
Sensor-Fusion Aided Simulation of Scenarios for Autonomous Vehicles

Romil Bhardwaj
UC Berkeley

romil.bhardwaj@berkeley.edu

Sukrit Kalra
UC Berkeley

sukrit.kalra@berkeley.edu

Abstract

Autonomous vehicles (AVs) will be required to drive
across a plethora of complex scenarios, many of which
present unique challenges to the computational pipeline un-
derlying the vehicle. The ability to develop and test fu-
ture updates to the pipeline on such scenarios is critical
in ensuring the safety of the pipeline. In order to incorpo-
rate production scenarios into the testing cycle, the vendors
need to be able to reconstruct an accurate top-down repre-
sentation of the environment around the vehicle using data
collected from various sensors attached to the vehicle.

In this work, we present a preliminary approach that uti-
lizes camera images along with point clouds generated by a
LiDAR instance in order to construct a top-down represen-
tation of the environment around the vehicle. Furthermore,
we utilize a series of such representations to estimate the
movement of other agents in the environment over time and
reconstruct their trajectories in a simulated environment.

1. Introduction
Innovations in hardware, algorithms and machine learn-

ing models have transformed AVs from a distant dream
to a fast approaching reality. While these advancements
have already facilitated the deployment of various “Level
1” and “Level 2” driver-assist features that allow modern
vehicles to autonomously navigate freeways, perform lane
changes and even respond to traffic lights, constant hu-
man supervision is still required to ensure safety of the
vehicle. The ultimate goal of AV research, however, has
been a “Level 4” or “Level 5” vehicle that is able to com-
pletely monitor the driving environment and drive itself un-
der any circumstance, and recent regulatory approvals are
poised to enable the deployment of such vehicles on pub-
lic roads [6, 4, 9]. This complete removal of humans from
the driving loop requires the vehicle to ensure safety across
the long-tail of complex driving scenarios encountered in
production [14, 11].

To achieve these levels of automation, which require the
vehicle to perform all driving functions without human at-

tention [1], state-of-the-art AVs employ a modular compu-
tational pipeline architecture. Ensuring safety of the AV
mandates that each module of this pipeline provides the
highest accuracy result possible within a given latency. In
order to ensure high accuracy, vendors need to be able to
capture the driving scenarios encountered in production,
and utilize them to debug their components and develop and
test future updates to each component [7].

Most vendors resort to logging of data generated from
sensors such as cameras, LiDARs, GPS and IMU modules
in order to drive their development and testing in simula-
tion [8, 7]. While this collected data enables seamless test-
ing of the perception and localization modules (see §2) that
compute their results directly on the raw data from these
sensors, downstream modules such as prediction and plan-
ning require an intermediate representation of the environ-
ment around the vehicle constructed by the upstream com-
ponents. This representation (visualized in Fig. 1) is critical
in ensuring the safety of the vehicle since it provides the
current and past estimates of the locations of all obstacles
around the AV. Moreover, any changes in the results from
the prediction and planning module lead to a variation in
the trajectory of the vehicle, which renders any future rep-
resentation generated from the collected data incorrect.

In this work, we provide a framework that enables the
reconstruction of the environment in a state-of-the-art driv-
ing simulator [12] using fusion of the sensor data collected
from an AV. Specifically, our framework fuses data from
multiple camera angles in order to construct a complete top-
down environment representation, and uses the LiDAR data
to ensure the accuracy of the scale of the obstacles. While
previous work [13] has attempted to tackle this problem, it
assumes a fixed size of the various types of objects in the
scene, and does not reconstruct the environment in a simu-
lator. This paper makes the following contributions:
• We enable an accurate environment representation re-
construction by fusing sensor data collected in an AV.
• We utilize this representation to reconstruct the scenario
in the CARLA driving simulator [12].
• We provide a list of future works enabled by fusing real-
world data with a goal to recreating scenarios.

