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Abstract

Semantic segmentation is a promising approach for im-
proving the sustainability and precision of deep sea fishing
practices, but there are challenges to scaling adoption. We
study two of these challenges: few ground-truth labels and
a wide variety of marine habitats and fish species to adapt
to. We experiment with applying active learning and do-
main adaptation approaches, first independently and then
jointly, to handle these challenges.

1. Introduction

Human activity over the past several hundred years has
inflicted significant damage on ocean ecosystems. To-
day, overfishing as a result of inefficient commercial trawl-
ing practices in deep sea ecosystems is a known cause of
ecosystem collapse [7]. This practice occurs when un-
wanted fish species are caught up in fishing equipment.
Over the past several decades, overfishing has become in-
creasingly widespread. A 2020 report by the Food and Agri-
culture Organization of the United Nations estimated that
34% of the world’s fisheries were overfished in 2017, and
in some areas of the world, that number is estimated to be
closer to 60% [3].

Within the past several years, advancements in computer
vision have generated new opportunities to improve the sus-
tainability and precision of commercial fisheries. In partic-
ular, semantic segmentation is a promising approach for ad-
dressing the problem of overfishing in ocean environments
[4, 9]. Semantic segmentation is a computer vision task
which predicts classes in images at the pixel level. When
applied to fish, segmentation predictions can be used to es-
timate fish size, shape, and weight [9], statistics which can
help to identify unwanted fish in commercial equipment.

In [9], Saleh et al. establish a set of benchmark models
and an open-sourced dataset called DeepFish which provide
a convenient starting point for the fish segmentation task.
Saleh et al. present a strong out-of-sample semantic seg-
mentation benchmark of 0.93 mIoU when training on 310
ground-truth labels. As a starting point, we nearly replicate
the result, achieving 0.91 mIoU, and show the performance

Figure 1. A sample of validation set results with 310 training
labels. Ground-truth labels are in the left column, predicted labels
in the right column.

of this benchmark on several sample images in Figure 1.

With the availability of a strong benchmark result, we
can turn our attention to the question of how to scale the
fish segmentation task. There are several significant bar-
riers to scaling, and in this paper we explore two of these
barriers: a lack of ground-truth labels and a large variety of
both marine environments and fish species to adapt to. This
paper aims to address each of these barriers for fish seg-
mentation by experimenting with the use of both domain
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adaptation and active learning, for handling domain shifts
and a lack of training labels, respectively. Specifically,
we explore applications of one domain adaptation approach
called AdaptSegNet [13] as well as two active learning ap-
proaches, Learned Loss for Active Learning (LL4AL) [15]
and Active Adversarial Domain Adaptation (AADA) [12],
on the DeepFish dataset. Finally, we evaluate the approach
on another fish imagery dataset, QUT [2], for further out-
of-sample validation.

2. Related Work

2.1 Semantic Segmentation. Semantic segmentation is a
computer vision task that aims to classify objects and tex-
tures pixel-wise across entire images. State-of-the-art al-
gorithms for semantic segmentation utilize deep learning
due to the high quality results that these algorithms have
produced in recent years [5]. In particular, the success of
convolutional neural networks (CNNs) for image classifica-
tion spurred research into semantic segmentation. The first
semantic segmentation method was the fully-convolutional
network (FCN) [11]. FCNs and other popular semantic
segmentation approaches typically use CNN architectures,
such as ResNet-50, as their backbone, and then perform up-
sampling to produce a pixel-wise map that is of the input
image’s dimensions.

2.2 Active Learning. In active learning, a learning algo-
rithm can interactively query a human (often referred to as
an oracle) to obtain ground-truth labels [10]. This approach
is useful when there is a substantial quantity of unlabeled
data and the task of labeling that data is expensive. Such
is the case for the task of semantic segmentation, where
ground-truth labels are defined at the pixel level, and it can
therefore take many hours to annotate a batch of labels for
training. In [9], it took Saleh et al. 25 hours to label the 310
images used to train the algorithm, with each label taking
about 5 minutes to annotate and validate. Active learning is
suggested in [9] as a potential next step given the labeling
challenges the authors faced.

