
GameboyAir: A Camera-based User Interface for Cursor Control and Gaming

Zhibo Fan
zb1439@berkeley.edu

Tzu-Chuan Lin
tzu-chuan lin@berkeley.edu

Abstract

This paper describes GameboyAir, a mouse-free and
keyboard-free user interface library for laptop which sup-
ports cursor control and gaming. GameboyAir could run
on any laptop with a camera and controls mouse cursor and
keyboard inputs based on detected hand gestures and move-
ments. We utilized MediaPipe [11] for hand keypoint detec-
tion and tracking, and create higher level features and build
classifiers upon the detected keypoint coordinates. With
gesture sequence and keypoint coordinate sequence, we can
move the cursor, raise mouse events, and simulate keyboard
input for various applications. It is worth mentioning that
GameboyAir is a framework rather than an application that
developers can easily create new applications based on it.

1. Introduction

Hand keypoint detection [1, 3, 11] is an active research
field due to its potential for the next-generation human com-
puter interaction. For example, given the detected hand key-
points, gesture recognition and VR/AR algorithms can be
applied to control the device and render interesting visual
effects. In this project, we focus on applying hand keypoint
detection for a novel mouse-free and keyboard-free user in-
terface on laptops with cameras, where applications could
be built upon the interface. Since the project is more like a
contact-less platform for different games and applications,
we name it as GameboyAir.

There are several literature on cursor control by hand
[2, 6], however, they focus mainly on gesture recognition
and could not be easily deployed on laptops. Horatiu-
Stefan et al. [2] requires special environment to detect hands
and Okan et al. [6] utilized a heavy 3D-CNN [10] with
ResNet101 [4], resulting in low frames per second (FPS)
and bad user experience. In contrast, we propose to make
an easily accessible user interface which only requires a
webcam and can be run real-time without special hard-
ware (e.g., GPU). Fortunately, Google’s open-source li-
brary MediaPipe [11] offers a hand landmark detection so-
lution which can be run real-time with a promising accu-
racy. Given the 3D keypoint locations, we are able to build

simple yet efficient classifiers and controls the device ac-
cordingly.

Specifically, we build a feature descriptor indicating
whether a finger is bent or straight based on the angles
and distances. Then, we implement static gesture classi-
fiers based on the finger feature descriptor and the original
keypoint coordinates, and dynamic gestures are viewed as
special sequences of static gestures. For cursor control and
other applications involving position tracking, however, we
found that MediaPipe [11] outputs are not stable enough
due to input noise. Thus, we add a Kalman filter [5] to
eliminate the noise and make movements smoother. In ad-
dition, we carefully design a camera-based user interface
pipeline with interfaces between different modules such that
developers are able to customize and plug in their own mod-
ules based on GameboyAir with minor amount of code.
We build a cursor controller and games including Mario,
Greedy Snake, NSShaft, and Flappy Bird based on the
GameboyAir library.

2. Method
In this section, we focus on introducing the methodolo-

gies we used in this project. We start with a brief intro-
duction of MediaPipe Hand [11], then detail our original
implementation based on MediaPipe.

2.1. A Brief Introduction of MediaPipe Hand

Google’s MediaPipe Hand [11] solution is divided into
palm detection and landmark detection stages. Palm detec-
tion utilized an hourglass structure backbone [7] to support
low-resolution input with considerable amount of anchors.
The detector head resembles RPN [8] to predict the bound-
ing box of hand palms, with an extra head predicting coarse-
scale keypoints for finger base knuckles. Then the bounding
box is rotated based on the direction from the wrist keypoint
and the middle finger knuckle and scaled 2.6x to possibly
include the full hand. The original image is cropped by
the scaled box and fed into the landmark detector to pro-
duce 21 hand landmarks as shown in Figure1. MediaPipe
Hand [11] also includes a hand existence classifier and a
keypoint tracker to prevent unnecessary computation when
no hands exist or re-computing the keypoints if the move-

1



Figure 1. MediaPipe hand landmarks [11].

ment is small. However, the original predictions from Me-
diaPipe is not smooth enough for cursor control.

2.2. Heuristic Finger Descriptor

We build two different heuristic finger descriptors, based
on distance and 3D angles, respectively. The former one
is robust to gesture transition, which is applied on cursor
control where mouse events are triggered by more complex
gestures. Generally, the latter one is more stable but fails
to ignore the transition between certain gestures and yields
false positive.

The distance-based descriptor consists of stacked condi-
tions for each finger. For each finger, the distance from the
finger tip and the finger knuckle to the wrist and the ratio
between the two is computed, and we threshold on some
of these values to decide whether the finger is straight or
bent. Additionally, since the thumb is shorter than the other
four fingers, the distance criteria may fail occasionally, thus
we add an extra condition thresholding the 2D angle of the
vector from thumb tip to thumb knuckle and the vector from
thumb knuckle to the wrist to justify the classification.

