Convolution and Image Derivatives

CS194: Intro to Comp. Vision and Comp. Photo
Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2022
Projects

1 was due yesterday!

2 released after class!

Recitation, usual time & place
 (Thursday 11-12pm BWW 1216)
Topic: Image Filtering (great for proj 2!)
Moving Average

- Can add weights to our moving average
- Weights \([\ldots, 0, 1, 1, 1, 1, 1, 0, \ldots] / 5\)
Weighted Moving Average

- bell curve (gaussian-like) weights […, 1, 4, 6, 4, 1, …]
Moving Average In 2D

What are the weights H?

$$
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 0 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 0 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 90 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$

\[H[u, v] \]

\[F[x, y] \]
Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window.

\[h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}} \]

This kernel is an approximation of a Gaussian function:
Mean vs. Gaussian filtering
Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

5 x 5, \(\sigma = 1 \)

Slide credit: Christopher Rasmussen
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

- Standard deviation \(\sigma \): determines extent of smoothing

Source: K. Grauman
Gaussian filters

$\sigma = 1$ pixel $\sigma = 5$ pixels $\sigma = 10$ pixels $\sigma = 30$ pixels
Choosing kernel width

- The Gaussian function has infinite support, but discrete filters use finite kernels

Source: K. Grauman
Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3σ
Cross-correlation vs. Convolution

cross-correlation: \[G = H \otimes F \]

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

A convolution operation is a cross-correlation where the filter is
flipped both horizontally and vertically before being applied to
the image:

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

It is written:

\[G = H \star F \]

Convolution is commutative and associative

Slide by Steve Seitz
Convolution

Adapted from F. Durand
Convolution is nice!

- **Notation:** \(b = c \ast a \)

- **Convolution is a multiplication-like operation**
 - commutative \(a \ast b = b \ast a \)
 - associative \(a \ast (b \ast c) = (a \ast b) \ast c \)
 - distributes over addition \(a \ast (b + c) = a \ast b + a \ast c \)
 - scalars factor out \(\alpha a \ast b = a \ast \alpha b = \alpha(a \ast b) \)
 - identity: unit impulse \(e = [\ldots, 0, 0, 1, 0, 0, \ldots] \)
 \[
 a \ast e = a
 \]

- **Conceptually no distinction between filter and signal**

- **Usefulness of associativity**
 - often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3)\)
 - this is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3)\)

© 2006 Steve Marschner • 16
Gaussian and convolution

• Removes “high-frequency” components from the image (low-pass filter)
• Convolution with self is another Gaussian

\[\ast \quad = \quad \text{Convolving twice with Gaussian kernel of width } \sigma \]

\[= \text{convolving once with kernel of width } \sigma \sqrt{2} \]

Source: K. Grauman
Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?
Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*
Image sub-sampling

Aliasing! What do we do?

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz
Sampling an image

Examples of GOOD sampling
Undersampling

Examples of BAD sampling -> Aliasing
Gaussian (lowpass) pre-filtering

Solution: filter the image, \textit{then} subsample

- Filter size should double for each $\frac{1}{2}$ size reduction. Why?

Slide by Steve Seitz
Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

Slide by Steve Seitz
Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz
More Gaussian pre-filtering
A real problem!
128 x 128 → 64 x 64

Open-CV: default, bicubic, Lanczos4
Pytorch: bilinear, bicubic
PIL: Lanczos

Credit: @jaakkolehtinen
problems in NN too

pip install antialiased-cnns

Making Convolutional Networks Shift-Invariant Again, Richard Zhang ICML 2019
Iterative Gaussian (lowpass) pre-filtering

Gaussian 1/2

filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?
Image Pyramids

Known as a **Gaussian Pyramid** [Burt and Adelson, 1983]
- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*
A bar in the big images is a hair on the zebra’s nose; in smaller images, a stripe; in the smallest, the animal’s nose.
Gaussian pyramid construction

Repeat
- Filter
- Subsample

Until minimum resolution reached
- can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Slide by Steve Seitz
What are they good for?

Improve Search

• Search over translations
 – Classic coarse-to-fine strategy
 – Project 1!

• Search over scale
 – Template matching
 – E.g. find a face at different scales
Taking derivative by convolution on board
Partial derivatives with convolution

Image is function \(f(x,y) \)

Remember:

\[
\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}
\]

Approximate:

\[
\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + 1, y) - f(x, y)}{1}
\]

Another one:

\[
\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + 1, y) - f(x - 1, y)}{2}
\]
Partial derivatives of an image

\[\frac{\partial f(x,y)}{\partial x} \]

\[\frac{\partial f(x,y)}{\partial y} \]

Which shows changes with respect to \(x \)?

-1 1

-1 or 1

-1 -1
Image gradient

The gradient of an image:

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

The gradient points in the direction of most rapid increase in intensity

- How does this direction relate to the direction of the edge?

The edge strength is given by the gradient magnitude

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

The gradient direction is given by

\[\theta = \tan^{-1} \left(\frac{\partial f / \partial y}{\partial f / \partial x} \right) \]

Source: Steve Seitz
Image Gradient

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Partial Derivatives

$$\frac{\partial f (x, y)}{\partial x}$$

$$\frac{\partial f (x, y)}{\partial y}$$
Gradient magnitude

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Gradient Orientation

\[\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right) \operatorname{atan2}(dy, dx) \]

lightness is equal to gradient magnitude

Source: D. Fouhey
Image Gradient

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

all the gradients

Source: D. Fouhey
Why is there structure at 1 and not at 2?

Source: D. Fouhey
Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

\[f(x) \]

\[\frac{d}{dx} f(x_0) \]

Where is the edge?

Source: S. Seitz
Solution: smooth first

- To find edges, look for peaks in \(\frac{d}{dx} (f \ast g) \)

Source: S. Seitz
Noise in 2D

Noisy Input Ix via [-1,01] Zoom

Source: D. Fouhey
Noise + Smoothing

Smoothed Input

Ix via [-1,01]

Zoom

Source: D. Fouhey
How many convolutions here?

can we reduce this?
Derivative theorem of convolution

$$\frac{\partial}{\partial x} (h \ast f) = (\frac{\partial}{\partial x} h) \ast f$$

This saves us one operation:
Derivative of Gaussian filter

\[* \begin{bmatrix} 1 & -1 \end{bmatrix} = \]
Derivative of Gaussian filter

Which one finds horizontal/vertical edges?
Compare to classic derivative filters

| Source: K. Grauman |

<table>
<thead>
<tr>
<th>Filter</th>
<th>M_x</th>
<th>M_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prewitt</td>
<td>$\begin{bmatrix} -1 & 0 & 1 \ -1 & 0 & 1 \ -1 & 0 & 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 1 & 1 \ 0 & 0 & 0 \ -1 & -1 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Sobel</td>
<td>$\begin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Roberts</td>
<td>$\begin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Filtering: practical matters

What is the size of the output?

(MATLAB) filter2(g, f, shape) or conv2(g,f,shape)

- `shape = 'full'`: output size is sum of sizes of f and g
- `shape = 'same'`: output size is same as f
- `shape = 'valid'`: output size is difference of sizes of f and g

Pytorch conv2d ‘valid’ or ‘same’

Source: S. Lazebnik
Practical matters

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around (circular)
 - copy edge
 - reflect across edge

Source: S. Marschner