by Jon Bentley

programming
pearls

PROFILERS

A physician doesn’t feel dressed without a stethoscope,
and a true electrical engineer is never far from an oscil-
loscope. Both professionals know that they need tools
for studying the objects they manipulate.

What tools do you use to study your programs? So-
phisticated analysis systems are now widely available,
ranging from interactive debuggers to systems for pro-
gram animation. But just as CAT scanners will never
replace stethoscopes, complex software will never re-
place the simplest tool we programmers have for look-
ing inside our programs: profilers.

This column starts by using two kinds of profilers to
speed up a tiny program. The next sections sketch var-
ious uses of profilers and a profiler for a nonprocedural
language. The final section discusses building profilers.

Computing Primes

In this section we’ll start with a straightforward pro-
gram for computing prime numbers and use profilers to
decrease its run time. Although we’ll pretend that our
goal is to make a program faster, keep in mind that the
real purpose of this section is to illustrate profilers.

Program P1 is a C program’ to print all primes less
than 1000, in order. The prime function returns 1
(true) if its integer argument n is prime and 0 other-
wise; it tests all integers between 2 and n — 1 to see
whether they divide n. The main procedure uses that
routine to examine the integers 2 through 1000, in
order, and prints primes as they are found.

I wrote Program P1 as I would write any program,
and then compiled it with a profiling option. After the
program executed, a single command generated the
listing shown. (I have made minor formatting changes
to a few of the outputs in this column.) The numbers
to the left of each line tell how many times the line
was executed. They show, for instance, that main
was called once, it tested 999 integers, and found
168 primes. Function prime was called 999 times; it
returned one 168 times and returned zero the other
831 times (a reassuring quick check: 168 + 831 = 999).
It tested a total of 78,022 potential factors, or about
78 factors for each number examined for primality.

1 A few C-isms: The stat t i++ incr ts the integer i. The loop

for (i=2; i<t=n; i++) iterates i from 2 ton. The statement a=b assigns
the value of b to a; the expression a==b is true if the two variables are equal.
The expression a%b is the remainder when a is divided by b, so 10%7 is 3.
The print£ routine provides a formatted print statement.

© 1987 ACM 0001-0782 /87 /0700-0587 $1.50

July 1987 Volume 30 Number 7

prime(n)
int n;
{ int 1i;

999 for (i = 2; i < n; i++)
78022 if (n % i == 0)
831 return 0;
168 return 1;
}
main()
{ int i, n;
1 n = 1000;
1 ~ for (i = 2; 1 <= nj i++)
299 if (prime(i))
168 printf("%d\n", i);
}

PROGRAM P1. Compute Primes Less Than 1000

Program P1 is correct but slow: on a VAX-11/750% it
computes all primes less than 1000 in a couple of sec-
onds, but requires three minutes to find those less than
10,000. The profile shows that most of the time is spent
testing factors. Program P2 therefore considers as po-
tential factors of n only those integers up to Vn. (The
integer function root converts its integer argument to

VAX is a trademark of Digital Equipment Corporation.

root(n)
int n; ;
5456 { return (int) sqrt((float) n); }
prime(n)
int n;
{ int i;
999 for (i = 2; i <= root(n}; i++)
5288 if (n % i == 0)
831 : return 0;
168 return 1;
}
main()
{ int i, nj;
1 : n = 10003
1. : for (i = 23 i <= nj; 1++)
999 if (prime(i))
168 printf£{"%a\n", i);
} .

PROGRAM P2. Stop Test at Square Root

Communications of the ACM

587

Programming Pearls

floating point, calls the library function sqrt, then
converts the floating-point answer back to an integer.)

The change was evidently effective: the line counts
in Program P2 show that only 5288 factors were tested
(a factor of 14 fewer than in Program P1). A total of
5456 calls were made to root: divisibility was tested
5288 times, and the loop terminated 168 times because
i exceeded root (n). But even though the counts are
greatly reduced, Program P2 runs in 5.8 seconds, while
P1 runs in just 2.4 seconds (Table II contains more
details on run times). What gives?