The angle-based descriptor is inspired by Google’s lat-
est paper building real-time gesture recognizer based on
MediaPipe [9] (implementation and API not released yet).
Specifically, we divide each finger into four segments: from
tip to finger DIP (or thumb IP), from finger DIP(or thumb
IP) to finger PIP (or thumb MCP), from finger PIP (or
thumb MCP) to finger MCP (or thumb CMC), and from
finger MCP (or thumb CMC) to wrist (see Figure1). We
compute the 3D angles between the first mentioned seg-
ment and the other three, and take the maximum angle.
Then we apply different thresholds on this angle to decide
different fingers being straight or bent. Generally speak-
ing, this descriptor is more stable in most cases, but suffers
failures from certain gestures. For example, when pinch-
ing (thumb and index finger meet), the gesture transition
yields false positive classification, and results in the cursor
to move away before mouse clicking is triggered (which is
the corresponding mouse event for pinching). Thus, we uti-
lize the distance based descriptor in cursor control, and the
angle based one for other applications.

2.3. Gesture Recognition

In this project, we assume only one hand appears in the
camera and only deals with single-hand gestures. To ensure
real-time classification, the classifier takes the current key-
point coordinates and the sequence of finger descriptors as
input features instead of raw pixels. Final finger description
is obtained by voting from the finger descriptors of the last
5 frames. Static gestures are recognized based on a stack of
if-else conditions upon the given features, and we assume
dynamic gestures are sequences of static gestures with sim-
ple patterns, which can be classified based on static gesture
sequences. Without using machine learning or deep learn-
ing models, the carefully justified heuristic based classifiers
serve well in the whole pipeline. Different applications may
use different gestures and therefore different classifiers, we
will detail the gestures and classifiers for different applica-
tions in Section 3.2 and Section 3.3.

2.4. Cursor Control and Kalman Filtering

Keypoint tracking is required for cursor control appli-
cations and needs highly stable landmark detection. Since
the output from MediaPipe [11] is not stable enough to pro-
vide a smooth user experience on cursor control, we apply
a Kalman filter to remove the measurement noise from the
keypoint predictions. We use position-based relative con-
trol to move the cursor, which scales the movement of the
index finger tip when the gesture “point” is detected.

Kalman filter [5] is a classical recursive noise filter under
linear system assumptions. Here we define the observation
states as the x-y coordinates, and assume that the system
dynamic follows Newtonian kinematics and is linear w.r.t
to position, velocity, and acceleration along x and y axis.
The system at time step k is formulated as follows:

X(k) = AX(k − 1) +W (k − 1) (1)

Z(k) = HX(k) + V (k) (2)

where X is system states (position, velocity, and acceler-
ation along x and y axis) and Z is observation states (x-y
position). W and V are process noise and measurement
noise and are initialized as σpI and σmI , respectively. We
set σp = 0.003 and σm = 1 since the output from Medi-
aPipe can be quite noisy. As we assume the system dynamic
follows Newtonian kinematics, A and H is defined as:

A =


1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 (3)

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(4)

2



Figure 2. GameboyAir pipeline illustration. Black arrows indicate
information flow and green arrows indicate module plug-ins.

3. Results
In this section, we first detail the design of Gameboy-

Air and its features, then we go through the applications
built upon GameboyAir, including cursor control and four
games.

3.1. Framework Design

An illustration of GameboyAir pipeline is shown in Fig-
ure 2. First, the pipeline is initialized based on the con-
figuration file and registered modules, then the input video
frames are preprocessed and fed into the model part. Model
consists of a feature descriptor graph, where successive fea-
ture descriptors may rely on other feature descriptors, for
example, the default feature graph consists of the Medi-
aPipe [11] API and the finger descriptor, where the latter
one depends on outputs from MediaPipe. Every output from
the nodes in the feature descriptor graph is fed into the clas-
sifier and the detector, which yields the gestures and loca-
tions to control the cursor and raise mouse events. Kalman
filter is applied in the detector module, which perceives the
keypoints as measurement and predicts the final location.
In addition, an external memory cache stores a fixed-length
queue of the output from the modules, which facilitates
sequence-based modules like the dynamic gesture classifier
and relative control of the cursor.

Figure 3. Gestures and their corresponding mouse events for cur-
sor control.

Note that the above mentioned pipeline is flexible and
can be customized using different configuration files and
registered modules. For example, to build a new application
using new gestures, the developer only needs to derive from
the base classifier with a customized predict method and
modify the configuration file accordingly. We will show
applications build upon this framework in Section 3.2 and
Section 3.3. Please refer to our implementation for more
details.1

3.2. Cursor Control

Gestures Recognition. We support gestures as shown in
Figure3 to control the cursor and raise mouse events. In 3,
the first row corresponds to sample images of hand gestures,
the second row corresponds to the names of the gestures and
the last row corresponds to the mouse events to be raised.
The gestures are classified based on which fingers are bent
or straight, as well as specific distance constraints. For ex-
ample, gestures for swipe and click use the same fingers,
but can be discriminated by the minimum distance between
the keypoints on index finger and middle finger.

