
Animating Pictures with Motion Textures
Adapted from ”Animating Pictures with Stochastic Motion Textures”

by Chuang et. al. 2005

Vivien Nguyen
CS 194-26 Fall 2018

UC Berkeley

Abstract

In this project, I implement a simplified version of
”Animating Pictures with Stochastic Motion Textures” by
Chuang et. al. from 2005 [1]. The system consists of three
main steps: segmentation + matting, motion specification,
and rendering. We can combine these steps in order to gen-
erate animated GIFs from a single image. Despite the sim-
plifications made, the system can still handle a variety of
input images and motion specifications, though it may re-
quire a significant amount of user input.

1. Introduction
I am largely interested in interesting ways that we can

interact with existing photographs and artworks. Though
many artists through Impressionism and Absolute Abstrac-
tion developed new methods for conveying motion in static
images, I wanted to apply the methods in ”Animating Pic-
tures with Stochastic Motion Textures” to various pieces of
artwork, as well as static photographs.

This system consists of several large pieces drawn from
other papers and sources; as the original authors state, the
main contribution of this system is the synthesis of these
several techniques and a proof of concept.

1.1. Simplifications

In the efforts of making this project tractable in the pe-
riod given, I made several simplifications to the authors
methods. One is to use Photoshop to paint in regions in
the Segmentation and Matting portions of the project (elab-
orated on below). But the major simplification made is the
removal of ”stochastic” motion textures, and instead using
combinations of sinusoids. The original authors specifically
warn against the cons of doing so – in fact, their experi-
mentation with this approach and ultimate realization that
physics-based simulations looked better is a major contri-
bution of theirs. However, for the sake of this project and

implementation, I believe the results gained from combin-
ing some hand-tuned sinusoids is sufficient to demonstrate
the potential of adding motion to static pictures.

2. System Overview
As mentioned above, this system is quite large, consist-

ing of three major steps and several substeps. I found it
was quite natural to implement the project in these several
pieces and process images sequentially according to these
steps. One major downside to this is that certain steps must
strictly happen in serial. This contributes to a substantially
large processing time (though largely automatic), especially
when using older computational photography algorithms on
every day hardware.

Proceeding with an overview of the major steps, let’s re-
call our goal: we want to animate several portions of a static
image. Thus, our first step is to segment out the elements of
the image that we would like to animate into layers. How-
ever, a simple cut and recomposite of these layers in dif-
ferent positions would result in harsh and obvious edges,
detracting from the ”reality” of the picture. After segmen-
tation, then, we solve for an alpha matte that can be used
when recompositing the layers. The final piece of layer gen-
eration is to inpaint the region created by segmenting out an
element of the image. We now have a new ”starting” im-
age, that we can continue to segment out of. We proceed
with layer generation moving from front to back, segment-
ing, matting, and inpainting the layers until we have all the
desired elements, each on their own layer Li.

Once we have as many layers as desired, we need to
specify some rules of motion. Again, we use a simple
model: sums of sinusoids. We classify several motion
types, just like in the original paper: boats (bobbing mo-
tion), plants (swaying motion), water (actually the same as
boat motion, but distributed across the y-axis), and clouds
(simple side to side translation).

We can hand define motion functions for each of these
types, as well as for each particular image (i.e. a boat in one

1



Figure 1: Example of trimaps made in Photoshop

image might behave differently than one in another).
After we have all our layers and motion functions, we

can proceed with rendering in the painter’s algorithm: back
to front. For each layer Li, we compute a displacement at
time t relative to its initial position, apply that displacement
to both the foreground image and alpha matte, and compos-
ite all the layers.

2.1. Segmentation

The original authors used a cutting method such as ”In-
telligent Scissors” (finding minimal graph cuts) to segment
out foreground elements from the original image. Rather
than re-implementing this tool which strictly requires a
functional user interface, I decided to simply use Photo-
shop’s scissors tool. However, I soon realized that it was
actually much more simple and reliable to use the paint-
brush to paint in the foreground, background, and unknown
(used for Bayesian Matting, see below) regions.

Though each layer should be segmented after the previ-
ous has been inpainted, I found it was more efficient to just
paint in all the layers at once, approximating how much the
”hidden” foreground layer would take up. See Figure 1 for
examples of these created trimaps.

2.2. Matting

Note in the trimap that there are, as the name suggests,
three regions: white, black, and gray. The white region rep-
resents the ”known foreground”, the black represents the
”known background”, and the gray is the ”unknown re-
gion”. How is this useful to us?

Recall that we will be translating our foreground layers
around the background. If we do a simple cut and paste, we
will end up with some strong edge artifacts. However, we
can’t make use of something like Gradient Domain Blend-
ing from Project 3, since we would definitely like to keep
the pixels in the known foreground the accurate color. The
original authors therefore use some of their earlier work, ”A
Bayesian Approach to Digital Matting” (also Chuang et. al.
2001) [2].

