
CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

CS250
VLSI Systems Design

Fall 2009

John Wawrzynek, Krste Asanovic’
with

John Lazzaro
and

Yunsup Lee (TA)

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Why the heck is it CS250 and not
EE250?

2

‣ We answer that with a course history (with a few
embedded lessons).

 Warning: What follows is principally from memory. I’ve done my
best to be accurate, but some errors or misinterpretations might
exist.

Starts in 1958 with the invention of the Integrated Circuit independently
by Robert Noyce (co-founder of Fairchild Semiconductor
Corporation) and Jack Kilby (engineer at Texas Instruments).

CS250, UC Berkeley Fall ‘09Lecture 01, Intro

IC Design in the 70’s and early 80’s

The Intel 4004 microprocessor, which was introduced in 1971.
The 4004 contained 2300 transistors and performed 60,000

calculations per second. Courtesy: Intel.

Introduced to help
sell memory chips!

Federico Faggin,
Ted Hoff,

Stan Mazor

‣ Circuit design, layout, and processing tightly linked.

‣ Logic design and layout was “random”

‣ Chip design was the domain of industry (Fairchild, Intel, Texas
Instruments, …). These were IC processing companies. Those who
controlled the physics controlled the creative agenda!

3

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

"Listen to the technology; find out what it's telling you."

Meanwhile at Caltech…
‣ Carver Mead was designing and building

prototype ICs (with help from his friends at
Intel)

‣ His background was in physical electronics
(invented several semiconductor devices such
as the GaAs MESFET) but was deeply
interested in the interaction of physical
implementation and the higher level design of
electronic systems:

4

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

CS At Caltech
‣ Ivan Sutherland became founding head of the computer science division at CIT in

1974 (after leaving E&S)

‣ He and Mead teamed up to get the division off the ground making IC design
(Integrated Systems) a key component of the research and teaching.

‣ My take:

‣ These two believed that IC design was at the heart of computer science
because CS was largely about inventing and building computing devices.

‣ The future of computing was integrated circuits:

‣ Very flexible, “boundless” growth potential (was on an exponential grow
curve with no end in sight!)

‣ Close to “pure thought” with few constraints and “nasty realities”

‣ The potential of “LSI” was not going to be reached with the status quo in
industry.

‣ Worked together over the next 6 years to establish the faculty, industrial ties,
curriculum, research projects with silicon structures as a key component.

‣ They set off to build their own machines (OM1, OM2).
5

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Pushing forward (1)
‣ The reality of integrated circuits:
‣ Wires are expensive (area, delay, power), transistors are cheap.

‣ Pre-ICs, the opposite was true.

‣ Therefore, plan the communication and the layout
‣ Exploit locality, think about the “geometry” of the problem from

the beginning. Choose algorithms/designs accordingly.

‣ Algorithms/designs represented as communication graphs in a
large number of dimensions, not a good idea.

6

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Pushing Forward (2)
‣ Put IC design expertise into the hands of those best qualified

to take advantage of its potential:
‣ Those with intimate knowledge of computation and

algorithms: computer scientists!

‣ Traditionally, IC design had been stratified:

7

Algorithm /

architecture

Micro-

architecture

Circuit

design
Layout

‣ Emergence of the “tall thin designer”. Spans all levels of the
design and implementation stack.

‣ Would lead to more successful innovation and highly
optimized designs.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Pushing Forward (3)
‣ How to enable system architects:
‣ Managing the complexity was the key challenge. Manipulating

multiple levels of design complexity was difficult and projected to
get much worse looking forward (remember Moore’s Law).

‣ Providing universal access to IC fabrication.

‣ Solutions:
1. Ideas from software
2. New design representations
3. Computer aided design tools
4. Silicon “foundries”
5. Education

8

All linked

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Ideas from Programming
(help manage complexity)

‣ “Structured Programming” was getting popular (Dijstra, el. al.)
‣ No goto statements

‣ Block organization.

‣ Use of hierarchy, abstraction (sub-routines).

