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Abstract

Recent advances in clothes recognition have been driven

by the construction of clothes datasets. Existing datasets

are limited in the amount of annotations and are diffi-

cult to cope with the various challenges in real-world

applications. In this work, we introduce DeepFashion1,

a large-scale clothes dataset with comprehensive annota-

tions. It contains over 800,000 images, which are richly

annotated with massive attributes, clothing landmarks, and

correspondence of images taken under different scenarios

including store, street snapshot, and consumer. Such rich

annotations enable the development of powerful algorithms

in clothes recognition and facilitating future researches. To

demonstrate the advantages of DeepFashion, we propose a

new deep model, namely FashionNet, which learns clothing

features by jointly predicting clothing attributes and land-

marks. The estimated landmarks are then employed to pool

or gate the learned features. It is optimized in an iterative

manner. Extensive experiments demonstrate the effective-

ness of FashionNet and the usefulness of DeepFashion.

1. Introduction

Recently, extensive research efforts have been devoted

to clothes classification [11, 1, 29], attribute prediction

[3, 13, 4, 24], and clothing item retrieval [17, 6, 10, 27, 15],

because of their potential values to the industry. How-

ever, clothes recognition algorithms are often confronted

with three fundamental challenges when adopted in real-

world applications [12]. First, clothes often have large

variations in style, texture, and cutting, which confuse

existing systems. Second, clothing items are frequently

subject to deformation and occlusion. Third, clothing

images often exhibit serious variations when they are taken

under different scenarios, such as selfies vs. online shopping

photos.

Previous studies tried to handle the above challenges by

annotating clothes datasets either with semantic attributes

1The dataset is available at: http://mmlab.ie.cuhk.edu.hk/

projects/DeepFashion.html




 




























Figure 1. (a) Additional landmark locations improve clothes recognition.

(b) Massive attributes lead to better partition of the clothing feature space.

(e.g. color, category, texture) [1, 3, 6], clothing locations

(e.g. masks of clothes) [20, 12], or cross-domain image

correspondences [10, 12]. However, different datasets are

annotated with different information. A unified dataset

with all the above annotations is desired. This work fills

in this gap. As illustrated in Fig.1, we show that clothes

recognition can benefit from learning these annotations

jointly. In Fig.1 (a), given the additional landmark locations

may improve recognition. As shown in Fig.1 (b), massive

attributes lead to better partition of the clothing feature

space, facilitating the recognition and retrieval of cross-

domain clothes images.

To facilitate future researches, we introduce DeepFash-

ion, a comprehensively annotated clothes dataset that con-

tains massive attributes, clothing landmarks, as well as

cross-pose/cross-domain correspondences of clothing pairs.

This dataset enjoys several distinct advantages over its

precedents. (1) Comprehensiveness - images of DeepFash-

ion are richly annotated with categories, attributes, land-
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DCSA [3] ACWS [1] WTBI [12] DDAN [4] DARN [10] DeepFashion

# images 1856 145,718 78,958 341,021 182,780 >800,000

# categories + attributes 26 15 11 67 179 1,050

# exact pairs N/A N/A 39,479 N/A 91,390 >300,000

localization N/A N/A bbox N/A N/A 4∼8 landmarks

public availability yes yes no no no yes

Table 1. Comparing DeepFashion with other existing datasets. DeepFashion offers the largest number of images and annotations.

marks, and cross-pose/cross-domain pair correspondences.

It has 50 fine-grained categories and 1, 000 attributes, which

are one order of magnitude larger than previous works

[3, 4, 10]. Our landmark annotation is at a finer level

than existing bounding-box label [12]. Such comprehensive

and rich information are not available in existing datasets.

(2) Scale - DeepFashion contains over 800K annotated

clothing images, doubling the size of the largest one in

the literature. 3) Availability - DeepFashion will be made

public to the research community. We believe this dataset

will greatly benefits the researches in clothes recognition

and retrieval.

Meanwhile, DeepFashion also enables us to rigorously

benchmark the performance of existing and future algo-

rithms for clothes recognition. We create three benchmarks,

namely clothing attribute prediction, in-shop clothes re-

trieval, and cross-domain clothes retrieval, a.k.a. street-to-

shop. With such benchmarks, we are able to make direct

comparisons between different algorithms and gain insights

into their pros and cons, which we hope will eventually

foster more powerful and robust clothes recognition and

retrieval systems.