State-of-the-art active learning methods tend to use one
of two methods: synthesized and pool-based [16]. Synthe-
sized approaches use generative models, such as GANs or
VAEs, to produce samples that are informative for training.
Pool-based approaches, on the other hand, look for repre-
sentative samples in the unlabeled data and suggest them
to an oracle for labeling. Pool-based approaches tend to
use uncertainty and diversity cues to determine how best to
sample data, with many recent approaches utilizing both un-
certainty and diversity cues [6]. We evaluate two pool-based
approaches in this paper: Learned Loss for Active Learning
(LL4AL) [15] and Active Adversarial Domain Adaptation
(AADA) [12]. LL4AL is a task-agnostic active learning ap-

Figure 2. A loss prediction module used in [15] to quantify un-
certainty in a network’s prediction. This is then used to determine
which samples to collect for active learning.

proach for deep learning models that appends a loss module
to an existing neural network at every layer of the network.
This module provides an estimate of the uncertainty of the
network’s predictions. Figure 2 gives a high-level overview
of how this loss is learned. We provide details about AADA
in the section about Active Domain Adaptation.

2.3 Domain Adaptation. The DeepFish benchmark dataset
was carefully constructed to have similar training, valida-
tion and test sets. In a real-world setting, it may not be
feasible to have such consistency between the data that an
algorithm is trained on and the setting in which it is used.
In such cases, domain adaptation is a useful approach. Do-
main adaptation (DA) is a technique which takes an algo-
rithm trained on one domain, called the source domain, and
optimizes its performance to a new target domain [14]. The
target domain is typically unlabeled or partially labeled,
and the target data distribution can be accessed during DA.
Within the context of semantic segmentation, unsupervised
DA is a popular approach as it does not require any tar-
get labels. Unsupervised DA techniques typically follow
one of the following patterns: adversarial approaches using
discriminative adversarial neural networks and self-training
with pseudo-labels [17]. In this paper, we apply AdaptSeg-
Net [13], a popular unsupervised DA algorithm which uses
an adversarial approach. We provide more details about this
approach in section 3.1.

2.4 Active Domain Adaptation. Recently, researchers
have begun to combine active learning and domain adap-
tation for image classification and object detection tasks
[6, 12]. This helps improve DA performance on challeng-
ing domain shifts and therefore allows DA to be more ap-
plicable within real-world settings. As was the case for DA,
active DA approaches tend to follow one of two patterns:
adversarial learning and pseudo-label cluster-based learn-
ing. Active DA has not yet been applied to the semantic
segmentation task as far as we can tell. Our contribution in
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this paper is to extend one particular active DA approach,
AADA [12], to this task. This approach uses an adversarial
DA approach which is similar to AdaptSegNet [13]. After
the unsupervised DA step, it applies a pool-based sampling
algorithm for active learning that estimates the uncertainty
and diversity of the data from the output of the adversarial
learning step. In the future, we also plan to extend ADA-
CLUE [6] to semantic segmentation, as this method has
been shown to outperform AADA on some classification
benchmarks.

3. Methodology

3.1 AdaptSegNet. AdaptSegNet [13] is an adversarial DA
approach which trains a fully-convolutional discriminator
network D to learn the difference between the source and
target domains. The first step is to train the semantic seg-
mentation network, which acts as the generator G within the
adversarial learning setup. Next, G’s segmentation predic-
tion is fed to D, which attempts to correctly classify whether
it is coming from the source or target domain. The loss
function for this joint learning process is:

L(Is, It) = Lseg(Is) + λadvLadv(It) (1)

where Is and It are source and target images, respectively,
Lseg is the cross-entropy loss learned by G in the source
domain, and Ladv is the adversarial loss learned by D. λadv
is a weight that balances the losses. In the original paper it
is set to 0.01 based on a sensitivity analysis, but we reset
it to 0.1 after some experimentation. Finally, the loss is
optimized with a min-max objective:

max
D

min
G

L(Is, It) (2)

Given this objective, G will attempt to reduce the cross-
entropy loss to improve predictions on the source images
and fool D into classifying target predictions as source pre-
dictions. This has the effect of reducing the gap between
the source and target domains.