‣ “Structured Design” for ICs:
‣ Exploit regularity and symmetry

‣ Use and reuse common sub-blocks (flip-flops, gates, arithmetic,
etc.)

‣ Represent designs hierarchically

9

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Design Representations (1)
‣ Previously, to generate the mask information for fabrication, the

designed needed intimate knowledge of the manufacturing
process. Even once this knowledge was distilled to a set of
“Geometric Design Rules”, this set of rules was voluminous with
many special cases.

‣ Mead and associates come up with a much simplified set of design
rules (single page description). A sort of “API” or abstraction of
the process (back end processing could automatically convert this
information into masks).

10

‣ Sufficiently small set that
designers could memorize.

‣ Sufficiently abstract to allow
process engineers to shrink the
process and preserve existing
layouts.

‣ Process resolution becomes a
“parameter”, λ.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Scalable CMOS Design Rules
‣ Created with the

transition from
nMOS to CMOS (a
much nicer
technology),
around 1985.

‣ Little changed
over the years.

11

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Design Representations (2)
‣ Caltech Intermediate Form (CIF)

‣ Capture layout information,
needed to generate masks and
process.

‣ ASCII text file with geometric
primitives and hierarchical
definitions.
‣ Simple and human readable.
‣ Easy generate and parse.
‣ Common sub-blocks could be

reused from one design to the
next (output pad drivers, etc.)

12

A sample CIF "wire" statement. The statement is:
W25 100 200 100 100 200 200 300 200;

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Design Representations (3)
‣ Previously, designed were represented by hand drawings.

Then masks where made by transferring drawings to
rubylith.
‣ Base layer of heavy transparent dimensionally stable Mylar.

A thin film of deep red cellophane-like material covers the
base layer. Patterns formed by cutting (often by hand) the
transparent covering.

13

‣ Using an electronic format (CIF) meant:
‣ Layouts easily stored and transmitted
‣ Written to tape and transferred to

manufacturer (tape out).
‣ Transmitted over the network (new idea

back then).
‣ Software could automatically check for

layout errors.
‣ Generated from a program - huge idea.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Design Representations (3)
‣ “Simplified” approach extended upward.
‣ “Sticks” diagrams for layout:

‣ Simultaneously captures circuit
topology and geometry.

‣ Back end tool “fleshes out” real
geometry and compacts according to
geometric design rules.

14

‣ For functional circuit descriptions, transistors as “switches”.
‣ Simple RC-based and “tau” timing models (later lead to “logical

effort”)
‣ Standard simple circuits for common functions. Previously,

designers had many tricks, and many alternative circuits.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Computer Aided Design (1)
‣ Several advances lead to the development of interactive

tools for generating layout:
‣ Computer based layout representation (CIF).
‣ Advances in computer graphics (thanks to Ivan Sutherland

and friends) and display devices.
‣ Personal “workstation” (Xerox Alto - Chuck Thacker). “Back

room” computers didn’t have the necessary bandwidth to
the display.

‣ ICARUS (first such system?)
‣ Berkeley version - MAGIC

15

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Computer Aided Design (2)
‣ For some time after CIF was invented. Layout was generated by

hand, then typed in as a CIF file with a text editor.

‣ Layout compilers
‣ Soon some designers started embedding CIF primitives in conventional

programming languages: LISP, pascal, fortran, (later) C.

‣ This allows designers to write programs that generated layout. Such
programs could be parameterized:

16

define GENERATE_RAM(rows, columns) {
 for I from 1 to rows
 for J from 1 to columns (GENERATE_BITCELL)}
GENERATE_RAM(128, 32);

‣ Lead to circuit/layout generation from higher level descriptions:
‣ Bristle-blocks (first “silicon compiler”, Dave Johanssen). Generated

processor architectures (datapaths) from high level specification

‣ Elements: adder, regfile, I/O block, … Width:16

‣ Eventually, Cadence and Synopsys formed out of Berkeley.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

SIlicon Foundries
‣ Separate the designer from the fabricator: Modeled after the

printing industry. (Very few authors actually own and run printing
presses!)