So far we have seen only line-count profiles; a
procedure-time profile gives fewer details about the flow
of control but more insight into CPU time:

%time cumsecs #call ms/call name
82.7 4.77 _sqgrt

faster when n = 100,000. At n = 100,000, the procedure-
time profile shows that sqrt takes 88 percent of the
time of P2, but just 48 percent of the time of P3; itis a
lot better, but still the cycle hog.

Program P4 incorporates two additional speedups.
First, it avoids almost three-quarters of the square roots
by special checks for divisibility by 2, 3, and 5. {The
statement counts show that divisibility by two identi-
fies roughly half the inputs as composites, divisibility
by three gets a third of the remainder, and divisibility
by five catches a fifth of those numbers still surviving,)
Second, it avoids about half the remaining divisibility
tests by considering only odd numbers as potential fac-
tors. It is faster than P3 by a factor of about three, but it
is also buggier than its predecessor. Can you spot the
problem by examining the statement counts?

4.5 5.03 999 0.26 _prime . root(n)
4.3 5.28 5456 0.05 _root SRt s e ‘
2.6 5.43 _frexp 265 .. . { return (int) sqrt({float) mn); } .
1.4 5.51 __doprnt L BT E ke
1.2 5.57 _write primein) L0
0.9 5.63 mcount e 1nt n, SR
0.6 5.66 _creat o oriebes Ant L, ‘hound;
0.6 5.69 _printf (999 Lo nifAn X2 =200)
0.4 5.72 1 25.00 _main 500 e e retaen 040 0
0.3 5.73 _close 499 b b ndf M Ko ke 0)
0.3 5.75 __exit 167 . return 0;
0.3 5.77 _isatty 332 if (n % 5 ==0)
=67 Sl return 0;
. . . 5 o = H
The procedures are listed in decreasing order of run 26 : ‘bound ;= root(n); . .
. . . 3. . . 265 coifor {i =73 i <= bound; ‘i = i+2)
time; the time is displayed both in (cumulative) seconds 1530 if (n % i==0)
and as a percent of the total. The three procedures in 100 o return 0:
the source program (main, prime, and root) were , E R
1 . 165 ... return 1;
compiled to record the number of times they were oy :
called (it is encouraging to see the same counts once e
again); the other procedures are (unprofiled) library - main() oo
routines that perform miscellaneous input/output and otadnt i, omg
housekeeping functions. The fourth column tells the : e :’f‘ 2 1200"2. i e e
average number of milliseconds per call for all func- 999 ' or ff ; 5.1 (<')’)n, i++)
tions with statement counts. ' A% iprimetd ’
ons a . printf£("%d\n", i);

The procedure-time profile shows that sqrt uses the
lion’s share of CPU time.? It was called 5456 times,
once for each test of the for loop. Program P3 calls
that expensive routine just once per call of prime by
moving the call out of the loop. Program P3 is about
4 times faster than P2 when n = 1000 and over 10 times

2The December 1986 column discussed faster ways of computing square
roots. For computing primes and for many other programs, though, the way to
efficiency is not a faster square root routine but avoiding roots entirely.

prime(n)
int n;
{ int i, bound;
999 bound = root(n);
999 for (i = 2; i <= bound; i++)
5288 if (n % i == 0)
831 return 0;
168 return 1;
}

PROGRAM P3 (fragment). Compute Root Once

Communications of the ACM

165

}
PROGRAM P4 (buggy). Special Case for 2, 3, and 5

The previous programs found 168 primes, while P4
found just 165. Where are the three missing primes?
Sure enough, I treated three numbers as special cases,
and introduced one bug with each: prime reports that
2 is not a prime because it is divisible by 2, and simi-
larly botches 3 and 5. The tests are correctly written as

if (n % 2 == 0)
return (n == 2);

If n is divisible by 2, it returns 1 if # is 2, and 0 other-
wise. The procedure-time profiles of Program P4 are
summarized in Table L.