1



Figure 1. The computational pipeline underlying an AV. Data from
sensors is used by the perception module to create a representation
of the environment around the vehicle. This representation, along
with the future trajectories predicted by the prediction module, is
used to plan a future path for the AV by the planning module.

2. Background
A modern AV is equipped with multiple instances of var-

ious sensors such as cameras, LiDARs, radars, GPS, etc.
which generate data at different frequencies [2, 5, 3]. This
data is fused by a computational pipeline (Fig. 1) to perceive
the environment around the vehicle, and generate control
commands for the underlying machinery. The computation
that allows the pipeline to achieve its goal is split across
the following five modules that collectively ensure that an
AV reaches its destination while following traffic laws and
preventing collisions with other agents in the environment:
Localization. Similar to any robot, the first task of an AV is
to compute its location in the world with respect to certain
pre-defined fixed points. These static points of reference
(such as buildings, traffic lights etc.) are represented in a
high-definition map (HDMap), which provides the vehicle
with a decimeter-level accurate mapping of the environment
around it. In order to create the environment representation,
the localization module fuses data from multiple sensors
such as GNSS, IMU and LiDAR and uses it to triangulate a
highly-accurate location of the vehicle in this map.
Perception. In order to ensure safety, this representation
needs to be augmented with an accurate and real-time lo-
cation of the obstacles around the AV. Any instance of
missed or misclassified obstacles along with obstacles that
are detected late either lead to a collision or require emer-
gency maneuvers, which affect the comfort of the passen-
gers. Moreover, for obstacles that move over time such as
vehicles and pedestrians, called agents, the representation
must also correlate each instance across sensor readings.
This allows the representation to provide information about
the speed of each agent along with the direction of its move-
ment, which aids the prediction of its future trajectory.

Thus, the goal of the perception module is to synchro-

nize data from sensors such as cameras, LiDARs and radars
in order to accurately detect obstacles and track their move-
ment through time. To achieve this, a perception module
utilizes two components: (i) Object detection, which ap-
plies machine learning models on data retrieved from sen-
sors in order to detect obstacles in the environment, and
(ii) Object tracking, which utilizes algorithms and machine
learning models in order to assign a unique identifier to each
detected obstacle. This identifier can be used by down-
stream operators to query the environment representation in
order to retrieve each obstacle’s past locations and calculate
their speed and trajectory.
Prediction. Once the perception module has finished build-
ing the critical environment representation, the pipeline
needs to predict the future trajectories of each agent in order
to ensure that the future motion of the AV does not collide
with any obstacle. To achieve this task, the prediction mod-
ule utilizes machine learning models that take as input the
environment representation, and provide a set of predicted
trajectories for each obstacle in the representation along
with the probability of the obstacle taking that trajectory.
Moreover, it is imperative to note that while the short term
trajectory predictions might be accurate, the accuracy of the
trajectory decreases with an increase in the prediction hori-
zon. As a result, while a highly accurate prediction model
can marginally offset the effects of an increased latency in
building the representation, it is still desirable to ensure that
the accuracy of the representation itself is maximized in the
context of the driving environment. This allows the predic-
tion module to produce accurate future trajectories instead
of compensating for the latency of its upstream components,
hence increasing safety.
Planning. While the HDMap provides high-level route in-
structions, it is the task of the planning module to compute
low-level trajectory “waypoints” that the control module
can follow. To achieve this, the planning module relies on
algorithms that require as input a representation of the envi-
ronment containing the locations of obstacles, traffic lights,
signs etc., along with the future trajectories of all agents
in the environment. The algorithm then computes a fine-
grained motion plan (with decimeter-level waypoints) that
seeks to ensure the safety of all agents in the environment,
and the comfort of the passengers inside the AV.
Control. The control module computes the steering, accel-
eration and braking commands for the underlying machin-
ery from the waypoints generated by the planning module.