‣ Simple standard geometric design rules where the key: these form the
“contract” between the designer and manufacturer.

‣ Designer sends the layout (in CIF format), foundry manufactures the
chip and send back. Designer promises not to violate the design rules.
Foundry promises to accurately follow layout.

17

‣ A scalable model for the industry:
‣ IC fab is expensive and complex

‣ Amortizes the expense over many designers
(batch processing with deep queues help).

‣ Designers and companies not held back by
need to develop and maintain large
expensive factories.

‣ “fabless” semiconductor companies - lots of
these and very few foundries.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Multi-project Chips
‣ Silicon processing is optimized for high-volume.

‣ Large minimum order, high fixed-price (overhead),
low per unit cost.

‣ While designing and characterizing new designs
(prototyping), what is needed is low-volume
low-cost production.

‣ Multi-project chips allowed multiple designers
to share one set of masks, a set of wafer.
Brings cost of production down to levels
appropriate for prototype runs.

18

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

(MOS implementation Service)
‣ For many years (1980-1996) fabrication was available (mostly in

the form of MPCs) to US universities for free (paid by NSF and
DARPA.

‣ Interestingly, DARPA originally saw this as a useful application of
the ARPAnet (later to be known as the Internet). ARPA had
invested to put this network together - world-wide-web and email
hadn’t happened yet, so ARPA was looking for a way to justify their
investment.

‣ The MOSIS project at USC/ISI collected designs from around the
country. Designs were FTPed to MOSIS, then brokered their
manufacturing with silicon foundries.

‣ Become THE way to do projects in classes (like CS250) and research.

‣ Over 50,000 designs prototyped for universities, industry, and
government agencies.

‣ Continues today, subsidized by paying customers, with spare space
offered for free to universities.

19

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Education
‣ The new simple design representations made it easy to teach

and learn (even for computer scientists - remember the original
targets)

‣ Text book by Carver Mead and Lynn Conway, 1980.

20

‣ Presented elegant clear treatment of
physics, processing, circuits, and
design methodology for nMOS chips.

‣ Continued as the standard text, even
long after CMOS supplanted nMOS
(sadly never revised).

‣ Key to its success was the large design
example

‣ OM2 design becomes the model for all
microprocessor designs.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

OM2

21

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Spreading the Word
‣ Limited printing (of chapters 1-3) were used as course notes in

1977 by Mead at Caltech and Carlo Sequin at UC Berkeley.

‣ Chapters 1-5 1978 by Ivan Sutherland and Amr Mohsen at
Caltech, by Bob Sproull at CMU, Frohman-Bentchkowsky at
Hebrew University, Jerusalem, and by Fred Rosenberger at
Washington University.

‣ Prepublication of entire book, in fall of 1978, in courses at
Caltech and UC Berkeley, and by Kent Smith at the University of
Utah, and by Lynn Conway, while visiting MIT.

‣ Within a few years, this seminal text was adopted for chip
design courses at over 100 universities throughout the world.

22

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

At Berkeley (1)
1980-1988: VLSI course continues to be

taught by Professors Sequin, Patterson, &
Katz.

~1985: Students in advanced version of the
course with Sequin and Patterson, design
first two RISC processors. Working
closely with designers, Prof. Ousterhout
develops MAGIC IC design tools.

Late 80’s. Patterson returns to architecture
focus, Katz to OS/Networking, Sequin to
graphics.

1988: Berkeley hires Caltech grad (student
of C. Mead) to take over VLSI course.
Offers course many times through the
90’s.

23

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

At Berkeley (2)
‣ Through the 1990’s …

‣ EE141, EE241 develop to cover much of the same material (processing,
CMOS devices, circuits, sub-systems) however, 250 continues to be a
practical hands-on, experience-with-real-CAD-tools, design-a-real-chip
course.

‣ VLSI chips start to grow in complexity past practical limits of university
1-semester projects (super-scalar OOO, etc.).

‣ Late 90’s. Academic teaching/design/research focus shifts to FPGAs.
Much shorter “turn-around” time. FPGAs get large and practical for wide
range of applications.