Program P5 is faster than P4 and also (and more im-
portantly) correct. It replaces the expensive square root
operation with a multiplication, as shown in this frag-
ment:

July 1987 Volume 30 Number 7

TABLE I. The Procedure-Time Profiles of Program P4

1000

10,000 39 19
100,000 .3 13
265 for (i = 7; i*i <= n; i = i+2)
1530 if (n % i == 0)
100 return 0;
165 return 1;

It also incorporates the correct tests for divisibility by 2,
3, and 5. The total speedup is about twenty percent
over P5.

The final program tests for divisibility by only inte-
gers that have previously been identified as primes;
Program P6 is on page 591, coded in the Awk lan-
guage. The procedure-time profile of the C implementa-
tion shows that at n = 1000, 49 percent of the run time
is in prime and main (the rest is in input/output),
while at n = 100,000, 88 percent of the run time is
spent in those two procedures.

Table I summarizes the programs we've seen.

It includes two other programs as benchmarks:
Program Q1 computes primes using the Sieve of Era-
tothenes sketched in Problem 2. Problem Q2 measures
input/output cost. For n = 1000, it prints the integers 1,
2, ..., 168; for general n, it prints the appropriate num-
ber of integers.

TABLE Il. Summary of Primality Programs

P1. Simple version - 24 169 ?

P2. Testonly up toroot 5.8 124 2850
P3. Computerootonce 14 ~ 15 = 192
P4. Specialcase2,3,5 . 05 57 78
P5. Replace root by * 03 35 64

P6. Test only primes 0.3 33 47 -
Q1. Simple sieve. - 0.2 120 - 104
Q2. Print1.P(n) . 0.t - 07 53

This exercise has concentrated on one use of profil-
ing; as you’re tuning the performance of a single sub-
routine or function, profilers can show you where the
run time is spent. In his literate program in this Commu-
nications (see “Further Reading”), Hanson uses a profiler
to tune a program that is a couple of pages long.

Using Profilers

Profilers are handy for small programs, and indispen-
sable for working on large software. Brian Kernighan
used a line-count profiler on a 4000-line program that
had been widely used for several years. Scanning the
75-page listing showed that most counts were in the
hundreds and thousands, while a few were in the tens

July 1987 Volume 30 Number 7

Programming Pearls

of thousands. An obscure piece of initialization code,
though, had a count near a million. Kernighan changed
a few parts of the six-line loop, and thereby doubled
the speed of the program. He never would have guessed
the hot spot of the program, but the profiler led him
right to it.

Kernighan's experience is quite typical. In a paper
cited under “Further Reading,” Don Knuth presents an
empirical study of many aspects of Fortran programs,
including their profiles. That paper is the source of the
often quoted (and more often misquoted) statement that
“less than 4 per cent of a program generally accounts
for more than half of its running time.” Numerous stud-
ies on many languages and systems have shown that for
most programs that aren’t input/output bound, a large
fraction of the run time is spent in a small fraction of
the code. This pattern is the basis of testimonials like
the following:

In his paper, Knuth describes how the line-count profiler
was applied to itself. The profile showed that half of the run
time was spent in two loops; changing a few lines of code
doubled the speed of the profiler in less than an hour’s work.

The February 1984 column describes in detail how Chris
Van Wyk sped up a 3000-line program by 55 percent in a
few hours. The profile showed that 70 percent of the run
time was spent in the storage allocator; 20 lines of code fixed
the problem.

In 1984 Tom Szymanski of Bell Labs put an (intended)
speedup into a large system, only to see it run ten percent
slower. He started to remove the modification, but then en-
abled a few more profiling options to see why it had failed.
He found that the space had increased by a factor of twenty;
line counts showed that storage was allocated many more
times than it was freed. A single instruction fixed that bug.
The correct implementation sped up the system by a factor
of two.

Profiling showed that half of an operating system’s time
was spent in a loop of just a few instructions. Rewriting it in
microcode made it an order of magnitude faster but didn’t
change the system’s throughput: the performance group had
optimized the system’s idle loop! (I have heard several ver-
sions of this charming story, but I can’t find a precise refer-
ence. [would appreciate more any information from readers;
anonymity is guaranteed.)

