
A New Vision For Artistic Segmentation

Manav Rathod
University of California, Berkeley

manav.rathod@berkeley.edu

Jaiveer Singh
University of California, Berkeley

j.singh@berkeley.edu

Abstract

In this paper, we motivate the need for a new class
of segmentation algorithms that partition images in ways
that are artistically driven and aesthetically pleasing. In-
spired by past work in computational parquetry, we present
a novel algorithm to create a spatial feature-driven image
segmentation that appeals to certain artistic forms and com-
plements textural feature-based segmentation and match-
ing. We hope that this contribution will motivate other re-
searchers to explore how computer vision techniques can
be leveraged to create art that transcends the digital into
the physical.

1. Introduction
Recently, Iseringhausen et. al. [5] developed a pipeline

for computational parquetry, the task of fabricating physi-
cal representations of images from patches of wood (Figure
1). Their work presents a greedy-inspired, tractable algo-
rithm that makes the challenge of matching image patches
to wood samples computationally feasible. To demonstrate
the effectiveness of their algorithm, the authors introduced
a separate, human-guided algorithm to segment images into
the grid-like patch pattern of Figure 1.

While the initial results are promising in a proof-of-
concept sense, we believe that there is potential to dramati-
cally improve the patch generation process. First, the patch
boundaries do not automatically conform to any spatial fea-
tures in the image. Since the input wood material generally
makes only smooth transitions in intensity, this non-edge
aligned segmentation imposes a natural limit on how sharp
any edge in the output rendering can appear. While Isering-
hausen et. al. do include a mechanism for a human operator
to manually adjust patch boundaries, we feel that this pro-
cess is critical to the production of good results and thus
should be fully automated.

Second, the semi-automatic process begins with a rigid
grid, which constrains the segmentation results to relatively
uniform-looking outputs and limits the overall artistic ef-
fect. Iseringhausen et. al. demonstrate how a completely

custom segmentation would compare against their combi-
nation of algorithm and human input (Figure 2). However,
they present no method for generating results closer to that
custom segmentation.

In this project, we develop a brand-new patch genera-
tion process that automatically produces varied, aestheti-
cally pleasing patches from an input image.

This line of work is similar to the familiar task of su-
perpixel segmentation, for which there exist a variety of
methods that have remarkable performance. However, a
key distinction in this task is a need to be able to break
down contiguous regions with similar in texture and style
into smaller parts, a step that is necessary to make the wood
texture correspondence search and physical wood cutting
processes feasible.

Thus, we present a novel, efficient superpixel segmen-
tation technique that produces a unique artistic effect and
allows for tractable texture matching and fabrication.

Figure 1. Image taken from [5] demonstrating outputs of compu-
tational parquetry.

1



Figure 2. Images taken from [5] demonstrating varying artistic
styles for segmentation. Left is a result of their semi-automated
method. The right is a custom hand-designed segmentation.

2. Related Works
Image segmentation has been well-studied for several

years, and so there exist a variety of different solutions for
specific sub-problems in the field. Semantic segmentation
aims to find all different classes of objects in the image.
Instance segmentation goes a step further, assigning differ-
ent labels to different objects belonging to the same class.
Superpixel segmentation is another related field that group
pixels into more meaningful perceptual regions, similar to
semantic segmentation, but without classifying individual
regions [6, 8]. Our objective in this paper is most similar to
superpixel segmentation. In this section, we will describe
the existing methods for superpixel segmentation, starting
with the methodology used by Iseringhausen et. al. and
then into a broader overview of the field.

2.1. Iseringhausen et. al Method

Iseringhausen et. al present a default superpixel segmen-
tation that simply splits the image using a plain Cartesian
grid. The authors note the limitation of such an approach
and provide a mechanism to semi-automatically adjust that
grid to fit to manually-selected features in the image, which
is an a priori image-space grid morphing method. This ap-
plies an edge-preserving rolling guidance filter [12] to re-
move smaller image structure and then skeletonize the im-
age by using the Canny edge detector [3]. To capture the
higher frequencies, they use the bilateral filter [10] on the
image and then once again extract edges with the Canny
edge detector. Each edge image is masked individually and
then the results are combined with a max operation. This
final edge image defines a scalar potential field, which can
be used to solve an energy minimization problem to snap
the vertices of the grid to the edges in the final image. How-
ever, this is only semi-automatic as the user must manually
select the regions of interest to apply filters and enable edge
adjustment.