3.2 AADA. Since AADA and AdaptSegNet both include
an adversarial unsupervised DA step, AdaptSegNet can be
used as a starting point for implementing AADA [12]. The
output of the adversarial network is an input to the active
learning sample selection step, which aims to find the most
informative labels for sampling. The sampling criterion
s(x) for choosing labels from the unlabeled target dataset
is defined as:

s(x) =
1−Gd(Gf (x))

Gd(Gf (x))
H(Gy(Gf (x))) (3)

whereGd(Gf (x)) andGy(Gf (x)) are the predictions made
by discriminator D and generator G, respectively, and

H(Gy(Gf (x))) indicates the entropy of G’s predictions. In
this sampling strategy, 1−Gd(Gf (x))

Gd(Gf (x))
is the diversity cue, and

the entropy term is the uncertainty cue. This sampling strat-
egy is applied per batch, and assumes that Gd(Gf (x)) and
Gy(Gf (x)) are scalar values. This is not the case for se-
mantic segmentation, where G and D both produce pixel
predictions at the original image’s dimensions. To com-
press these pixel maps to a set of scalar values, we compute
channel-wise mean values of the pixel maps for each pre-
diction, and then compute the mean for each image across
channels. In the future, we plan to experiment with differ-
ent schemes for compressing these pixel outputs for sam-
pling, as well as test additional approaches for computing
the sampling criteria. For instance, since the sampling cri-
teria diversity cue is computed per batch, it likely does not
pick up much signal in our experiments as our batch size is
2 (due to memory considerations). We will experiment with
varying the batch size in future experiments.

4. Experiments

4.1 Experiment Setup. The DeepFish dataset was acquired
by [9] by shooting underwater videos of 20 marine habitats
in tropical Australia. Videos were recorded by cameras on
metal frames and lowered into marine environments, where
they were left for a period of time to collect footage. This
footage was only collected during the day and within peri-
ods of reasonable visibility. Each image in this dataset is an
RGB video frame of 1920×1080 pixel resolution. For mod-
eling, images have been normalized on the population level
by subtracting the mean and dividing by the standard devi-
ation for each channel. This reduces the range and there-
fore variance of the data, which we found to improve model
performance during training. We used the DeepFish open-
sourced code [8] as a starting point for replication and our
own experimentation. As such, we use many of the same
modeling settings used in [9]. Our semenatic segmentation
model is an FCN network with a ResNet-50 backbone that
has been pretrained on ImageNet, since this pretraining step
greatly improved performance in [9]. Models are optimized
using the Adam optimizer with a learning rate of 10−3, the
batch size is set to 2 due to memory constraints, and ex-
periments are run between 5-20 epochs, depending on the
experiment. In the original DeepFish paper, experiments
were run over 1,000 epochs, but we were able to nearly
replicate the original benchmark results within 20 epochs
(results are shown in Figure 1), so we kept our experiment
runs within that range. Validation set mIoU (mean intersec-
tion over union) is our main metric. In general, mIoU values
of 0.5 (50%) or greater are considered to be good scores. In
this paper we aim for mIoU scores of 0.8 or higher given the
strong benchmark and our goal for scaling this approach.
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Figure 3. Sample images of each of the 20 habitats included in the
DeepFish [9] dataset. A variety of habitats are represented here,
with each containing unique fish species and displaying different
environmental conditions. For instance, mangrove environments
are distinguished from other habitats by their low visibility and
the appearance of tree roots.