These experiences raise a problem that we only
glimpsed in the last section: on what inputs should one
profile a program? The primality programs had the sin-
gle input n, which nonetheless strongly affects the time
profile (input/output dominates for small n, while com-
putation dominates for large). Some programs have
profiles quite insensitive to the input data; I'd guess
that most payroll programs have pretty consistent pro-
files, at least from February to November. The profiles
of other programs vary dramatically with the input;
haven’t you ever suspected that your system was tuned
to run like the wind on the manufacturer’s benchmark,
while it crawls like a snail on your important jobs?
Take care in selecting your input mix.

Profilers are useful for tasks beyond performance. In
the primality exercise, for instance, they pointed out a
bug in Program P4. Line counts are invaluable for eval-
uating test coverage; zero counts, for instance, show

Communications of the ACM 589

Programming Pearls

untested code. Dick Sites of Digital Equipment Corpora-
tion describes other uses of profiling: “(1) Deciding what
microcode to put on chip in a two-level microstore im-
plementation. (2) A friend at Bell Northern Research
implemented statement counts one weekend in a real-
time phone switching software system with multiple
asynchronous tasks. By looking at the unusual counts,
he found six bugs in the field-installed code, all of
which involved interactions between different tasks.
One of the six they had been trying (unsuccessfully) to
track down via conventional debugging techniques, and
the others were not yet identified as problems (i.e., they
may have occurred, but nobody could attribute the
error syndrome to a specific software bug).”

A Specialized Profiler

The principles of profiling we’ve seen so far apply to
languages ranging from assemblers and Fortran to Ada.
But many programmers now work in more powerful
notations; how should we profile a computation in Lisp
or APL, or in a network or database language?

We'll take UNIX® pipelines as an example of a more
interesting computational model. Pipelines are a se-
quence of filters; data is transformed as it flows through
each filter. In the June 1986 column, for example, Doug
Mcllroy described this pipeline for printing the 25 most
common words in a document, in decreasing fre-
quency.?

cat $+ |
]

tr -cs A-Za-z ‘\012’ i
tr A-Z a-z |
sort |

uniq -c |
sort -rn |
sed 25qg

I profiled Mcllroy’s pipeline as it found the 25 most
common words in thirteen Programming Pearls col-
umns. The first six lines in the output were:

3463 the
1855 a

UNIX is a registered trademark of AT&T Bell Laboratories.

* This version is changed just slightly from Mcliroy’s. The seven filters have
the following tasks: {1) Concatenate all input files. (2) Make one-word lines by
transliterating the complement (—c) of the alphabet into newlines (ASCIH octal
12) and squeezing out (~s) multiple newlines. (3) Transliterate uppercase to
lowercase. (4) Sort to bring identical words together. (5) Replace each run of
duplicate words with a single representative and its count {—c]). (6) Sort in
reverse (—r) numeric (—n) order. (7) Pass through a stream editor; quit (q) after
printing 25 lines.

1556 of
1374 to
1166 in
1104 and

..

The profile of the computation is presented in
Table III. The left parts describe the data at each stage:
the number of lines, words, and characters. The right
parts describe the filters between the data stages: user,
system, and real times (all in seconds) are followed by
the command itself.

This profile provides much information of interest to
programmers. The pipeline is fast; 3.5 minutes of real
time for 150 book pages is moving right along on a
VAX-11/750. The first sort consumes 57 percent of the
run time of the pipeline; that finely tuned utility will
be hard to speed up further. The second sort takes only
14 percent of the pipeline’s time, but is ripe for tuning.*
The profile also identifies a little bug lurking in the
pipeline; UNIX gurus may enjoy finding where the null
line was introduced.