‣ 1999: Most recent CS250 offering as a design course.

‣ Spring 2007: Offered as a survey course, no design project.
– A lot has changed in 25 years! Many new challenges/opportunities on the way!

‣ What of the Mead/Sutherland methodology and ideas from 1980 still
apply?

‣ Is there a new more appropriate methodology for the modern era?

24

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

So what has changed in 30 years?

25

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 26

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1
44

MooreMoore’’s Law - 2005s Law - 2005

40044004

80808080
80868086

8028680286
386386™™ Processor Processor

486486™™ Processor Processor
PentiumPentium® ® ProcessorProcessor

PentiumPentium®® II ProcessorII Processor

PentiumPentium®® III Processor III Processor

PentiumPentium®® 4 Processor 4 Processor
ItaniumItanium™™ ProcessorProcessor

TransistorsTransistors

Per DiePer Die

101088

101077

101066

101055

101044

101033

101022

101011

101000

101099

10101010

80088008

ItaniumItanium™™ 22 ProcessorProcessor

1K1K

4K4K

64K64K

256K256K

1M1M

16M16M
4M4M

64M64M

256M256M
512M512M

1G1G 2G2G

128M128M

16K16K

1965 Data (Moore)1965 Data (Moore)

MicroprocessorMicroprocessor

MemoryMemory

19601960 19651965 19701970 19751975 19801980 19851985 19901990 19951995 20002000 20052005 20102010

� 	 �
 � � � � � � � � �� 	 �
 � � � � � � � � �

Moore’s Law for CPUs and DRAMs

From: “Facing the Hot Chips Challenge Again”, Bill Holt, Intel, presented at Hot Chips 17, 2005.
27

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

88

Processed Wafer CostProcessed Wafer Cost

Wafer size conversions offset trend ofWafer size conversions offset trend of

increasing wafer processing costincreasing wafer processing cost
Source: IntelSource: Intel

Secondary driver: Wafer size

From: “Facing the Hot Chips
Challenge Again”, Bill Holt, Intel,

presented at Hot Chips 17,
2005.

28

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Processing advances

4µm 45nm

29

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

IC Technology Stuff (1)
‣ Feature size:

then: ~4µm now: ~.045µm

‣ Interconnect:
then: 2 layers now: ~10 layers, then: aluminum now: copper

‣ Transistors:
then: planar MOSFET now: same

‣ Layout and GDRs:
Essentially unchanged. More complex. Density and area-fill rules.

‣ Circuits:
then: clocked static CMOS now: same (lots of crazy stuff in between)

Most CMOS circuits and layouts designed in 1980 would work if
fabricated on today’s IC process.

30

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

IC Technology Stuff (2)
‣ Transistors:

then: near perfect switch now: leaky

‣ Power consumption:
then: dynamic (switching) energy now: approaching 50% static

leakage (back to the future - nMOS has similar problem)

‣ New improved devices on the horizon: FinFETs
‣ Chip Input/Output

then: parameter pads now: often area pads

‣ Lithographic Mask Costs:
then: few $k now: $M (full die, 65, 45nm)

31

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

IC Technology Stuff (3)
‣ Device reliability:

then: devices nearly never fail future (<65nm): high soft and hard
error rates

‣ Process variations across die, die-to-die:
‣ Statistical variations in processing (wire widths/resitivity,

transistor dimensions/strengths, doping inconsistencies) become
apparent at smaller geometries.

‣ Some circuits fast, others slow. Some high-power, some low.

‣ Worst case design results in very bad overall performance.

‣ Yield on leading edge processes dropping dramatically
‣ IBM quotes yields of 10 – 20% on Cell processor

32

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Design Stuff
‣ Chip functionality:

then: limited by area now: often limited by energy dissipation

‣ Design cost:
now: design costs in $50M range for full-die custom designs (high

percentage in verification)

‣ Implementation Alternatives: more alternatives that trade
up-front design costs for per unit costs.