Thus, a critical component that enables accurate testing
of the prediction and planning components is the environ-
ment representation, which is a top-down representation of
the environment around the AV and depicts the other agents
present around the AV. An accurate representation repre-
sented in a dynamic world simulator allows vendors to ex-
plore the effects of changes to algorithms and models.

2



3. Design
In this section, we discuss the design of our framework

that enables the construction of an environment representa-
tion. We start by discussing an initial straw man approach to
solving the problem (§3.1). §3.2 then discusses the limita-
tions of this approach, and §3.3 provides further refinements
that constitute the design of our framework.

3.1. Straw Man Approach

The first step in computing a top-down representation
of the environment from a camera image involves detect-
ing the objects in the scene. Our straw man approach uti-
lizes off-the-shelf object detection models such as Faster-
RCNN [16], SSD [15] and the EfficientDet family of mod-
els [17]. to infer a bounding box in the camera frame for the
object along with a label such as person or vehicle.

In order to map these boxes to their appropriate locations
in the top-down representation, we require both the width
and the height of each object. Similar to previous work [13],
our straw man approach utilizes an average height and width
for both persons and vehicles gathered from the National
Center for Health Statistics and Consumer Reports respec-
tively. This provides us with the dimensions of the top-
down bounding box for each detected object in the scene.

Finally, our straw man approach assumes a straight lin-
ear surface and computes the depth of each obstacle from
the AV, along with the distance between each obstacle using
the current location of the vehicle and the camera calibra-
tion matrix computed from the location of the camera with
respect to the vehicle. These distances, coupled with the
dimensions of each obstacle retrieved earlier, allows us to
compute a homography for each frame in order to compute
the top-down representation of that frame.

3.2. Limitations of the straw man approach

While this straw man approach enables the construction
of a top-down representation of the environment around the
AV, it suffers from the following drawbacks owing to its
strict assumptions about the environment and the obstacles:
• The heterogeneity of the obstacles is not represented by
the average dimensions chosen by the straw man approach.
As a result, the scale of the objects is not maintained.
• The assumption of a straight road to find the distance
of the obstacles is limiting and does not work across the
different road surfaces experienced during regular driving.
• The per-frame homography computation produces jittery
top-down representations across time.

While the jittery representation complicates the generation
of the trajectory of the obstacles, the assumptions about the
dimensions and distance of the obstacles leads to an incor-
rect simulation, since any change in the scenario prevents
the vendors from ensuring that their updates perform well.

Figure 2. The architecture of our solution that fuses data from mul-
tiple sensors (including cameras, LiDARs and GPS modules) in
order to create a top-down representation of the environment. This
representation is used to determine trajectories for all the agents in
the scene, which is then recreated in the CARLA simulator.

3.3. Our Approach

We now discuss our design that addresses the limita-
tions of the straw man approach discussed in §3.1 (depicted
in Fig. 2). The key observation in our approach is the uti-
lization of the multiple sensors present in an AV. Specifi-
cally, we utilize data from the multiple cameras, LiDARs
and GPS modules in order to accurately detect the dimen-
sions and distance of the obstacles in the scene. We intro-
duce time-aware RANSAC, which enables the construction
of a stable top-down representation of the environment over
time. This aids in the reconstruction of the trajectories of the
obstacles over time, which is then replayed in the CARLA
simulator [12]. The remainder of the section discusses the
different parts of the design in detail.
Synchronization. As discussed in §2, an AV is equipped
with multiple instances of various sensors such as cameras,
LiDARs and GPS modules. While this allows the AV to
capture the entire environment around it, these sensors run
at different frequencies which complicates the process of
fusing data from these sensors in order to build the environ-
ment representation. Taking the most recent data from all
the sensors at the frequency of the slowest sensor hinders
both the accuracy and the latency of the fusion module. For
example, running at the frequency of the LiDAR sensor, the
latest camera image available might not contain the objects
in the same location as they are in the LiDAR reading.