2.2. Superpixel Segmentation

The notion of superpixels was first introduced by Ren
and Malik and has since gained considerable attention due
to the more meaningful entities produced by this method

compared against other image processing techniques. Stutz
et. al [8] provide a comprehensive overview of this field,
categorizing algorithms into one of the following classes:
Watershed-based, Graph-based, Density-based, Contour
evolution, Path-based, Clustering-based, Energy optimiza-
tion, and Wavelet-based. Ren and Malik initially presented
a graph-based approach that used a linear classifier to dis-
criminate between good and bad segments, and then per-
formed a random search following a Monte Carlo Markov
Chain (MCMC) paradigm. This approach was functional
yet slow, taking up to 30 minutes to process a 240x160
pixel image. More recent algorithms have significantly sped
up computation to the order of tens of milliseconds while
maintaining coherent segmentations. However, prior work
in this area have only focused on segmentation as a precur-
sor to further image processing algorithms, not as an artistic
end goal in and of itself. Thus, many of these segmentations
remain largely grid-like and are not aesthetically pleasing.
Our goal in this paper is to take inspiration from these ap-
proaches but further optimize them for a visually-satisfying
effect.

3. Methodology

Our algorithm is most similar to path-based algorithms,
with a contour-informed methodology to inform the initial
pixels that seed the segmentation. In this section, we will
outline the steps of our algorithm.

3.1. Contour Detection

The first part of our algorithm takes the input image and
detects all of the contours in the image. This is a critical
deviation from the standard methods of segmentation, since
we immediately locate the important objects and features in
the image instead of beginning with a uniform grid prior.

To accomplish this, we read in the image as gray-scale
and apply a thresholding operation to binarize the image; all
pixel values less than or equal to half-brightness are set to 0,
while values in the brighter half of the range are uniformly
set to the maximum. Increasing the contrast in this way
has experimentally produced the best contour results. We
use the algorithm for contour detection developed by [9],
which is conveniently implemented by the OpenCV library
and available out-of-the-box [1].

3.2. Point Selection

The next stage of our algorithm is to select specific points
to anchor the segmentation. Ideally, these points should
be well-distributed throughout the image, to ensure that
patches are never too big or too small. Our point selection
process is further broken up into two main steps:

2



3.2.1 Contour Traversal

We first take advantage of the contours we detected in the
previous step of the algorithm. A key insight of our work is
that aligning patch cut boundaries with the edges inherent to
the input image is essential for a sharp output. In order for
the edges of the patches to line up in this way, it is necessary
for the vertices of the patches to themselves also lie on the
same contours, hence motivating the following approach.

At the outset, in order to reduce the noisiness in the out-
put selection, we filter out any contours that have less than
CONTOUR THRESHOLD points. Additionally, we also
treat the borders of the image as straight-line contours, pre-
serve a sharpness along the image’s perimeter and contribut-
ing to an overall framing effect in the output.

In order to step along a contour, we model it as a cubic
spline using the SciPy library [11]. The spline is modeled
as a parametric function, enabling us to easily identify pixel
coordinate outputs given a value for the input parameter t.

We iterate from t = 0 to the length of the contour with
a small ϵ step. At each step, we compute the pixel coordi-
nates using the spline, rounding to the nearest integer val-
ues. Each of these rounded points is stored in order to en-
able pixel-accurate cuts between the two endpoints.

Additionally, one point in every STEP SIZE steps is con-
sidered for a special set of control points across the en-
tire image, whose relevance is subsequently discussed in
section 3.3.2. Rather than blindly accepting all candidate
control points, we instead verify that each point selected
is sufficiently far from other existing points (MIN DIST)
and from the borders of the image (EDGE TOLERANCE).
EDGE TOLERANCE is critical to avoid very narrow
patches. If the candidate point passes both of these checks,
it will be added to our final set of control points.

