Pyramid Blending, Templates, NL Filters

CS194: Intro to Comp. Vision and Comp. Photo
Alexei Efros, UC Berkeley, Fall 2020
Application: Hybrid Images

Band-pass filtering

Gaussian Pyramid (low-pass images)
Laplacian Pyramid

How can we reconstruct (collapse) this pyramid into the original image?
Blending
Alpha Blending / Feathering

\[I_{\text{blend}} = \alpha I_{\text{left}} + (1-\alpha)I_{\text{right}} \]
Affect of Window Size
Affect of Window Size
Good Window Size

“Optimal” Window: smooth but not ghosted
What is the Optimal Window?

To avoid seams
• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

Natural to cast this in the *Fourier domain*
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)
What if the Frequency Spread is Wide

Idea (Burt and Adelson)

- Compute $F_{\text{left}} = \text{FFT}(I_{\text{left}})$, $F_{\text{right}} = \text{FFT}(I_{\text{right}})$
- Decompose Fourier image into octaves (bands)
 - $F_{\text{left}} = F_{\text{left}}^1 + F_{\text{left}}^2 + \ldots$
- Feather corresponding octaves F_{left}^i with F_{right}^i
 - Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain

Better implemented in \textit{spatial domain}
Octaves in the Spatial Domain

Lowpass Images

Bandpass Images
Pyramid Blending

Left pyramid

blend

Right pyramid
Pyramid Blending
Blending Regions
Laplacian Pyramid: Blending

General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
 - $LS(i,j) = GR(i,j) \times LA(i,j) + (1-GR(i,j)) \times LB(i,j)$
4. Collapse the LS pyramid to get the final blended image
Horror Photo

© david dmartin (Boston College)
Results from this class (fall 2005)

© Chris Cameron
Simplification: Two-band Blending

Brown & Lowe, 2003

• Only use two bands: high freq. and low freq.
• Blends low freq. smoothly
• Blend high freq. with no smoothing: use binary alpha
2-band “Laplacian Stack” Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending
Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove “high-frequency” components; “low-pass” filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast
Template matching

Goal: find in image

Main challenge: What is a good similarity or distance measure between two patches?

• Correlation
• Zero-mean correlation
• Sum Square Difference
• Normalized Cross Correlation

Side by Derek Hoiem
Matching with filters

Goal: find \(\text{eye}\) in image

Method 0: filter the image with eye patch

\[
h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]
\]

What went wrong?

Input

Filtered Image

Side by Derek Hoiem
Matching with filters

Goal: find \(\text{\includegraphics[width=1cm]{eye.png}} \) in image

Method 1: filter the image with zero-mean eye

\[
h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) (g[m+k,n+l])
\]

Input Filtered Image (scaled) Thresholded Image
Matching with filters

Goal: find in image

Method 2: SSD

\[h[m, n] = \sum_{k,l} (g[k,l] - f[m+k, n+l])^2 \]
Matching with filters

Can SSD be implemented with linear filters?

\[h[m, n] = \sum_{k,l} (g[k, l] - f[m + k, n + l])^2 \]
Matching with filters

Goal: find eyes in image

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

What’s the potential downside of SSD?

Input 1- sqrt(SSD)

Side by Derek Hoiem
Matching with filters

Goal: find \[\text{in image} \]

Method 3: Normalized cross-correlation

\[
 h[m,n] = \frac{\sum_{k,l} (g[k,l] - \bar{g})(f[m+k,n+l] - \bar{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \bar{g})^2 \sum_{k,l} (f[m+k,n+l] - \bar{f}_{m,n})^2\right)^{0.5}}
\]
Matching with filters

Goal: find ☠️ in image

Method 3: Normalized cross-correlation
Matching with filters

Goal: find 🕳️️ in image

Method 3: Normalized cross-correlation
Q: What is the best method to use?

A: Depends

Zero-mean filter: fastest but not a great matcher

SSD: next fastest, sensitive to overall intensity

Normalized cross-correlation: slowest, invariant to local average intensity and contrast
Denoising

Additive Gaussian Noise

Gaussian Filter
Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik
Reducing salt-and-pepper noise by Gaussian smoothing

3x3 5x5 7x7
Alternative idea: Median filtering

A **median filter** operates over a window by selecting the median intensity in the window.

- Is median filtering linear?

Source: K. Grauman
Median filter

What advantage does median filtering have over Gaussian filtering?

- Robustness to outliers

Source: K. Grauman
Median filter

Salt-and-pepper noise

Median filtered

MATLAB: medfilt2(image, [h w])

Source: M. Hebert
Median vs. Gaussian filtering

<table>
<thead>
<tr>
<th></th>
<th>3x3</th>
<th>5x5</th>
<th>7x7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Gentle Introduction to Bilateral Filtering and its Applications

“Fixing the Gaussian Blur”: the Bilateral Filter

Sylvain Paris – MIT CSAIL
Blur Comes from Averaging across Edges

Same Gaussian kernel everywhere.
Bilateral Filter [Aurich 95, Smith 97, Tomasi 98]
No Averaging across Edges

The kernel shape depends on the image content.
Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

\[BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\| p - q \|) G_{\sigma_r}(\| I_p - I_q \|) I_q \]

- **new**
- **not new**
- **new**

normalization factor

space weight

range weight
Illustration a 1D Image

- 1D image = line of pixels

- Better visualized as a plot

(pixel intensity vs. pixel position)
Gaussian blur

\[\text{GB}[I]_p = \sum_{q \in S} G_{\sigma}(\| p - q \|) I_q \]

Bilateral filter

\[\text{BF}[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\| p - q \|) G_{\sigma_r}(\| I_p - I_q \|) I_q \]

[Aurich 95, Smith 97, Tomasi 98]
Bilateral Filter on a Height Field

\[BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\| p - q \|) \cdot G_{\sigma_r}(\| I_p - I_q \|) \cdot I_q \]
Space and Range Parameters

\[BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(\|I_p - I_q\|) I_q \]

- space \(\sigma_s \): spatial extent of the kernel, size of the considered neighborhood.

- range \(\sigma_r \): “minimum” amplitude of an edge
Influence of Pixels

Only pixels close in space and in range are considered.
Exploring the Parameter Space

$\sigma_s = 2$

$\sigma_s = 6$

$\sigma_s = 18$

$\sigma_r = 0.1$

$\sigma_r = 0.25$

$\sigma_r = \infty$

(Gaussian blur)
Varying the Range Parameter

\(\sigma_r = 0.1 \)
\(\sigma_r = 0.25 \)
\(\sigma_r = \infty \)
(Gaussian blur)

\(\sigma_s = 2 \)
\(\sigma_s = 6 \)
\(\sigma_s = 18 \)
\(\sigma_r = 0.1 \)
\[\sigma_{r} = 0.25 \]
\[\sigma_r = \infty \]

(Gaussian blur)
Varying the Space Parameter

\(\sigma_s = 2 \)

\(\sigma_s = 6 \)

\(\sigma_s = 18 \)

\(\sigma_r = 0.1 \)

\(\sigma_r = 0.25 \)

\(\sigma_r = \infty \)

(Gaussian blur)
$\sigma_s = 2$
$\sigma_s = 18$