‣ FPGA compete aggressively with custom silicon

then: most custom designs implemented at silicon level
now: many more custom designs implemented with FPGAs

‣ Standard design abstraction:
then: transistors circuits now: RTL in HDLs, standard “cores”

and standard cells (higher productivity, somewhat less area/
energy efficient) -

33

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 34

Implementation Alternatives

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for
application.

Standard-cell: Arrays of small function blocks (gates, FFs)
automatically placed and routed.

Gate-array
(structured ASIC):

Partially prefabricated wafers customized with
metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches
or fuses.

Microprocessor: Instruction set interpreter customized through
software.

Domain Specific
Processor: Special instruction set interpreters (ex: DSP, NP, GPU).

By “ASIC”, most people mean “Standard-cell” based implementation.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 35

The Important Distinction
• Instruction Binding Time

‣ When do we decide what operation needs to be performed?

• General Principles
Earlier the decision is bound, the less area, delay/energy

required for the implementation.
Later the decision is bound, the more flexible the device.

A. DeHon

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 36

Full-Custom
‣ Circuit styles and transistors are custom sized

and drawn to optimize die, size, power,
performance.

‣ High NRE (non-recurring engineering) costs
‣ Time-consuming and error prone layout

‣ Optimizing for small die can result in low per unit
costs, extreme-low-power, or extreme-high-
performance.

‣ Common for analog design.

‣ Requires full set of custom masks.

‣ High NRE usually restricts use to high-volume
applications/markets or highly-constrained and
cost insensitive markets.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 37

Standard-Cell*
‣ Based around a set of pre-designed (and verified) cells
‣ Ex: NANDs, NORs, Flip-Flops, counters, buffers, …

‣ Each cell comes complete with:
‣ layout (perhaps for different technology nodes and processes),
‣ Simulation, delay, & power models.

‣ Chip layout is automatic, reducing NREs (usually no hand-layout).

‣ Requires full set of masks - nothing prefabricated.

‣ Non-optimal use of area and power, leading to higher per die costs than full-
custom.

‣ Commonly used with other design implementation strategies (large blocks for
memory, I/O blocks, etc.)

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 38

Gate Array
‣ Store prefabricated wafers of “active” & gate layers & local

interconnect, comprising, primarily, rows of transistors.
Customize as needed with “back-end” metal processing (contact
cuts, metal wires). Could use a different factory.

‣ CAD software understands how to make gates, but also possible
to customize at the transistor circuit level.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 39

Gate Array
• Shifts large portion of design and mask NRE to vendor.
• Shorter design and processing times, reduced time to market.
• Highly structured layout with fixed size transistors leads to large

sub-circuits (ex: Flip-flops) and higher per die costs.
• Memory arrays are particularly inefficient, so often prefabricated,

also:

Sea-of-gates,
structured ASIC,

master-slice.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 40

Field Programmable Gate Arrays

‣ Fuses, EPROM, or Static RAM cells are used to store the “configuration”.

‣ Here, it determines function implemented by LUT, selection of Flip-flop, and interconnection
points.

‣ Many FPGAs include special circuits to accelerate adder carry-chain and many special
cores: RAMs, MAC, Enet, PCI, SERDES, ...

 Two-dimensional
array of simple
logic- and
interconnection-
blocks.

 Typical architecture:
LUTs implement any
function of n-inputs
(n=3 in this case).

 Optional Flip-flop
with each LUT.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 41

Traditional FPGA versus ASIC argument

• ASIC: High NRE costs ($2M for 0.35um chip). Relatively Low cost per
die.

• FPGAs: Very low NRE costs. Relatively low silicon efficiency ⇒ high
cost per part.

• Cross-over volume from cost effective FPGA design to ASIC in the
10K range.

volume

total
cost

FPGAs cost
effective

ASICs cost
effective

FPGA

ASIC

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 42

Cross-over Point is Moving Right

• ASIC: Increasing NRE costs ($40M for 90nm chip1) (verification, mask
costs2, etc.)

‣ Fewer silicon designs becomes inevitable.

• FPGAs: Move in to fill the need, furthermore, FPGAs better able to follow
Moore’s Law, relatively cheaper to test.