4.2 Domain-shifted Dataset Creation. For the first set of
active learning experiments, we use the same training and
testing split used in [9], which includes all 20 habitats in
each dataset, as we are not yet introducing a domain shift
into the data. For experimenting with methods that address
domain shifts, we construct a dataset that includes a domain
shift. See Table 1 for details. In our domain-shifted dataset,
the source domain is a reef habitat and the target domain is
a mangrove habitat. The reef and mangrove habitats rep-
resent different domains because the environmental condi-
tions between these two habitats are fairly different, with
the mangrove environment containing visible tree roots and
having much poorer visibility than the reef environment. In
domain adaptation and fine-tuning experiments, the entire
source dataset is used during training. Target data has been
further split into training and validation sets, but target data
is only used for training when applying active domain adap-
tation or fine-tuning.

4.3 Active Learning Experiments. The first question we
set out to answer was: what is the minimum amount of
ground-truth training labels that could be used to produce
strong performance (0.8 mIoU) on the benchmark DeepFish
dataset? We tested two methods on the original training
dataset, LL4AL and random sampling. Figure 4 details the
results. We ran experiments 5 times each and evaluated the
average result across trials. It appears that 0.8 mIoU can
nearly be achieved with as few as 40 training labels when
using a random sampling strategy. Overall, LL4AL [1] ap-
pears to perform about as well as random sampling. We did
not experiment with AADA in this section, as this approach
only applies when the data contains a domain shift.

4.4 Unsupervised DA Experiments. Next we evaluated

Figure 4. Active learning on benchmark training labels using
LL4AL and random sampling. These methods show similar per-
formance on this dataset. A random sampling strategy can nearly
achieve 0.8 mIoU with only 40 training labels. Experiment results
shown are averages over 5 trials.

Dataset Habitats Samples

Source complex reef, low complexity reef,
reef trench

144

Target rocky mangrove - prop roots, sandy
mangrove - prop roots, upper man-
grove, mixed substratum mangrove,
mangrove

179

Table 1. Details of the domain-shifted datasets we constructed.

how the semantic segmentation model performs when a do-
main shift is introduced. Figure 5 shows the results of un-
supervised DA with no target labels when there is a domain
shift from a reef habitat to a mangrove habitat. As we in-
crease the number of training epochs from 10-20 epochs,
validation mIoU for the unsupervised DA method remains
consistently higher than source-only training, but the size
of the effect diminishes. In addition, although unsupervised
DA improves validation set performance, it is still not able
to reach an mIoU of 0.6, and therefore does not produce
performance that would be strong enough to deploy in a
real-world setting. Figure 6 provides a visual comparison
of these results and confirms this intuition. While the unsu-
pervised DA model seems to be less sensitive to misclassi-
fying tree roots as fish when compared with the source-only
method, it still struggles to identify fish effectively.

4.5 Active Domain Adaptation Experiments. We now
shift our attention to jointly evaluating active learning and
unsupervised DA. The question we aim to answer is: what
is the minimum quantity of training labels needed to pro-
duce strong mIoU results (0.8 or higher) when shifting to a
new domain?
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Figure 5. A comparison of training a semantic segmentation net-
work with and without unsupervised domain adaptation (Adapt-
SegNet) as the number of training epochs varies.

Using previous active DA experimental setups as a
guideline, [6, 12] we compare active DA approaches to a
baseline of training on source and then training again (fine-
tuning) on target with randomly-selected labels.

The training process for active DA is as follows:

• Iteratively train supervised semantic segmentation
model on labeled source training set (144 labels) and
run unsupervised DA (AdaptSegNet) [13] over 15
epochs. Train on labeled source only and run DA on
both labeled source and unlabeled target training sets.

• Active learning step: apply a sampling strategy, either
random sampling or AADA [12] to select a set of N
training labels from the unlabeled target training set.

• Obtain N chosen labels for target training set.

• Train semantic segmentation model with new target set
labels.

Results of active DA experiments are detailed in Table 2.
All results are evaluated on the target validation set. We
are able to achieve an mIoU of 0.81 when training with 20
target labels as well as all source labels and then randomly
fine-tuning on the target. From these results, it appears that
active DA does not outperform random fine-tuning on this
task. In addition, random fine-tuning is the simplest method
to implement. Figure 6 displays the results of the best mod-
els for each method. Interestingly, although random fine-
tuning performs the best in terms of validation set mIoU, it
does not seem to yield the best visual results.