To demonstrate the usefulness of DeepFashion, we de-

sign a novel deep learning structure, FashionNet, which

handles clothing deformation/occlusion by pooling/gating

feature maps upon estimated landmark locations. When

supervised by massive attribute labels, FashionNet learns

more discriminative representations for clothes recognition.

We conduct extensive experiments on the above bench-

marks. From the experimental results with the proposed

deep model and the state-of-the-arts, we show that the

DeepFashion dataset promises more accurate and reliable

algorithms in clothes recognition and retrieval.

This work has three main contributions. (1) We build

a large-scale clothes dataset of over 800K images, namely

DeepFashion, which is comprehensively annotated with

categories, attributes, landmarks, and cross-pose/cross-

domain pair correspondences. To our knowledge, it is

the largest clothes dataset of its kind. (2) We develop

FashionNet to jointly predict attributes and landmarks. The

estimated landmarks are then employed to pool/gate the

learned features. It is trained in an iterative manner.

(3) We carefully define benchmark datasets and evalua-

tion protocols for three widely accepted tasks in clothes

recognition and retrieval. Through extensive experiments

with our proposed model as well as other state-of-the-

arts, we demonstrate the effectiveness of DeepFashion and

FashionNet.

1.1. Related Work

Clothing Datasets As summarized in Table 1, existing

clothes recognition datasets vary in size as well as the

amount of annotations. The previous datasets were labeled

with limited number of attributes, bounding boxes [12], or

consumer-to-shop pair correspondences [10]. DeepFashion

contains 800K images, which are annotated with 50 cat-

egories, 1, 000 attributes, clothing landmarks (each image

has 4 ∼ 8 landmarks), and over 300K image pairs. It

is the largest and most comprehensive clothes dataset to

date. Some other datasets in the vision community were

dedicated to the tasks of clothes segmentation, parsing

[32, 31, 23, 16, 33] and fashion modeling [24, 30], while

DeepFashion focuses on clothes recognition and retrieval.

Clothing Recognition and Retrieval Earlier works [28,

3, 7, 1, 6] on clothing recognition mostly relied on hand-

crafted features, such as SIFT [19], HOG [5] and color

histogram etc. The performance of these methods were

limited by the expressive power of these features. In recent

years, a number of deep models have been introduced to

learn more discriminative representation in order to handle

cross-scenario variations [10, 12]. Although these methods

achieved good performance, they ignored the deformations

and occlusions in the clothing images, which hinder further

improvement of the recognition accuracy. FashionNet han-

dles such difficulties by explicitly predicting clothing land-

marks and pooling features over the estimated landmarks,

resulting in more discriminative clothes representation.

2. The DeepFashion Dataset

We contribute DeepFashion, a large-scale clothes

dataset, to the community. DeepFashion has several ap-

pealing properties. First, it is the largest clothing dataset

to date, with over 800, 000 diverse fashion images ranging

from well-posed shop images to unconstrained consumer

photos, making it twice the size of the previous largest

clothing dataset. Second, DeepFashion is annotated with

rich information of clothing items. Each image in this

dataset is labeled with 50 categories, 1, 000 descriptive

attributes, and clothing landmarks. Third, it also contains

over 300, 000 cross-pose/cross-domain image pairs. Some
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Figure 2. Example images of different categories and attributes in DeepFashion. The attributes form five groups: texture, fabric, shape, part, and style.



































 

Figure 3. (a) Image number of the top-20 categories. (b) Image number of the top-10 attributes in each group.

example images along with the annotations are shown in

Fig.2. From the comparison items summarized in Table

1, we see that DeepFashion surpasses the existing datasets

in terms of scale, richness of annotations, as well as

availability.

2.1. Image Collection

Shopping websites are a common source for constructing

clothing datasets [10, 12]. In addition to this source, we also

collect clothing images from image search engines, where

the resulting images come from blogs, forums, and the other

user-generated contents, which supplement and extend the

image set collected from the shopping websites.