• Cross-over volume now in the 100K range.

volume

total
cost

FPGAs cost
effective

ASICs cost
effective

FPGA
ASIC

1 Vahid Manian, VP manufacturing and operations, Broadcom Corp.
2 Roger Minear, Agere Systems Inc, 30- 35- layer mask set ≈$650,000 for 130nm and $1.4M for 90nm.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 43

Post-fabrication Customization

• Gate Array like devices (structured ASICs) return to fill the gap. Post-
fab customization with limited mask layers or direct-write e-beam.

‣ Lower NREs than ASICs, more silicon efficiency than FPGAs.

volume

total
cost

FPGA
ASIC
Structured ASICs

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 44

Hybrids Chip Implementations Abound
‣ Ex: standard practice in microprocessors that data-paths are

full-custom and control (instruction decode, pipeline control)
in standard-cells. (Less common recently)

Control (“random”) logic difficult to
“regularize”. Relatively small percentage
of die area/power. Permits late binding of

design changes.

Extra NAND or NOR gates were often
added to control section, and some wafers
left without metallization, to permit late
design fixes through metal mask revisions

(gate-array idea).

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1 45

System-on-chip (SOC)

‣ Pre-verified block designs, standard bus interfaces (or adapters)
ease integration - lower NREs, shorten TTM.

• Brings together: standard cell blocks,
custom analog blocks, processor cores,
memory blocks, embedded FPGAs, …

• Standardized on-chip buses (or
hierarchical interconnect) permit “easy”
integration of many blocks.
– Ex: AMBA, Sonics, …

• “IP Block” business model: Hard- or
soft-cores available from third party
designers.

• ARM, inc. is the shining example. Hard-
and “synthesizable” RISC processors.

• ARM and other companies provide,
Ethernet, USB controllers, analog
functions, memory blocks, …

SIP, SOP, MCM interesting alternatives.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Early ’80’s Design Methodology and Flow
‣ Schematic + Full-Custom Layout

SPICE for critical path,
switch-level simulation for

overall functionality,
hand layout,
no power analysis,
layout verified with LVS and GDRC

Transistor Schematics

switch
simulator

hand
layout

layout
vs.

schematic

CIF file

geometric
design
rule

checker

SPICE

Specification

46

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Modern ASIC Methodology and Flow
‣ RTL Synthesis Based

HDL specifies design as
combinational logic + state
elements

Cell instantiations needed for
blocks not inferred by
synthesis (typically RAM)

Event simulation verifies RTL
“Formal” verification

compares logical structure
of gate netlist to RTL

Place & route generates layout
Timing and power checked

statically
Layout verified with LVS and GDRC

RTL (Verilog/VHDL) + cell instantiations

logic
synthesis

event
simulator

cell place & route

GDS timing/
power

analysis

“formal”
verification

Specification

gate netlist (with area/perf/pwr estimates)

GDRC, LVS, other checks

47

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Course Format (1)

‣ As with course from the ‘80s, VLSI design for system
architects.
‣ Focus on common ASIC design methodology:

‣ RTL synthesis and standard cell implementation. No
transistor level layout.

‣ Back to a “design centric course”. Learn by doing.
‣ Requires a lot of infrastructure set up (thanks to

Yunsup!)

‣ Entire class works on the pieces of a large advanced
chip design.
‣ Prototype of Parlab Infinicore architecture.

‣ More details later.

The new CS250

48

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Course Format (2)
‣ Most closely related courses:
‣ CS 150 - undergraduate digital design. Prerequisite.

‣ CS 152/252 Computer Architecture / Microarchitecture.

‣ EE 141/242 Transistor level circuits and layout.

‣ EE 244 Computer Aided Design of ICs (CAD algorithms)

Course Theme:
How do we get the best design results from the standard

design flow using tradeoffs in area/performance/energy and
exploring microarchitectural alternatives.