In our design, we run at the frequency of the camera, and
utilize the periodicity of the sensors to wait if the incoming
LiDAR reading is closer in time to the camera image than
the last available one. In order to ensure the correct fusion
of this data, we transform the LiDAR data into the camera
frame. To achieve this, we first transform the LiDAR data to
the frame of the vehicle based on the location of the LiDAR

3



with respect to the center of the vehicle. This data is further
transformed to the camera frame by applying the transform
matrix with respect to the front-facing camera.
Object Detection. Similar to the straw man approach, we
utilize off-the-shelf object detection models such as Faster-
RCNN [16], SSD [15] and the EfficientDet family [17].
Depth Estimation. A major limitation of the straw man
approach that affects the accuracy of the environment repre-
sentation is the assumption of the height and dimensions of
the obstacle according to the label assigned by the object de-
tector. In our design, we utilize the synchronized and trans-
formed point cloud generated from the multiple instances of
the LiDAR sensor. Specifically, we find all the points of the
point cloud that lie inside the bounding box generated by the
object detector. We then calculate the height and width of
the obstacle by subtracting the distance between the lowest
and the highest point that lies in the bounding box.

Our approach also utilizes the synchronized and trans-
formed LiDAR data to calculate the distance of each obsta-
cle from the AV. Specifically, we assign to each obstacle
in the scene a depth equivalent to the distance of the point
closest to the middle point of the bounding box from the
pointcloud. This allows our design to forego the assumption
of a straight road, and work across different road surfaces.
Time-Aware RANSAC. In order to calculate the homogra-
phy that converts the images from the camera frame to the
top-down environment representation frame, the straw man
approach ran RANSAC across the bounding boxes detected
for each frame. This approach minimizes the error across a
frame, but leads to a jittery representation over time since
each frame is transformed with a different homography. A
jittery top-down representation complicates an accurate cal-
culation of the trajectory of each obstacle in the scene.

Our design introduces time-aware RANSAC that seeks to
minimize the jitter caused due to the homography transfor-
mation across time. Time-aware RANSAC calculates the
homography by executing RANSAC across both the obsta-
cle and the time dimension. Specifically, we calculate the
homography by choosing a fixed number of points from a
single frame. The homography with the minimum error is
chosen by executing RANSAC with the homography across
all the frames in the dataset. While this approach minimizes
the error, it is computationally expensive. As an optimiza-
tion, our implementation chooses the homography with the
minimum error by executing RANSAC across all the obsta-
cles in the scene. However, to prevent jitter, the homogra-
phy with the minimum error across time is chosen as the
single homography for the video stream. In order to cal-
culate this homography, we execute RANSAC across the
minimum computed homography of each frame.
Camera Fusion. In order to build a complete representa-
tion of the environment around the AV, we utilize images
captured from cameras located at different parts of the ve-

hicle. To fuse the images together, we utilize the static lo-
cations of the camera with respect to the vehicle to calcu-
late the extrinsic and intrinsic matrices of all the cameras.
Further, every image is projected on the frame of the center
camera in order to retrieve the complete top-down represen-
tation of the scene. This provides us with a panoramic view
of the entire area captured by the cameras.
CARLA Shim. Once the representation of the environment
is complete, we use the current location of the vehicle (re-
trieved from fusing the GPS and IMU sensors) to calcu-
late the location of each obstacle in every frame. These
points are then transformed to corresponding waypoints on
a CARLA map with a predefined starting point for the AV.
We developed a simple waypoint follower control algorithm
that generates steering and acceleration commands for the
vehicles by applying PID control to the given trajectory. We
also match the size and label of the obstacle to the corre-
sponding vehicle in CARLA. However, we are limited by
the number of vehicles in CARLA, and cannot ensure that
the dimensions of the real vehicles remain unaltered.