Collecting Images from Shopping Websites We

crawled two representative online shopping websites, For-

ever212 and Mogujie3. The former one contains images

taken by the online store. Each clothing item has 4 ∼ 5
images of varied poses and viewpoints. The latter one

contains images taken by both the stores and consumers.

Each clothing image in shop is accompanied by sever-

al user-taken photos of exactly the same clothing item.

Therefore, these data not only cover the image distribution

of professional online retailer stores, but also the other

different domains such as street snapshots and selfies. We

collected 1, 320, 078 images of 391, 482 clothing items

2www.forever21.com
3www.mogujie.com

from these two websites.

Collecting Images from Google Images4 To obtain

meaningful query keywords for clothing images, we tra-

versed the catalogue of several online retailer stores and

collected names of clothing items, such as “animal print

dress”. This process results in a list of 12, 654 unique

queries. We then feed this query set to Google Images, and

download the returned images along with their associated

meta-data. A total of 1, 273, 150 images are collected from

Google Images.

Data Cleaning We identified near- and exact-duplicate

images by comparing fc7-responses after feeding them into

AlexNet [14]. After the removal of the duplicates, we ask

human annotators to remove unusable images that are of

low resolution, image quality, or whose dominant objects

are irrelevant to clothes. In total, 800, 000 clothing images

are kept to construct DeepFashion.

2.2. Image Annotation

We advocate the following labeled information in order

to aid the tasks for clothing recognition and retrieval. They

are: (1) Massive attributes - this type of information is

essential to recognize and represent the enormous cloth-

ing items; (2) Landmarks - the landmark locations can

effectively deal with deformation and pose variation; (3)

Consumer-to-shop pairs - these data is of great help in

4https://www.google.com/imghp
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bridging the cross-domain gap.

Generating Category and Attribute Lists We generat-

ed category and attribute lists from the query set collected

in Sec.2.1, where most queries are of the form “adjective +

noun” (e.g. “animal print dress”). For clothing categories,

we first extracted the nouns (e.g. “dress”) from the query

set, resulting in 50 unique names of fine-grained categories.

Next, we collected and merged the adjectives (e.g. “animal

print”), and picked the top 1, 000 tags with highest frequen-

cy as the attributes. These attributes were categorized into

five groups, characterizing texture, fabric, shape, part, and

style, respectively.

Category and Attribute Annotation The category set

is of moderate size (i.e. 50) and the category labels are

mutually exclusive by definition. Therefore, we instruct

professional human annotators to manually assign them to

the images. Each image received at most one category

label. The numbers of images for the top-20 categories

are shown in Fig.3 (a). As for the 1, 000 attributes, since

the number is huge and multiple attributes can fire on the

same image, manual annotation is not manageable. We thus

resort to the meta-data for automatically assigning attribute

labels. Specifically, for each clothing image, we compare

the attribute list with its associated meta-data, which is

provided by Google or corresponding shopping website.

We regard an attribute as “fired” if it is successfully matched

in the image’s meta-data. We show sample images for a

number of selected attributes in Fig.2. We enumerated top

ten attributes in each group, along with their image numbers

in Fig.3 (b).

Landmark Annotation We define a set of clothing

landmarks, which corresponds to a set of key-points on

the structures of clothes. For instance, the landmarks

for upper-body items are defined as left/right collar end,

left/right sleeve end, and left/right hem. Similarly, we

define landmarks for lower-body items and full-body items.

As the definitions are straightforward and natural to average

people, the human labelers could easily understand the

task after studying a score of examples. As some of

the landmarks are frequently occluded in images, we also

labeled the visibility (i.e. whether a landmark is occluded or

not) of each landmark. Note that our landmarks are clothes-

centric, and thus different from joints of human body. Fig.4

illustrates some examples of landmark annotations.

Pair Annotation As discussed in Sec.2.1, we collected

clothing images under different domains, including photos

from web stores, street snapshots, and consumers. We clean

such image pairs by removing noisy images, ensuring the

accuracy of our pairwise correspondences.

Quality Control We took the following steps to control

the labeling quality. (1) We discarded images with too

few textual meta-data. (2) After automatically annotating

attributes, human annotators also conducted a fast screening

Figure 4. Landmarks and pair annotation in DeepFashion. Landmarks are

defined for upper-body clothes, lower-body clothes and full-body clothes,

respectively. Images in the same column capture the same clothing item.

to rule out falsely “fired” images for each attribute to ensure

the precision. (3) For other manually annotated labels,

we collected annotations from two different annotators and

check their consistency. Around 0.5% samples were found

inconsistent and required further labelling from a third

annotator.