3.2.2 Harris Corner Selection

One drawback of the point selection algorithm stated thus
far is that it requires manual tuning of the STEP SIZE pa-
rameter; while useful as an extra degree of artistic freedom,
this parameter is difficult to directly interpret. To remove
the dependency on an arbitrary parameter, we employed
Harris Corner Detection [4] with Adaptive Non-Maximal
Suppression [2].

We apply the corner detection algorithm on a simplified
image that contains only the original image’s contours on
a uniform background, with the goal of selecting only the
most relevant points that mark sharp turns in the contour
shape. However, simply using corner detection returns a
very large set of points that also might be in very close
proximity, which manifests in extremely small patches that
are difficult to fabricate. To address this, we used Adaptive
Non-Maximal Suppression to filter only for points that had
high response value and were reasonably distanced from

their neighbors. This does not provide a blanket guaran-
tee that all points will meet the MIN DIST requirement, so
we still process each point in sequence and incrementally
verify the constraint. A comparison of the outputs using the
STEP SIZE parameter and using Corner Detection will be
presented in Section 4.2.

3.2.3 Random Point Selection

Thus far, the points contained in our control set will provide
an excellent segmentation around the main features of the
image, but entirely omit the large regions of the image that
are essentially featureless. Matching and fabricating mono-
lithic patches of this size is difficult, and so there is a need
to automatically break up these large regions. Importantly,
since these regions are mostly uniform, a random sampling
of points is likely sufficient; there are no tricky features that
will make patch matching difficult.

However, a naive, uniform random sampling runs the
risk of essentially devolving to the grid-like segmentation
our method aims to avoid. We observe that the typical im-
age has its subject in the center of the frame, and so se-
lecting points closer to the center will best capture the dis-
tribution of details. The natural choice is thus a Gaussian
distribution for random sampling, where the mean is at the
center of the image and the standard deviation is preserved
as a parameter for the individual artist (GAUSSIAN STD).
We sample NUM RANDOM ATTEMPTS THRESHOLD
times, but verify each point with the same distance criteria
defined earlier to avoid undesirable clusters.

A comparison between these sampling techniques will
be presented in Section 4.1.

3.3. Segmentation

Now that we have a set of control points that are well-
spread throughout the image and aligned to the main fea-
tures of the image, we can begin the actual segmentation
process.

3.3.1 Triangulation

We adopt a very straightforward approach by simply defin-
ing a Delaunay triangulation over the set of all points we
have selected. We believe this to be an effective approach
since it produces a well-distributed pattern of shapes given
the representative points.

Furthermore, we are drawn to triangulation in particu-
lar because of the artistic and stylistic properties of trian-
gles. Psychological studies in artistic perception show that
humans look for familiar visual patterns that are explicitly
organized [7]. This is directly achieved via triangulation,
since the tiling of triangles is a strongly geometric pattern
that most people have seen. Triangles are also the primitive

3



of choice in many computer graphics applications, provid-
ing the flexibility that creates a more dynamic and aestheti-
cally pleasing output which is closer in spirit to the original
custom segmentation of Figure 2.

3.3.2 Contour Fitting

Since triangles are bounded by straight line segments as
edges, much of the information of the contours from the
original image is lost in the initial triangulation. To address
this, we replace some triangle edges with the actual con-
tour segment between the two vertices, leveraging the saved
pixel arrays from an earlier step.

We first filter for only the edges in the triangulation
whose endpoints are both originally on the same contour
that determine all of the points across all of the triangle
edges that have contour points between them, which we
stored as we traversed the contours in 3.2.1. A second check
involves verifying that the new contour does not intersect
or even approach any of the other edges in the triangula-
tion. Intersections are clearly problematic in that they vio-
late the mutually-exclusive nature of patches, but even close
approaches to other edges would require extremely precise
and narrow cuts that are essentially impossible with a con-
ventional manufacturing process.

Generally, we expect a small yet clearly identifiable
number of contour replacements during this step. The typi-
cal result is that the finished segmentation contains a clearly
visible silhouette of the main subject.

4. Results and Discussion

Figure 3 demonstrates the various step of our algorithm
on a classic image of Alan Turing. We are extremely
pleased with the results, since the final output captures the
dynamics and features of the input to an impressive degree,
even with a relatively bland image of wood in Figure 9.