The profile also teaches us about the words in the
document. There were 57,651 total words, but only
4731 distinct words. After the first transliteration pro-
gram, there are 4.3 letters per word. The output showed
that the most common word was “the”; it accounts for
6 percent of the words in the files. The six most com-
mon words account for 18 percent of the words in the
file; special-casing the 100 most common words in En-
glish might be an effective way to speed up a word-
count program. Try finding other interesting factoids in
the counts.

Like many UNIX users, I had previously profiled
pipelines by hand, using the word count (wc) command
to measure files and the time command to measure
processes. The “pipeline profiler” that produced
Table IIl automates that task: its takes as input the
names of a pipeline and several input files, and pro-
duces the profile as output. Two hours and fifty lines of
code sufficed to build the profiler. The next section
elaborates on this topic.

Building Profilers

Building a real profiler is hard work; a colleague re-
cently spent several weeks of effort spread over several
* The second sort takes 25 percent of the run time of the first sort on just

8 percent of the number of input lines—the numeric flag is very expensive.

When I profiled this pipeline on a single column, the second sort was almost
as expensive as the first; the profile is quite sensitive to the input data.

TABLE Hl. Profile of Mcliroy’s Pipeline

- lines words chars -
g times .
;19717 /59701 342233 14.4u 2.3s 18r tr -cs A-Za-z \012

p7652 57651 304894 1‘?.911 2.2s 15r ”tr A-Z a-z

57652 57651 304894 104.9u 7.5s 123r sort

57652 57651 304894 24.5u 1.6s 27r uniq -c

#731 2461 61830 27.0u 1.6s 31r sort -rn

4731 9461 61830 0.0u 0.2s Or sed 25q
25 50 209

Communications of the ACM

July 1987 Volume 30 Number 7

months building one of production quality. This section
describes how a simple version can be built much more
easily.

Dick Sites claimed that his friend “implemented
statement counts one weekend.” I found that pretty
hard to believe, so I decided I'd try to build a profiler
for Awk, an unprofiled language that I use frequently.
A couple of hours later, my profiler produced the out-
put shown in Program P6. The number in angle brack-
ets after a left curly brace tells-how many times the
block was executed; fortunately, the counts match
those produced by the C line counter.

function prime(n, i) { <<<998>>>
for (i=0; x[i]l*x[i]<=n; i++) { <<<2801>>>
if (n % x[i] == 0) { <<<831>>>
return 0
}
}
{ <<<167>>> }
x[{xc++] = n
return 1
}

BEGIN { <<<1>>>
n = 1000
x[0] = 2; xc =1
print 2
for (i = 3; i <= n; i++) { <<<998>>>
if (prime(i)) { <<<167>>>
print i
}
}

exit

PROGRAM P6. Check Only Primes, Coded in Awk

My profiler consists of two five-line Awk programs.
The first program reads the Awk source program and
writes a new program in which a distinct counter is
incremented at the start of each block; all counters are
written to a file at the end of execution. When the
resulting program runs, it produces a file of counters.
The second program reads those counters and merges
them back into the source text. The profiled program is
about 25 percent slower than the original, and not all
Awk programs are handled correctly (I had to make
one-line changes to profile several programs). But for
all its flaws, a couple of hours was a small investment
to get a prototype profiler up and running. (Details on
a similar Awk profiler can be found in Section 7.2
of The Awk Programming Language by Aho, Kernighan,
and Weinberger, published by Addison-Wesley
in 1987.)

Quick profilers are more commonly written than
written about; here are a few examples:

July 1987 Volume 30 Number 7

Programming Pearls

e In the August 1983 BYTE, Leas and Wintz describe a
profiler implemented as a 20-line program in 6800
assembly language.

e Howard Trickey of Bell Labs implemented function
counts in Lisp in an hour by changing defun to in-
crement a counter as each function is entered.

e In 1978, Rob Pike implemented a time profiler in
20 lines of Fortran. After CALL PROFIL(10),
subsequent CPU time is charged to counter 10.

On these and many other systems, it is possible to write
a profiler in an evening. The resulting profiler could
easily save you more than an evening’s work the first
time you use it..