2.3. Benchmarks

We build the following benchmarks out of DeepFashion

for evaluating different methods.

Category and Attribute Prediction This task is to clas-

sify 50 fine-grained categories and 1, 000 attributes. There

are 63, 720 diverse images in this benchmark. For category

classification, we employ the standard top-k classification

accuracy as evaluation metric. For attribute prediction, our

measuring criteria is the top-k recall rate following [9],

which is obtained by ranking the 1, 000 classification scores

and determine how many attributes have been matched in

the top-k list.

In-Shop Clothes Retrieval This task is to determine if

two images taken in shop belong to the same clothing item
5. It is important when customers encounter shop image on

photo sharing sites and would like to know more about its

item information on online retailer stores. This benchmark

contains 54, 642 images of 11, 735 clothing items from

Forever21. Top-k retrieval accuracy is adopted to measure

the performance of fashion retrieval, such that a successful

retrieval is counted if the exact fashion item has been found

in the top-k retrieved results.

Consumer-to-Shop Clothes Retrieval This scenario

has been considered by several previous works [10, 12],

aiming at matching consumer-taken photos with their shop

counterparts. We select 251, 361 consumer-to-shop image

pairs from Mogujie for this benchmark. Again, top-k

retrieval accuracy is employed to evaluate performance.

3. Our Approach

To demonstrate the usefulness of DeepFashion, we pro-

pose a novel deep model, FashionNet, which simultane-

5We further annotate each image with its scale (zoom-in/zoom-out)

and pose (front-view/side-view) using meta-data, which can be used for

analyzing the influence of different clothing variations.
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Figure 5. Pipeline of FashionNet, which consists of global appearance

branch (in orange), local appearance branch (in green) and pose branch (in

blue). Shared convolution layers are omitted for clarity.
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Figure 6. Schematic illustration of landmark pooling layer.

ously predicts landmarks and attributes. The estimated

landmark locations are then employed to pool/gate the

learned features, inducing discriminative clothing features.

This procedure performs in an iterative manner. And the

whole system can be learned end-to-end.

Network Structure The network structure of Fashion-

Net is similar to VGG-16 [25], which has been demon-

strated powerful in various vision tasks such as object

recognition [25] and segmentation [18]. Specifically, the

structures of FashionNet below the penultimate (i.e. from

top to bottom) convolutional layer are the same as VGG-16,

except the last convolutional layer, which is carefully design

for clothes. As illustrated in Fig.5, the last convolutional

layer in VGG-16 is replaced by three branches of layers,

highlighted in red, green, and blue respectively. The branch

in red captures global features of the entire clothing item,

while the branch in green captures local features pooling

over the estimated clothing landmarks. The branch in blue

predicts the landmarks’ locations as well as their visibility

(i.e. whether they have been occluded or not). Moreover, the

outputs of the branches in red and green are concatenated

together as in “fc7 fusion” to jointly predict the clothes

categories, attributes, and to model clothes pairs.

Forward Pass The forward pass of FashionNet consists

of three stages as shown in Fig.5. At the first stage, a clothes

image is fed into the network and passed through the branch

in blue, so as to predict the landmarks’ locations. At the

second stage, the estimated landmarks are employed to pool

or gate the features in “pool5 local”, which is a landmark

pooling layer, leading to local features that are invariant to

deformations and occlusions of clothes. At the third stage,

the global features of “fc6 global” and the landmark-pooled

local features of “fc6 local” are concatenated together in

“fc7 fusion”.

Backward Pass The backward pass back-propagates

the errors of four kinds of loss functions in an iterative

manner. Here, we first introduce these loss functions and

then discuss the iterative training strategy. These loss func-

tions include a regression loss for landmark localization,

a softmax loss for the predictions of landmark visibility

and clothes categories, a cross-entropy loss for attribute

predictions, and finally a triplet loss for metric learning

of the pairwise clothes images. First, a modified L2

regression loss is used to localize landmarks, Llandmarks =
∑|D|

j=1
‖vj · (�̂j − �j)‖

2
2, where D, �̂j , and vj denote the

number of training samples, the ground truth locations

of the landmarks of the j-th sample, and a vector of its

landmarks’ visibility, respectively. Unlike the conventional

regression loss, the visibility variables remedy missing

ground truth locations of the landmarks, in the sense that the

error is not propagated back when a landmark is occluded.