4. Results

To evaluate our methodology, we chose the Waymo
Open Dataset [10], which provides images from multiple
camera angles along with the LiDAR and GPS information
required for the precise simulation of the scenario in the
CARLA simulator. Fig. 3 shows the results of each step in
our pipeline on a test scenario from the dataset. Our project
website contains the videos of the time-aware RANSAC on
multiple scenarios, along with a simulation of this particular
scenario in CARLA.

5. Limitations & Future Work

The current implementation of our work suffers from the
following limitations:
• Lane detection is aided by a top-down representation and
it would be useful to evaluate the efficacy of lane detection
on the representation generated by our system.
• Our approach does not yet do detection of colors, and
we randomize the color of the vehicles in the simulator. It
would be useful to maintain the color in the simulation.
• It would be useful to fit a curve to the waypoints
generated from the top-down representation in order to
smoothen the trajectory of the vehicle in simulation. The
low sampling frequency of the cameras hinders faithful re-
production of the scenario.
• Our current approach executes time-aware RANSAC
across all the camera angles, which is computationally ex-
pensive, and might lead to blurring. It would be useful to
fuse the images together and then run RANSAC.

4



Figure 3. The results of each step in our pipeline on a set of three images captured from the Waymo Dataset [10].

References
[1] Automated vehicles for safety. https://www.

nhtsa.gov/technology-innovation/
automated-vehicles-safety.

[2] How does a self-driving car see? https:
//blogs.nvidia.com/blog/2019/04/15/
how-does-a-self-driving-car-see/.

[3] How uber self-driving cars see the world.
https://www.therobotreport.com/
how-uber-self-driving-cars-see-world/.

[4] Hyundai-backed motional to launch fully driverless cars in
las vegas. https://tinyurl.com/yytftr2h.

[5] Introducing the 5th generation waymo driver.
https://blog.waymo.com/2020/03/
introducing-5th-generation-waymo-driver.
html.

[6] Robotaxi companies can now win approval to operate in cal-
ifornia. https://tinyurl.com/yavxgxjc.

[7] Tesla is collecting insane amount of data from its full self-
driving test fleet. https://tinyurl.com/y89gtu9j.

[8] Waymo offers a peek into the huge trove of data col-
lected by its self-driving cars. https://tinyurl.com/
y59oneag.

[9] Waymo restarts robotaxi service without human safety
drivers. https://tinyurl.com/ycrcsqhu.

[10] Waymo open dataset: An autonomous driving dataset, 2019.
[11] D. Anguelov. Taming the long tail of autonomous driving

challenges. https://www.youtube.com/watch?v=
Q0nGo2-y0xY, 2019.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun. CARLA: An open urban driving simulator.
In Proceedings of the 1st Conference on Robot Learning
(CoRL), pages 1–16, 2017.

[13] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in per-
spective. International Journal of Computer Vision, 80(1):3–
15, 2008.

[14] A. Karpathy. Cvpr ’20 - workshop on scalability in au-
tonomous driving. https://sites.google.com/
view/cvpr20-scalability/archived-talks/
keynotes, 2020.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
Proceedings of the 14th European Conference on Computer
Vision (ECCV), pages 21–37. Springer, 2016.

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015.

[17] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and
efficient object detection (v4). In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

5

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://www.therobotreport.com/how-uber-self-driving-cars-see-world/
https://www.therobotreport.com/how-uber-self-driving-cars-see-world/
https://tinyurl.com/yytftr2h
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://tinyurl.com/yavxgxjc
https://tinyurl.com/y89gtu9j
https://tinyurl.com/y59oneag
https://tinyurl.com/y59oneag
https://tinyurl.com/ycrcsqhu
https://www.youtube.com/watch?v=Q0nGo2-y0xY
https://www.youtube.com/watch?v=Q0nGo2-y0xY
https://sites.google.com/view/cvpr20-scalability/archived-talks/keynotes
https://sites.google.com/view/cvpr20-scalability/archived-talks/keynotes
https://sites.google.com/view/cvpr20-scalability/archived-talks/keynotes