We also employ our algorithm on various other inputs as
seen in Figure 7 and 8. The wood sample used for all of our
experiments can be found in Figure 9.

In the rest of this section we will explore the effects of
changing the various parameters we outlined in our method-
ology on the overall output.

4.1. Uniform vs Gaussian Distribution

In this section, we will compare how the outputs change
when using a uniform vs. Gaussian distribution to randomly
sample points as explained in 3.2.3. Comparing Figure 3 to
Figure 4 and Figure 5 to Figure 6, we see that using a uni-
form sampling strategy results in a much more fine grained
segmentation as there are more points used for the triangu-
lation. The reason for this difference in points is that Gaus-
sian sampling focuses mostly on points near the center in-

stead of the surrounding background. There are two main
results due to this difference.

First, having more points gives us a smoother back-
ground image, as smaller patches from the wood can be
pieced together to match the texture of the background more
precisely. The artistic value of this can be debated; the
smoother background results in a polished aesthetic, but
loses some of the wooden finish. We see this difference as
a feature of the algorithm, as it gives some freedom to the
artist to decide on to what degree the input material should
represent itself in the final output.

Second and more practically, having more triangles in
our segmentation strictly increases the likelihood of an ac-
ceptable match being found for each patch. However, this
comes at the cost of a longer runtime for the matching pro-
cess. This tradeoff between time and material constraints
can also be leveraged by the artist.

4.2. Step Selection vs Harris Corners

In this section, we will compare using Harris Cor-
ner detection to naively selecting points according to the
STEP SIZE parameter. Comparing Figure 3 to 5 and Fig-
ure 4 to 6, we see that using Harris corners as points does an
excellent job of capturing the outlines of the head. Even in
the case of uniform sampling, where there are significantly
more points, one can appreciate the clearer outline of the
head when we use Harris corners.

We believe the main reason for this improvement is the
constant nature of the STEP SIZE parameter. Depending on
how tightly wound a contour is, simply increasing the step
size is not a good way of producing points that are more
spatially distributed; consider an S-shape as an extreme ex-
ample.

The difficulty in intuitively understanding this parame-
ter leads us to prefer the Harris corner method for general
use. Harris corners are effective in finding a good balance of
useful control points and then adaptively suppressing points
that are too close together.

5. Fun with Triangles

Beyond using our novel segmentation as step towards
improved texture matching for computational parquetry, we
can also use this segmentation as an artistic piece in and
of itself. The triangle pattern of this segmentation is quite
aesthetically pleasing, and it evokes a style of art similar to
the work of Gregory Dubus (10). Inspired by his work, we
adapted our method to automatically generate portraits in
his style.

To do this, we use a simple flood-fill algorithm on the
segmented triangulation to color in all of the patches in al-
ternating shades of grey, as shown in Figure 11. Though the
colors of this image are essentially random, the head of Alan

4



Figure 3. Overall pipeline of our algorithm. We start with the input image, then threshold it in order to create a binary image. We then take
the binary image to find contours. We sample points along the contours as well as random points in the image. Then, we use these points
to form a triangulation. The green edges represent straight edges that were chosen over contours and blue edges represent instances where
we replaced straight edges with the existing contour. Finally, we take these patches and use the algorithm presented in Iseringhausen et. al
to match the patches to wood textures. Here we used Gaussian sampling and traversed the contour for points without using Harris Corner
detection.

Turing is definitively perceptible in our output. The gradi-
ents of gray across triangles also creates a dynamic contrast
that keeps the image visually engaging to the viewer. The
geometric familiarity of triangles also produces an aestheti-
cally appealing effect.

We believe that the remarkable degree to which the head
of the portrait emerges from the background is a testament
to the importance of appropriately selecting patch bound-
aries, and more broadly a verification of the value of our
contribution.

6. Conclusion and Future Work

In this paper, we motivate the need for a new class of seg-
mentation algorithms that focus on artistic appeal by con-
sidering the final segmentation as an end product instead of
merely an intermediate. To accomplish this goal, we de-
signed a novel algorithm for superpixel segmentation that
is rooted directly in the main spatial features of the image.
We believe our results are already at an aesthetically pleas-
ing level, but we believe that there is much room for future
work.