Second, we adopt 1-of-K softmax loss to classify landmark

visibility and fine-grained categories, denoted as Lvisibility

and Lcategory respectively.

Third, a weighted cross-entropy loss is utilized to predict

attributes

Lattributes =

|D|
∑

j=1

(

wpos · aj log p(aj |xj)

+wneg · (1− aj) log(1− p(aj |xj))
)

,

(1)

where xj and aj represent the j-th clothes image and

its attribute labels. wpos and wneg are two coefficients,

determined by the ratio of the numbers of positive and

negative samples in the training set.

Fourth, to learn the metric described by clothes pairs,

we employ triplet loss introduced in [22], which enforces

distance constraints among positive and negative samples

Ltriplet =

|D|
∑

j=1

max{0,m+ d(xj , x+

j )− d(xj , x−
j )}, (2)

where a three-tuple (x, x+, x−) is a triplet. x+ and x−

indicate clothes images of the same and different item with

respect to x. d(·, ·) is a distance function and m is the

margin parameter.

FashionNet is optimized by weighted combing the above

loss functions. Here we discuss the iterative training

strategy that repeats the following two steps. In the first

step, we treat the branch in blue as the main task and the

remaining branches as the auxiliary tasks. To this end, we

assign Lvisibility and Llandmark with large weights, while

the other loss functions have small weights. This is to

train landmark estimation with the assistance of the other

tasks, since they are correlated. Joint optimization leads to
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Category Texture Fabric Shape Part Style All

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

WTBI [3] 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN [10] 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95

FashionNet+100 47.38 70.57 28.05 36.59 29.12 40.58 28.51 36.51 31.65 38.53 53.92 62.47 31.58 39.06

FashionNet+500 57.44 77.39 34.73 46.35 34.47 46.60 33.61 44.57 38.48 49.01 63.48 67.94 38.94 49.71

FashionNet+Joints [34] 72.30 81.52 35.92 48.73 38.21 49.04 37.59 47.73 40.21 51.81 64.91 73.14 43.14 52.33

FashionNet+Poselets [34] 75.34 84.87 36.85 49.11 38.88 49.48 38.19 47.09 41.60 52.85 64.84 73.03 43.57 52.65

FashionNet (Ours) 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Table 2. Performance of category classification and attribute prediction.
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Figure 7. Per-attribute prediction performance for 70 representative attributes. FashionNet consistently outperforms WTBI [12] and DARN [10] on all

attributes.

better convergence, which is demonstrated in Sec.4.2. In the

second step, we predict clothing categories and attributes,

as well as to learn the pairwise relations between clothes

images. In this step, the estimated landmark locations are

used to pool the local features. The above two steps are

iterated until convergence. This procedure is similar to [21].

Landmark Pooling Layer The landmark pooling layer

is a key component in FashionNet. Here, we discuss it

in detail. As shown in Fig.6, the inputs of the landmark

pooling layer are the feature maps (i.e. “conv4”) and the

estimated landmarks. For each landmark location ℓ, we

first determine its visibility v. The responses of invisible

landmark are gated to zero. Next, we perform max-pooling

inside the region around ℓ to obtain local feature maps.

These local feature maps are stacked to form the final

feature maps of “pool5 local”. The back-propagation of

the landmark pooling layer is similar to the RoI pooling

layer introduced in [8]. However, unlike [8] that treated

the pooled regions independently, the landmark pooling

layer captures interaction between clothing landmarks by

concatenating local features.

4. Experiments

Data We pre-train FashionNet on a subset of 300, 000
images of DeepFashion, another subset of 50, 000 images

is used as validation data. In testing, we employ part of the

benchmark data to fine-tune the pre-trained models on the

three benchmarks. We ensure that no fashion item overlaps

between fine-tuning and testing sets.