Matting is the technique used in green-screen editing.
We know in the main foreground region that it is the solid

Figure 2: Illustration of Bayesian approach

foreground color, but at the edges, the foreground pixels are
influenced by the background they are on. Thus, Bayesian
Matting allows us to separate what is the foreground color,
the background color, and the alpha matte that we can use
the recomposite them.

In Bayesian Matting, we use the distribution of the local
neighborhood to a pixel in the unknown region to compute
the MAP most likely estimates of the foreground F , back-
ground B, and alpha matte a, given the observed color in
the unknown region C. See figures 2 and 3, sourced from
Chuang’s paper.

We initialize alpha values to be 1 in the known fore-
ground and 0 in the known background. We initialize alpha
for each pixel in the unknown region to be the average alpha
value in the neighborhood, and alternate between solving
for the most likely F and B, and for the most likely a.

2



Figure 3: MAP estimate == Max Log Likelihood

In Bayesian Matting, the authors recommend cluster-
ing colors in the neighborhood region using Orchard and
Bouman’s method [3], but I found that a k-means clustering
method was sufficient.

The output from this step is an alpha matte, a computed
foreground, and a computed background. See figure 4.

2.3. Inpainting

Now that we have a segmented region and its com-
puted alpha matte, we’d like to proceed in generating lay-
ers. However, our background image now has a large hole
in it! To continue, we will first have to inpaint this region.
Moreover, when we animate the foreground layers, pieces
of the background will show through, since the foreground
is moving.

For inpainting, we will use Criminisi’s ”Region Filling
and Object Removal by Exemplar-Based Image Inpaint-
ing” [4] algorithm, which is a patch match based inpainting
method. It is relatively naive and straightforward, but since
none of our foreground layers move very much (at maxi-
mum, approximately 10 pixels in any direction), a simple
inpainting method is sufficient.

The key to this inpainting algorithm is that it attempts to
propagate existing structures (i.e. edges) in the source re-
gion, into the target region. Thus, we identify the fill front
by applying a Laplacian to the target mask, then calculate
priority values for each location p on the fill front. The
priority value is based on the available pixels in the region
(”Data”), and the confidence of pixels in the region. This in-
volves calculating gradients in the image to prioritize points
with strong isophotes.

Mechanically, we search through all patches in the
source region of the same size as our target patch, compute
the SSD between the available pixels in the target patch and
the corresponding pixels in the source patch, then copy over
the needed pixels in the highest matching source patch.

The result of inpainting is a filled in background image,
that we can continue to segment layers from (or proceed
to motion specification and rendering). See figure 6 for in-
painting results.

3. Motion Specification
Now assuming we have N layers, we need to spec-

ify a motion for each of them. As in the original paper,

Figure 4: Results from Bayesian matting

Figure 5: Results from Bayesian matting

3



Figure 6: Inpainting in process

Figure 7: Examples with ’water’ texture

we bucket elements into 4 different motion types: water,
boats, plants, and clouds. Of course, we can also have
static layers (no motion). The following sections will go
into more detail about the specific motion textures used for
each result generated. All the textures (except cloud) are re-
sulting from summed sinusoids, but each has some unique
added parameters.

3.1. Water

For water, we would like to create a cascading ripple ef-
fect across the body of water. In other words, we don’t want
the entire water region to bob up and down simultaneously.
Since all of these water examples look at the water body

head on, we can parameterize our sine functions by using a
phase shift relative to the y-coordinate of the pixel we want
to displace.

The resulting displacement is then just a simple shift in
the y direction according to the sine wave.

3.2. Boats

For boats, we naturally want the boat’s motion to be di-
rectly in sync with nearby water. To do this, we ask the user
to define a motion armature for the boat. This only requires
the user to click a point at the base of the boat. We then store
that y-coordinate, and set the boat’s motion to be in phase
with the same sinusoid used for the water in that image, at
that y-coordinate.

Again, the displacement is just a computed y-shift.
The bobbing motion of a boat extends nicely to other

objects as well, such as ducks or circles.

3.2.1 Circles

For circles, we can also approximate these as boats, but we
use a different sinusoid to create a bounce effect, more than
bobbing. We construct a dampened sine wave, and param-
eterize the dampening rate and frequency by some value.
This value is not the result of a motion armature, but a user
specified number corresponding roughly to the size of the
circle.

3.3. Clouds

Clouds are the simplest motion texture, as they are just a
simple translation. For this, we can compute a shift in the x
direction, relative to the time elapsed.

3.4. Plants

For plants, we would like to achieve a swaying motion
back and forth (left to right). However, our methods for
shifting boats or water up and down can not be directly ap-
plied in the x direction. We note that plants are rooted at the
base, and thus the swaying motion is actually more akin to
a rotation.

