Hardware Enclaves & Intel SGX

CS261
Hardware Enclaves

• HW abstractions for distributing trusted execution to untrusted platforms
Hardware Enclaves

• HW abstractions for distributing trusted execution to untrusted platforms
System Threats to Trusted Execution

- What can go wrong?
 - Side channels
 - out of scope for Intel SGX
 - Counterfeit software
 - Inject rootkits into OS
 - Privilege escalation
 - Install malicious kernel
 - Compromised HW devices
 - Cold-boot attacks
Threat Model of Hardware Enclaves

- Intel Attestation Service (IAS)
- Process
 - Enclave
 - Enclave Code
 - Enclave Data
 - Untrusted
 - Other Enclave
- OS and/or Hypervisor
- Off-chip devices
Elements of Hardware Enclaves

- Secure boot: HW-verified measurement + first instruction
- On-chip program isolation
- Cryptographically protected external memory
- Execution integrity; no interference from attackers
- Attestation and/or secret sealing
Enclave Creation with Intel SGX

- **ECREATE(SECS):**
 create an enclave range

- **EADD(SECS, addr, prot), EEXTEND(SECS, addr):**
 add a page to enclave and measure the content

- **EINIT(SECS, license):**
 check & initialize an enclave
Enclave Enter & Exit

- **EENTER(SECS, TCS):**
 enter at a static enclave addr

- **EEXIT(addr):**
 exit enclave to any addr

- Enclave can accept parameters after the entry

- Attackers cannot interfere control flow unpredictably
Enclave Isolation

Abort page semantic: EPC pages contains all 0s for execution outside the enclave
Memory Encryption Engine

• EPC pages are encrypted in DRAM

• Memory Encryption Engine (MEE) sits at the edge of CPU, connected to Memory Controller (MC)

• Cachelines are decrypted at cache misses, and re-encrypted when being written back to DRAM
Memory Encryption Engine

EPC (plaintext)

Enc (e.g., AES-GCM)

Cipher

MAC

Counter (nonce)

PROCESSOR

Root

56b

56b 56b ... 56b

56b

56b

8 56-bit nonces

Arity = 8
EPC Paging

• EPC pages are limited: currently 93.5 MB on each platform

• Untrusted OS swaps the pages for enclaves

• Swapped-out pages are not in EPC, so no longer protected by MEE
EPC Paging

- **EWB:** copy a EPC page to non-EPC page
- **ELDU:** copy a non-EPC page to EPC page
Execution Integrity

• Program states in either enclave memory or registers

• Enclave can be interrupted
 • Page faults (Paging)
 • Scheduling events
 • Exceptions or signals

• Interrupt \mapsto Asynchronous Exit (AEX)
 • Register values dumped inside enclave before exit
 • OS can only: (1) resume the enclave execution
 (2) re-enter enclave for exception handling
Attestation

• Proof that the program runs in a genuine enclave

• Each enclave has a set of unique keys
 • Report key – intra-platform (local) attestation
 • Attestation key – inter-platform (remote) attestation
 • Seal key – Sealing enclave secrets
 • Other keys – see Intel SDM

• Generated by a root secret (EPID) hidden in Intel CPU
 • Verified by Intel Attestation Service
Attestation Procedure

- CPU
- Quoting Enclave
- Enclave
- Remote Entity
- IAS

Attestation Key
Attestation Key (Only accessible in Quoting Enclave)

EREPORT
(Nonce, MR_{Quote})

Report, MAC_{Report}

EGETKEY(M_{R_{x}})

Report Key_{Quote,x}
Verify report

Certificate_{MR, Nonce}
Verify Certificate
Use Cases for Hardware Enclaves

• Digital Right Management (DRM)
• Computation outsourcing, NFV
• Distributed system, edge computing, blockchains
• Alternative to HME or MPC
• Protection for antivirus, JIT compilers, etc
• Used for concealing attacks
Questions?

Hardware Enclaves & Intel SGX