Competing Methods We compare FashionNet with two

recent deep models that showed compelling performance

in clothes recognition, including Where To Buy It (WTBI)

[12] and Dual Attribute-aware Ranking Network (DARN)

[10]. Both of them are trained using clothes bounding

boxes. Specifically, WTBI concatenated multi-layer per-

ceptron (MLP) on top of the pre-trained ImageNet models

[25]. We only implement the category-independent metric

network of WTBI, which handles all clothing categories in

a single network. DARN adopted an attribute-regularized

two-stream CNN. One stream handles shop images, while

the other handles street images. Note that for category

classification and attribute prediction, only one stream of

DARN is used. We train WTBI and DARN using the same

amount of data and protocol as FashionNet did.

We also vary building blocks of FashionNet for an

ablation study, including FashionNet+100 and Fashion-

Net+500. They represent that we only utilize 100 and

500 attributes to learn FashionNet respectively, instead of

1,000 attributes used in the full model. Next, we replace

fashion landmarks in our model with detected human joints

[34] and poselets [2] to pool/gate features in the stages of

training and test. They are denoted as FashionNet+Joints

and FashionNet+Poselets, respectively.

4.1. Results

This section provides quantitative evaluations of differ-

ent methods on the three benchmarks. We also investigate

multiple building blocks of the proposed FashionNet. Table

2 summarizes the performance of different methods on

category classification and attribute prediction.

Category Classification In fine-grained category clas-

sification, we have three observations. First, FashionNet

significantly outperforms WTBI and DARN by 20 percent

when evaluated using the top-3 accuracy. It outperforms

them by 10 percent in the top-5 accuracy. Please refer

to Sec.2.3 for the details of the evaluation metrics of the

benchmark. These results show that by adding informative

landmarks, FashionNet can better discover fine-grained

clothing traits than existing deep models. Second, when

replacing the clothing landmarks in FashionNet with human

joints and poselets, 6∼9 percent performance drops are
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Figure 8. Results on in-shop clothes retrieval benchmark. (a) Example queries, top-5 retrieved images, along with their predicted landmarks. Correct

matches are marked in green. (b) Retrieval accuracies of different methods under comparison.

observed. As the clothing landmarks are defined based

on domain-specific semantics of clothes, they are more

effective than human joints/poselets in clothes recognition.

Third, using massive attributes benefits fine-grained catego-

ry classification. When training FashionNet with different

number of attributes, including 100, 500, and 1, 000, the

classification accuracies significantly increase. The full

model surpasses FashionNet-500 and -100 by 13 and 20

percent in the top-5 accuracy respectively, showing that

richer attribute information helps comprehensive profiling

of different clothing variations.

Attribute Prediction For attribute prediction, similar

conclusions can be drawn for the effectiveness of informa-

tive landmarks and massive attributes. To understand the

strength of FashionNet, we also present the attribute recall

results for each of the five attribute groups. We demonstrate

that FashionNet achieves compelling results in the attribute

groups of “shape” and “part”, because discriminative infor-

mation of these attributes normally exist around clothing

landmarks, thus can be well captured by landmark pooling

in FashionNet. Fig.7 illustrates the per-attribute recall rates

of top-5 accuracy for the 70 representative attributes. Our

approach consistently outperforms WTBI and DARN on all

of the attributes in this benchmark.

In-Shop Clothes Retrieval Fig.8 shows the top-k re-

trieval accuracy of all the compared methods with k ranging

from 1 to 50. We also list the top-20 retrieval accuracy

after the name of each method. We can clearly see that

our model (FashionNet) achieves best performance (0.764)

among all the methods under comparison, while WTBI

has the lowest accuracy (0.506). The poor performance of

WTBI is as expected, since it directly used the pre-trained

ImageNet features, which are not suitable to describe

clothes. Notably, compared with DARN, FashionNet boots

the top-20 accuracy from 0.675 to 0.764, and a 15 percent

relative improvement is attained. This reveals the merits

of employing landmarks to pool and gate learned features.

When we replace clothing landmarks with human joints

(FashionNet+Joints) or poselets (FashionNet+Poselets), the

accuracy drops by 8 and 6 percent respectively, indicating

such options are suboptimal. Compared with Fashion-

Net+100 and FashionNet+500, FashionNet increase the ac-

curacy by 19 and 12 percent, respectively, which highlights

the effectiveness of using massive clothing attributes for

training deep models. Some of the sample results are

given in Fig.8 (a), where top retrieved images along with

predicted landmark locations are shown.