4



Figure 8: ”Several Circles”, Kandinsky

Figure 9: Sunflower Field

Again, we ask the user to define a motion armature from
top to bottom of the plant. Rather than actually implement-
ing a rotation, however, we can map the top coordinate and
bottom coordinate to a [0,1] range. Then, for each pixel to
be shifted, we translate the y coordinate of this pixel to a u
coordinate in [0,1] and linearly interpolate the shift amount.

4. Rendering

To keep track of what we have now, we have N lay-
ers. Each layer Li consists of an alpha matte, foreground
element, motion texture, and perhaps some user-generated
specification. We now proceed with rendering.

Rendering each frame is actually fairly straightforward.
Since we went front to back in segmentation, we now go
back to front for rendering. For each time step t, starting at
the back layer L0, we apply its displacement di(t) to both
the foreground element and the alpha matte, then apply the
alpha matte to the foreground and current composite. We
then move to layer L1 and so on, until our composite is
complete.

5. Results and Limitations

Overall, the system handles both paintings and pho-
tographs indefinitely, with arbitrarily many layers. Since
the motion textures are not physics based, there is a lot of
room for artistic interpretation on how to animate various
elements of the image.

There are semi-notable remaining artifacts resulting
from inpainting, likely resulting from an incorrect imple-
mentation of priority calculation. Also, the patch size in
the algorithm plays a large part in its success. Naive patch-
match inpainting also accumulates error very quickly.

There are also some noise artifacts from Bayesian mat-
ting, so perhaps longer iterations for alternately solving for
F , B, and a should be used.

Finally, the limitations for using simple sine functions
rather than physics-based motion have been discussed at
length.

5.1. Time Required

Manual segmentation and defining the trimap takes any-
where from 5-20 minutes, depending on the number of lay-
ers and complexity/level of precision desired.

Solving for the alpha matte runs roughly linear in the
number of pixels in the unknown region, multiplied by the
number of iterations, but is also affected by other factors. If
not enough data exists to solve for the pixel at that time, it is
passed and returned to later, when more information in the
neighborhood becomes available. Matting per layer takes
anywhere from 5-40 minutes depending on the size of the
unknown region. It is most efficient when the foreground

5



Figure 10: Elements needed for rendering

element takes up a small portion of the overall image, and
thus generates a smaller unknown region.

Inpainting is on average the most time consuming part of
this pipeline, since it runs in approximately [num pixels in
target region] x [num pixels in source region].

Rendering time is dependent on the number of layers and
complexity of the motion texture. The most complicated
renders take about 1 hour to complete (300 frames), and the
simpler ones take about 15-20 minutes.

6. Conclusion, Personal Comments, and Fu-
ture Work

We now have short clips or GIFs of originally static im-
ages, now with animated elements and a unique sense of
liveliness to them. Even with simple motion models and
relatively few layers of segmentation (the original authors
have examples of upwards of 40 layers!!), we can create
fun and charming results.

This system is probably the largest and most compli-
cated I’ve ever implemented from scratch. Though existing
source code is available for matting and inpainting (which I
referenced, and cite below), it was very unclear how all the
pieces should fit together. Thus, I’m quite satisfied with the
results I was able to generate!

I hope to extend this work both in automation, and in
domain. It would be nice to further automate both segmen-
tation and motion specification (likely using learning tech-
niques) to create a potentially completely automatic end-to-
end system.

I would also like to apply these techniques to more im-
ages – my attempt on Kandinsky’s ”Several Circles” was
moderately successful, but was incredibly difficult and re-
quired a lot of manual input. I’d like to find a way to work
on abstract images more easily.

Finally, it would be nice to make these generated clips

more interactive, perhaps introducing depth models to cre-
ate a ”Tour into the Picture” effect, or at least some parallax
between layers.

7. References and Resources
[1] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng,

Brian Curless, David Salesin, and Richard Szeliski.
Animating Pictures with Stochastic Motion Textures.
2005

[2] A Bayesian Approach to Digital Matting. Yung-
Yu Chuang, Dan B Goldman, Brian Curless, David
Salesin, Richard Szeliski. 2001

[3] M. T. Orchard, and A. B. Bouman. Color Quantization
of Images. 1991

[4] A. Criminisi, P. Perez and K. Toyama. Region Fill-
ing and Object Removal by Exemplar-Based Image
Inpainting. 2003.

[5] K-Means Clustering source code.
https://scikit-learn.org

[6] Bayesian Matting reference.
https://github.com/MarcoForte/bayesian-
matting/blob/master/bayesian matting.py

[7] Inpainting reference.
https://github.com/igorcmoura/inpaint-object-
remover/blob/master/inpainter/inpainter.py

6