4.6 Evaluating on the QUT dataset. Finally, we test the
best-performing models on another fish dataset, QUT [2].
The results of this experiment are show in Figure 7. For this

Training Method AL Strategy Num Target Labels mIoU

Source-only None None 0.40
Source + DA (AdaptSegNet) None None 0.57

Source + fine-tuning on target Random 10 0.70
Source + DA (AdaptSegNet) Random 10 0.75
Source + DA (AdaptSegNet) AADA 10 0.63

Source + fine-tuning on target Random 20 0.81
Source + DA (AdaptSegNet) Random 20 0.80
Source + DA (AdaptSegNet) AADA 20 0.66

Source + fine-tuning on target Random 40 0.83
Source + DA (AdaptSegNet) Random 40 0.79
Source + DA (AdaptSegNet) AADA 40 0.80

Source + fine-tuning on target Random 80 0.90
Source + DA (AdaptSegNet) Random 80 0.89
Source + DA (AdaptSegNet) AADA 80 0.90

Table 2. Reef → mangrove domain shift: results of training on im-
ages of reef habitats and validating on images of mangrove habi-
tats. Each training component was run for 15 epochs.

comparison, the benchmark model is our replication of the
original DeepFish semantic segmentation model (trained
with 310 samples). AADA and Random Fine-Tuning are
both trained on the domain-shifted dataset (144 source sam-
ples and 80 target samples). The benchmark model appears
to perform slightly better when fish are in a higher contrast
setting and worse when fish are in a lower contrast setting.
AADA and Random Fine-Tuning approaches have had to
adjust to a domain shift within the hazy and low visibility
mangrove environment, which may explain why these ap-
proaches could adapt better to low contrast settings. Addi-
tional out-of-sample validation would help strengthen this
finding.

5. Discussion and Future Work

In this paper we explored active learning and domain
adaptation as approaches for reducing the barriers to adopt-
ing fish segmentation in the wild. Through experimenta-
tion, we discovered that we only need about 13the original
training dataset (310 labels) to achieve strong validation set
performance of 0.79 mIoU. In addition, when there is a do-
main shift, we can achieve 0.81 mIoU while training with
a dataset that is about half of the size (144 source labels
and 20 target labels) of the original training set. However,
segmentation results visibly improve between 0.8 and 0.9
mIoU, and therefore it is likely preferable to collect slightly
more labels to produce a more robust result. Random fine-
tuning and AADA both achieve an mIoU of 0.90 with 224
total labels (144 source and 80 target), and appear to per-
form as well or even slightly better than the original bench-
mark model when evaluated on an outside dataset. AADA
and random fine-tuning were trained in a more challenging,
lower-visibility setting, which may be why these methods
appear to be slightly better than the benchmark model at
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Figure 6. Results of various approaches when trained within a reef habitat and evaluated within a mangrove habitat. For each method, the
best result in terms of validation mIoU is shown. See Table 2 for validation set results.

Figure 7. The best-performing models from our experiments when applied to another fish dataset, QUT [2].

distinguishing fish from their background environments in
low-contrast settings. Overall, active domain adaptation did
not outperform random fine-tuning for this dataset. This
could possibly be due to a variety of factors: the dataset,
range of training labels tested, or our implementation of
AADA. We should note that, in the original publication,
some of the AADA experiments did not outperform ran-
dom fine-tuning, and it appeared to be dependent on both
the dataset and number of training labels tested. A future
step we will take is to experiment on standard benchmark

datasets for semantic segmentation, such as the GTA5 and
Cityscapes datasets. In addition, we plan to make changes
to the AADA method to further optimize it to the seman-
tic segmentation task, such as by experimenting with batch
settings and sampling criteria. We will also experiment with
extending more active DA methods to semantic segmenta-
tion, such as ADA-CLUE.
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