One drawback of our current work is the lack of con-
trol of the final number of patches. Currently, this metric
is a complex factor of the type of random point selection

5



Figure 4. In this experiment, we run our algorithm using uniform sampling without Harris Corner Detection.

Figure 5. In this experiment, we run our algorithm with Gaussian sampling and Harris Corner Detection.

Figure 6. In this experiment, we run our algorithm with uniform sampling and Harris Corner Detection.

6



Figure 7

Figure 8

Figure 9. Wood texture used for experiments.

7



Figure 10. Resiste by Gregory Dubus. An abstract self-portrait.

Figure 11. Portrait of Alan Turing using the approach described in
section 5.

sampling distribution, the use of Harris corners, and the
MIN DIST parameter. However, from a manufacturing per-
spective, it is often useful to directly ask for a fixed number
of patches. Thus, future work could explore designing an
augmentation to our approach that merges or splits patches
to achieve a desired target, leveraging textural similarity be-
tween adjacent regions.

Furthermore, more sophisticated methods for feature de-
tection could help improve point selection, especially in
more complex images with many more background objects.
Contour detection is good at capturing the borders of well-
defined portraits of prominent objects, but may miss more
subtle details or smaller objects, like the cloud in Figure 8.
Thus, potentially applying state-of-the-art object detectors
to find all objects in an image and outlining those specifi-
cally could be an interesting way to generalize this approach
for multi-object cases.

Lastly, we think much more work can be done on the tri-
angle coloring approach we demonstrated in this paper. For
example, employing a more sophisticated color theory per-

spective to add more diversity in the colors of the triangles
might be an appealing option. Further research in how to
use color in this type of approach could lead to many more
interesting results.

We are excited about the new possibilities that exist
when we recenter the efforts of computer vision to priori-
tize the development of artistic outputs, and as we explore
new ways to bring these digital outputs into the physical
world. As researchers in the field, we are eager to see what
artists can do with new tools like ours.

Acknowledgements
The authors would like to extend a special thanks to our
professors Alexei (Alyosha) Efros and Angjoo Kanazawa
for helping us develop the broad appreciation for computer
vision that made this project possible.

References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 2
[2] Matthew A. Brown, Richard Szeliski, and Simon A. J.

Winder. Multi-image matching using multi-scale oriented
patches. 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), 1:510–517
vol. 1, 2005. 3

[3] John F. Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-8:679–698, 1986. 2

[4] Christopher G. Harris and M. J. Stephens. A combined cor-
ner and edge detector. In Alvey Vision Conference, 1988. 3

[5] Julian Iseringhausen, Michael Weinmann, Weizhen Huang,
and Matthias B. Hullin. Computational parquetry. ACM
Transactions on Graphics (TOG), 39:1 – 14, 2020. 1, 2

[6] Xiaofeng Ren and Jitendra Malik. Learning a classification
model for segmentation. Proceedings Ninth IEEE Interna-
tional Conference on Computer Vision, pages 10–17 vol.1,
2003. 2

[7] Robert L Solso. The psychology of art and the evolution of
the conscious brain. 2003. 3

[8] David Stutz, Alexander Hermans, and B. Leibe. Superpixels:
An evaluation of the state-of-the-art. ArXiv, abs/1612.01601,
2018. 2

[9] Satoshi Suzuki and Keiichi Abe. Topological structural anal-
ysis of digitized binary images by border following. Comput.
Vis. Graph. Image Process., 30:32–46, 1985. 2

[10] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for
gray and color images. Sixth International Conference on
Computer Vision (IEEE Cat. No.98CH36271), pages 839–
846, 1998. 2

[11] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,

8



İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. 3

[12] Qi Zhang, Xiaoyong Shen, Li Xu, and Jiaya Jia. Rolling
guidance filter. In ECCV, 2014. 2

9


	. Introduction
	. Related Works
	. Iseringhausen et. al Method
	. Superpixel Segmentation

	. Methodology
	. Contour Detection
	. Point Selection
	Contour Traversal
	Harris Corner Selection
	Random Point Selection

	. Segmentation
	Triangulation
	Contour Fitting


	. Results and Discussion
	. Uniform vs Gaussian Distribution
	. Step Selection vs Harris Corners

	. Fun with Triangles
	. Conclusion and Future Work