Consumer-to-Shop Clothes Retrieval We show the

detailed retrieval accuracy of different methods in Fig.9

(b). Compared with in-shop retrieval, methods on this

benchmark achieve much lower accuracies, which reflect

the inherent difficulty of consumer-to-shop clothes retrieval.

Similar to in-shop clothes retrieval, FashionNet achieves the

best top-20 accuracy (i.e. 0.188) among different methods.

The relative improvement of FashionNet over DARN rises

to 70 percent, compared to 15 percent of the previous

benchmark, indicating the landmark locations are of greater

importance for more complex scenarios. Besides, the

retrieval accuracy increases when more training attributes

are explored. Moreover, using human landmarks rather

than clothing landmarks degrades the accuracy. These

observations are consistent with those in the previous task.

Some sample queries along with their top matches are

shown in Fig.9 (a).

4.2. Further Analysis

As landmark estimation plays a key role in FashionNet,

we conducted a quantitative evaluation of this component in

order to better understand our method. For a more detailed

analysis of search results, we also explore how different

variations of clothes affect the retrieval accuracy.

Landmark Estimation Fig.10 (a) illustrates the detec-

tion rates over varying thresholding distances for different

clothing landmarks. Similar to [26], percentage of detected
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Figure 9. Results on consumer-to-shop clothes retrieval benchmark. (a) Example queries, top-3 retrieved images, along with their predicted landmarks.

Correct matches are marked in green. (b) Retrieval accuracies of different methods under comparison.

 

Figure 10. (a) Detection rates of different clothing landmarks. (b)

Detection rates with and without using attributes.

joints (PDJ) is utilized to evaluate landmark estimation.

When the normalized distance equals 0.1, the detection

rates are above 80 percent for all the eight landmarks.

We can further observe that detection rate of collars are

higher than that of sleeves, waistlines, and hems. This

is because collars are relatively rigid w.r.t. human’s neck,

whereas sleeves, waistlines, and hems are more flexible

beyond common human joints. Fig.10 (b) demonstrates that

rich attribute information facilitates landmark localization,

because some attributes can effectively describe the appear-

ance of certain clothing landmarks, such as “cap-sleeve”

and “fringed-hem”.

Variations of Clothes We choose the in-shop clothes

retrieval benchmark to investigate the influence of different

variations of clothes. Fig.11 (a) illustrates the retrieval

performance of query images with different variations. We

can see that scale variations are more challenging than

pose variations. Another interesting observation is that

zoom-in images perform worse than zoom-out images when

k = 1, however its performance increases when k gets

larger. It is because landmarks are essential for accurate

fashion retrieval, but they are undetectable in zoom-in

images. The fine-grained texture attributes help recognize

zoom-in images and may guarantee an acceptable retrieval

performance when k gets large. From Fig.11 (b), we

can observe that “dress” has the highest accuracy while

“shorts” has the lowest, because “dresses” generally have

much more distinguishable features, such as local traits and

colors. “Shorts”, on the other hand, tend to have similar

 

Figure 11. (a) Retrieval accuracies under different poses and scales. (b)

Retrieval accuracies of different clothing categories.

shape and relatively plain textures.

5. Conclusions

This work presents DeepFashion, a large-scale clothing

dataset with comprehensive annotations. DeepFashion

contains over 800,000 images, which are richly labeled

with fine-grained categories, massive attributes, landmarks,

and cross-pose/cross-domain image correspondence. It

surpasses existing clothing datasets in terms of scale as well

as richness of annotation. To demonstrate the advantages

of such comprehensive annotations, we designed a novel

deep model, namely FashionNet, that learns clothing fea-

tures by jointly predicting landmark locations and massive

attributes. The estimated landmarks are used to pool or

gate the learned feature maps, which leads to robust and

discriminative representations for clothes. We establish

benchmark datasets for three widely accepted tasks in

clothing recognition and retrieval. Through extensive ex-

periments, we demonstrate the effectiveness of FashionNet

and the usefulness of DeepFashion, which may significantly

facilitate future researches.
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