **Global Operator Results**







#### **Reinhart Operator**



Darkest 0.1% scaled to display device

## What do we see?





Vs.



### What does the eye sees?



Figure 1: The range of luminances in the natural environment and associated visual parameters. After Hood (1986).

> The eye has a huge dynamic range Do we see a true radiance map?

### Metamores





#### Can we use this for range compression?

# **Compressing Dynamic Range**

