Structure-from-Motion (SfM) and Multi-View Stereo (MVS)

A lot of slides borrowed from Noah Snavely + Shree Nayar’s YT series: First principals of Computer Vision

CS194: Intro to Computer Vision and Comp. Photo Kanazawa and Efros, UC Berkeley, Fall 2022
Recall: Camera calibration & triangulation

• Suppose we know 3D points and their matches in an image
 – How can we compute the camera parameters?

• Suppose we know camera parameters for multiple cameras, each observing a point
 – How can we compute the 3D location of that point?
Structure from motion

• SfM solves both of these problems *at once*
• A kind of chicken-and-egg problem
 – (but solvable)
Photo Tourism

https://youtu.be/mTBPGuPLI5Y
Structure from Motion (SfM)

• Given many images, how can we
 a) figure out where they were all taken from?
 b) build a 3D model of the scene?

This is (roughly) the **structure from motion** problem
Structure from motion

• Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$

• Output
 • structure: 3D location x_j for each point p_j
 • motion: camera parameters R_j, t_j possibly K_j

• Objective function: minimize reprojection error
Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009
Large-scale structure from motion

Rome's Colosseum

Building Rome in a Day, Agarwal et al. ICCV 2009
First step: Correspondence

• Feature detection and matching
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images
Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair
Correspondence estimation

- Link up pairwise matches to form connected components of matches across several images
The story so far...

Input images

Feature detection

Matching + track generation

Images with feature correspondence
The story so far...

• Next step:
 – Use structure from motion to solve for geometry (cameras and points)

• First: what are cameras and points?
Review: Points and cameras

- **Point**: 3D position in space (X_j)

- **Camera** (C_i):
 - A 3D position (c_i)
 - A 3D orientation (R_i)
 - Intrinsic parameters (focal length, aspect ratio, ...)
 - 7 parameters ($3+3+1$) in total
Structure from motion

\[\Pi_1 X_1 \sim p_{11} \]

\[
\begin{align*}
\text{minimize} & \quad g(R, T, X) \\
\text{non-linear least squares}
\end{align*}
\]
Structure from motion

- Minimize sum of squared reprojection errors:

\[
g(X, R, T) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| P(x_i, R_j, t_j) - [u_{i,j}, v_{i,j}] \right\|^2
\]

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares, e.g. Levenberg-Marquardt
Solving structure from motion

Inputs: feature tracks

Outputs: 3D cameras and points

• Challenges:
 – Large number of parameters (1000’s of cameras, millions of points)
 – Very non-linear objective function
Solving structure from motion

Inputs: feature tracks

Outputs: 3D cameras and points

• Important tool: Bundle Adjustment [Triggs et al. ’00]
 – Joint non-linear optimization of both cameras and points
 – Very powerful, elegant tool

• The bad news:
 – Starting from a random initialization is very likely to give the wrong answer
 – Difficult to initialize all the cameras at once
Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

• The good news:
 – Structure from motion with two cameras is (relatively) easy
 – Once we have an initial model, it’s easy to add new cameras

• Idea:
 – Start with a small seed reconstruction, and grow
Incremental SfM

- Automatically select an initial pair of images
1. Picking the initial pair

- We want a pair with many matches, but which has as large a baseline as possible

✅ lots of matches
❌ small baseline

✅ large baseline
❌ very few matches

✅ large baseline
✅ lots of matches
Incremental SfM: Algorithm

1. Pick a strong initial pair of images
2. Initialize the model using two-frame SfM
3. While there are connected images remaining:
 a. Pick the image which sees the most existing 3D points
 b. Estimate the pose of that camera
 c. Triangulate any new points
 d. Run bundle adjustment
Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
 - Continuous visual input from sensor(s) over time
 - Gives rise to problems such as loop closure
 - Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab
Applications: Match Moving
Or Motion tracking, solving for camera trajectory
Integral for visual effects (VFX)
Why?
What if we want solid models?
Multi-view Stereo (Lots of calibrated images)

Input: calibrated images from several viewpoints (known camera: intrinsics and extrinsics)

Output: 3D Model

In general, conducted in a controlled environment with multi-camera setup that are all calibrated
Multi-view Stereo

Problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
Examples: Panoptic studio

http://domedb.perception.cs.cmu.edu/
Multi-view stereo: Basic idea

Is this a surface point?

reference view

neighbor views

Source: Y. Furukawa
Multi-view stereo: Basic idea

Evaluate the likelihood of geometry at a particular depth for a particular reference patch:
Multi-view stereo: Basic idea

Photometric error across different depths

Source: Y. Furukawa
Multi-view stereo: Basic idea

Photometric error across different depths

Source: Y. Furukawa
Multi-view stereo: Basic idea

In this manner, solve for a depth map over the whole reference view.
Multi-view stereo: advantages

Can match windows using more than 1 other image, giving a **stronger match signal**

If you have lots of potential images, can **choose the best subset** of images to match per reference image

Can reconstruct a depth map for each reference frame, and the merge into a **complete 3D model**

Source: Y. Furukawa
Choosing the baseline

What’s the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

Slide credit: Noah Snavely
Single depth map often isn’t enough

Source: N. Snavely
Really want full coverage

Source: N. Snavely
Idea: Combine many depth maps

Source: N. Snavely
Volumetric stereo

Discretized Scene Volume

Input Images (Calibrated)

Goal: Assign RGB values to voxels in V photo-consistent with images
Space Carving

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

Space Carving Results

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Source: S. Seitz
Space Carving Results

Input Image
(1 of 100)

Reconstruction

Source: S. Seitz
Tool for you: COLMAP

https://github.com/colmap/colmap

General SfM + MVS pipeline