49

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Course Structure
‣ Check Website Calendar/Info for details
‣ Weeks 7-8:
‣ Lectures on fundamentals of “ASIC” design
‣ Lab exercises to learn CAD tools
‣ Weeks 9-16:
‣ Class project meetings/reviews
‣ Paper reading/discussions
‣ Group projects (3 people per group)
‣ Guest speakers.

‣ Grading
‣ 15% Paper Summaries and Class Discussion
‣ 15% Labs
‣ 70% Project

50

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Course Details
‣ Discussion section Fridays 2-3pm Fridays, 320 Soda.
‣ Very important for tips on doing the labs and project

‣ First lab assignment out tomorrow, due Tuesday Sept 8 (1.5
weeks).
‣ Lots of work, start early.
‣ You will need to get an named instructional account.

‣ Generally, you get 4 “late days” for lab assignments.
‣ No late days can be spent on the lab 1.

‣ Instructor office hours on the web.
‣ Lazzaro by appointment.

‣ Enrollment
‣ Undergrad: need to have taken cs150 (or equivalent) with B+ or

better.
‣ Grad: we assume you have taken undergraduate digital design. If not,

see us for remedial materials.

51

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

End of Introduction

52

IC Fabrication and
Layout Representation

“Mask” drawings sent to
the fabrication facility to

make the chips.

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Mask set for an n-Fet (circa 1986)

p-

n+

Vd = 1V

n+

Vs = 0V
dielectric

Vg = 0V

I ≈ nA #1: n+ diffusion

Top-down view:

Masks

#3: diff contact
#2: poly (gate)

#4: metal

Layers to do
p-Fet not shown.

Modern
processes have 6

to 10 metal
layers (or more)

(in 1986: 2).
54

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

“Design rules” for masks, 1986 ...

#1: n+ diffusion #3: diff contact
#2: poly (gate) #4: metal

Poly
overhang.
So that if
masks are
misaligned,

channel
doesn’t

short out.

Minimum gate length.
So that the source and
drain depletion regions

do not meet!

length

Metal rules:
Contact

separation from
channel, one fixed

contact size,
overlap rules

with metal, etc ...

55

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Fabrication

56

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Mask set for an n-Fet ...

p-

n+

Vd = 1V

n+

Vs = 0V
dielectric

Vg = 1V

#1: n+ diffusionTop-down view:
Masks

#3: diff contact
#2: poly (gate)

#4: metal

How does a fab
use a mask set to

make an IC?

Vg

Vd

Vs

Ids
I ≈ µA

57

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Start with an un-doped wafer ...

Steps

p-

#1: dope wafer p-

#5: place positive
 poly mask and

expose with UV.

UV hardens exposed resist. A wafer
wash leaves only hard resist.

#2: grow gate
 oxide

oxide

#3: deposit undoped
 polysilicon

#4: spin on
 photoresist

58

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Wet etch to remove unmasked ...

p-

oxide

HF acid etches through poly and oxide,
but not hardened resist.

p-

oxide
After etch and
resist removal

59

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Use diffusion mask to implant n-type

p-

oxide

accelerated donor atoms

n+ n+
Notice how donor
atoms are blocked
by gate and do not

enter channel.

Thus, the channel
is “self-aligned”,
precise mask

alignment is not
needed!

60

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Metallization completes device

p-

oxide
n+ n+

Grow a thick
oxide on top
of the wafer.

p-

oxide
n+ n+

Mask and etch
to make contact

holes

p-

oxide
n+ n+

Put a layer of
metal on chip.
Be sure to fill in

the holes!61

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

Final product ...

Top-down view:

p-

oxide
n+ n+

Vd Vs “The planar
process”

Jean Hoerni,
Fairchild

Semiconductor
1958

62

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

p-channel Transistors

63

CS250, UC Berkeley Fall ‘09Lecture 01, Introduction 1

p-Fet: Change polarity of everything

n-well
p+

Vwell = Vs = 1V

p+

Vd = 0V
dielectric

Vg = 0V

I ≈ µA

p-

New “n-well” mask

Vg

Vs

Vd

Isd

“Mobility” of
holes is slower
than electrons.

p-Fets drive less
current than n-

Fets, all else being
equal64