Single-time Activation. Inspired by [6], we apply
single-time activation for right click since open palm is sen-
sitive to gesture transition. Empirically, undefined gestures
may be recognized during right-click due to noise or slight
change in hand, which is the limitation of distance-based
finger descriptor as stated in Section2.2. Therefore, we do
single-time activation instead of activating immediately af-
ter the gesture is detected. Specifically, we only raise the
mouse event of the most recent gesture of category g if the
gesture is the only g in the history gestures sequence. Demo
video is available on YouTube.2

3.3. Gaming

For currently supported games, we raise keyboard events
from gestures to control the agents inside the game. Games
run asynchronously and communicates with the main pro-
cess via the keyboard events, and once the main process
or the game process terminates, the other one terminates.
Video demos for the games are available.3

1https://github.com/zb1439/finger cursor
2https://youtu.be/EURRLRz1Bgo
3https://youtu.be/wicQDNr-hX8

3



Figure 4. Gestures and their corresponding events for Super
Mario.

3.3.1 Greedy Snake

We detect the direction from the wrist to the mean knuckle
of the index finger, middle finger, and pinky finger to control
the movements of the snake. If the direction falls in a local
range of 0, 90, 180, 270 degrees, the snake will move up-
wards, leftwards, downwards, and rightwards, respectively.

3.3.2 Flappy Bird

Flappy Bird only involves one button to play. We define the
action from fist to open palm as the bird’s “flapping”. Sim-
ilar to Section3.2, single-time activation is utilized to clas-
sify this dynamic gesture and avoid duplicate “flapping”.

3.3.3 Super Mario

We designed four gestures for this game, shown in Figure
4. For the left and right events, we used the same method
described in section 3.3.1 to compute the angles and then
decide whether it is a left-leaning or right-leaning fist. In
addition, because the height of the agent - Mario’s jump
depends on how long the player press the jump button. We
invented two more gestures to raise two types of the jumps
(a short-press and a long-press jumps).

3.3.4 NS Shaft

For this game, we adapted the idea from how 3.3.3 controls
left and right event to move the agent.

Acknowledgements
We thank Prof. Alexei (Alyosha) Efros and Prof. Angjoo

Kanazawa for delivering this wonderful lecture and offering
advices regarding this project. The idea for this project is
inspired by the M.Eng capstone project, Mouse-free Assis-
tive Technology, supervised by Prof. Brian Barsky, espe-
cially the cursor control part. We conducted the design and
coding for this project independently. We borrowed design

https://youtu.be/KT7G452Gedg
https://youtu.be/Zvl704EexbI

patterns and some codes from Detectron24 and cvpods5, and
the games are modified upon open source implementations
listed in the footnote 6.

References
[1] Oculus connect 6: Introducing hand tracking on ocu-

lus quest, facebook horizon, and more. https :
//www.oculus.com/blog/oculus- connect-
6-introducing-hand-tracking-on-oculus-
quest-facebook-horizon-and-more/. 1

[2] Horatiu-Stefan Grif and Cornel Cristian Farcas. Mouse cur-
sor control system based on hand gesture. Procedia Technol-
ogy, 22:657–661, 2016. 1

[3] Tomasz Grzejszczak, Michal Kawulok, and Adam Galuszka.
Hand landmarks detection and localization in color images.
Multimedia Tools and Applications, 75(23):16363–16387,
2016. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[5] Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. 1960. 1, 2

[6] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Gerhard
Rigoll. Real-time hand gesture detection and classification
using convolutional neural networks. In 2019 14th IEEE In-
ternational Conference on Automatic Face & Gesture Recog-
nition (FG 2019), pages 1–8. IEEE, 2019. 1, 3

[7] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
1

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015. 1

[9] George Sung, Kanstantsin Sokal, Esha Uboweja, Valentin
Bazarevsky, Jonathan Baccash, Eduard Gabriel Baza-
van, Chuo-Ling Chang, and Matthias Grundmann. On-
device real-time hand gesture recognition. arXiv preprint
arXiv:2111.00038, 2021. 2

[10] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 1

[11] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias
Grundmann. Mediapipe hands: On-device real-time hand
tracking. CoRR, abs/2006.10214, 2020. 1, 2, 3

4https://github.com/facebookresearch/detectron2
5https://github.com/Megvii-BaseDetection/cvpods
6Greedy Snake: https://github.com/GMfatcat/greedySnake,

Flappy Bird: https://github.com/sourabhv/FlapPyBird,
NS Shaft: https://github.com/iPel/NS-SHAFT,
Nes-py: https://github.com/Kautenja/nes-py

4

https://www.oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/
https://www.oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/
https://www.oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/
https://www.oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/

	. Introduction
	. Method
	. A Brief Introduction of MediaPipe Hand
	. Heuristic Finger Descriptor
	. Gesture Recognition
	. Cursor Control and Kalman Filtering

	. Results
	. Framework Design
	. Cursor Control
	. Gaming
	Greedy Snake
	Flappy Bird
	Super Mario
	NS Shaft



