Kinematic Synthesis

October 6, 2015
Mark Plecnik

Classifying Mechanisms

Several dichotomies

Serial and Parallel

Planar/Spherical and Spatial

Few DOFS and Many DOFS

Rigid and Compliant

Mechanism Trade-offs

	Workspace	Rigidity	Designing Kinematics	No. of Actuators	Flexibility of Motion	Complexity of Motion
Serial	Large	Low	Simple	Depends	Depends	Depends
Parallel	Small	High	Complex	Depends	Depends	Depends
Few DOF	Small	Depends	Complex	Few	Little	Less
Many DOF	Large	Depends	Simple	Many	A lot	More

Serial, Many DOF

Parallel, Many DOF

Parallel, Few DOF

Serial, Few DOF

Problems in Kinematics

Dimensions
Joint Parameters
End Effector Coordinates

Forward Kinematics
Known: Dimensions, Joint Parameters
Solve for: End Effector Coordinates

Inverse Kinematics
Known: Dimensions, End Effector Coordinates
Solve for: Joint Parameters

Synthesis

Known: End Effector Coordinates
Solve for: Dimensions, Joint Parameters

Challenges in Kinematics

- Using sweeping generalizations, how difficult is it to solve
- forward kinematics
- inverse kinematics
- synthesis
over different types of mechanisms?
- Ranked on a scale of 1 to 4 with 4 being the most difficult:

	Forward Kinematics		Inverse Kinematics		Synthesis	
	Serial	Parallel	Serial	Parallel	Serial	Parallel
Planar	1	2	2	1	3	3.5
Spherical	1	2	2	1	3	3.5
Spatial	1.5	2.5	2.5	1.5	3.5	4

Planar

Spherical

Spatial

Synthesis Approaches

- Synthesis equations are hard to solve because almost nothing is known about the mechanism beforehand

Some Methods for Synthesis

- Graphical constructions-1 soln per construction
- Use atlases (libraries) (see http://www.saltire.com/LinkageAtlas/)
- Evolutionary algorithms - multiple solutions
- Optimization - 1 soln, good starting approximation required
- Sampling potential pivot locations
- Resultant elimination methods - all solutions, limited to simpler systems
- Groebner Bases - all solutions, limited to simpler systems
- Interval analysis - all solutions within a box of useful geometric parameters
- Homotopy - all solutions, can handle degrees in the millions and possibly greater with very recent developments

Configuration Space of a Linkage

Terminology:
Circuits- not dependent on input link specification
Branches- dependent on input link specification

Circuit and branches can lead to linkage defects

Types of Synthesis Problems

a) Function generation: set of input angles and output angles;
b) Motion generation: set of positions and orientations of a workpiece;
c) Path generation: set of points along a trajectory in the workpiece.

Above are examples of function, motion, and path generation for planar six-bar linkages. Analogous problems exist for spherical and spatial linkages of all bars.

Examples of Function Generation

The Bird Example Technique

- Spatial chains are constrained by six-bar function generators

Spatial chain
4 DOF

Function generators to control joint angles

> A single DOF constrained spatial chain

Goal: achieve accurate biomimetic motion

Examples of Motion Generation and Path Generation

Kinematics and Polynomials

- Kinematics are intimately linked with polynomials because they are composed of revolute and prismatic joints which describe circles and lines in space, which are algebraic curves
- These lines and circles combine to describe more complex algebraic surfaces

Polynomials and Complexity

- Linkages can always be expressed as polynomials
- When new links are added, the complexity of synthesis rapidly increases

Ways to Model Kinematics

- Planar
- Rotation matrices, homogeneous transforms, vectors
- Planar auaternions
- Complex numbers
- Spherical
- Rotation matrices
- Quaternions
- Spatial
- Rotation matrices, homogeneous transforms, vectors
- Dual quaternions
- All methods create equivalent systems, although they might look different. Different conveniences are made available by how kinematics are modelled

Planar Kinematics With Complex Numbers

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right\}+\left\{\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right\}=\left\{\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y}
\end{array}\right\} \\
& \left(a_{x}+i a_{y}\right)+\left(b_{x}+i b_{y}\right)=\left(a_{x}+b_{x}\right)+i\left(a_{y}+b_{y}\right) \\
& {\left[\begin{array}{c}
\cos \theta-\sin \theta \\
\sin \theta \\
\cos \theta
\end{array}\right]\left\{\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right\}=\left\{\begin{array}{l}
a_{x} \cos \theta-a_{y} \sin \theta \\
a_{x} \sin \theta+a_{y} \cos \theta
\end{array}\right\}} \\
& e^{i \theta}\left(a_{x}+i a_{y}\right)=(\cos \theta+i \sin \theta)\left(a_{x}+i a_{y}\right) \\
& =\left(a_{x} \cos \theta-a_{y} \sin \theta\right)+i\left(a_{x} \sin \theta+a_{y} \cos \theta\right)
\end{aligned}
$$