Principles

This column has only scratched the surface of profiling.
I've stuck to the basics, and ignored exotic ways of
collecting data (such as hardware monitors) and exotic
displays (such as animation systems). The message of
the column is equally basic:

Use a profiler. July is Profiler Month; please profile at
least one piece of code in the next few weeks. Remem-
ber, a programmer never stands as tall as when stoop-
ing to help a small program.

Build a profiler. 1f you don’t have a profiler handy, fake
it. Most systems provide basic profiling operations; pro-
grammers who had to read console lights 25 years ago
can get the same information today from a graphics
window on a personal workstation. A little program is
often sufficient to package a system’s instrumentation
operations into a convenient tool.

Problems

1. Suppose the array X[1 .. 1000] is sprinkled with
random real numbers. This routine computes the
minimum and maximum values:

Max := Min := X[1]

for I := 2 to 1000 do
if X[I] > Max then Max :
if X[{I] < Min then Min :

X[1]
X[1]

Mr. B. C. Dull observed that if an element is a new
minimum, then it cannot be a maximum. He there-
fore rewrote the two comparisons as

if X[I] > Max then Max := X[I]
else if X[I] < Min then Min := X[I]

How many comparisons will this save, on the aver-
age? First guess the answer, then implement and
profile the program to find out. How was your
guess?

2. The following problems deal with computing prime
numbers:

a. Programs P1 through P6 squeezed two orders of
magnitude out of the run time. Can you wring
any more performance out of this approach to
the problem?

Communications of the ACM

591

Programming Pearls

3.

b. Implement a simple Sieve of Eratosthenes for
computing all primes less than n. The primary
data structure for the program is an array of
n bits, all initially true. As each prime is discov-
ered, all of its multiples in the array are set to
false. The next prime is the next true bit in the
array.

c. What is the run time as a function of n of the
sieve in part b? Find an algorithm with running
time of O(n).

d. Given a very large integer (say, several hundred
bits), how would you test it for primality?

A simple statement-count profiler increments a
counter at each statement. Describe how to de-
crease memory and run time by making do with
fewer counters. (I once used a Pascal system in
which profiling a program slowed it down by a fac-
tor of 100; the line-count profiler I used in this
column slows down a program by a few percent.)

A simple procedure-time profiler estimates the time
spent in each procedure by observing the program
counter at a regular interval (60 times a second on
my system). This information tells the time spent in
each part of the program text, but it does not tell
which procedures called the time hogs. In his pro-
gram cited under “Further Reading,” Hanson uses a
profiler that gives the cost of each function and its
dynamic descendants. Show how to gather more
information from the run-time stack to allocate
time among callers and callees. Given this data,
how can you display it in a useful form?

Precise numbers are useful for interpreting profiles
of a program on a single data set. When there is a
lot of data, though, the volume of digits can hide
the message in the numbers. How would you dis-
play the line-count profile of a program {or a pipe-
line) on 100 data sets? Consider especially graphical
displays of the data.

Program P6 is a correct program that is hard to
prove correct. What is the problem, and how can
you solve it?

Further Reading

Don Knuth’s “Empirical Study of FORTRAN Pro-
grams” appeared in Software—Practice and Experi-
ence 1in 1971 (pp. 105-133). Section 3 on “dy-
namic statistics” discusses both line-count and
procedure-time profilers, and the statistics they
were used to gather. Section 4 tunes seventeen
critical inner loops, for speedup factors ranging
from 1.5 to 13.1. I have read this classic paper at
least once a year for the past decade, and it gets
better every time; I can’t recommend it too
highly.

A new section on “Literate Programming” de-
buts in this issue of Communications. I expect that
most readers of this column will enjoy most liter-
ate programs and their reviews. This month’s of-

Communications of the ACM

fering is particularly juicy: David Hanson uses a
profiler to produce a rock-solid and efficient pro-
gram for computing common words in a file, and
John Gilbert eloquently and insightfully compares
Hanson’s approach to Knuth’s and Mcllroy’s solu-
tions in the June 1986 “Programming Pearls.”

Solutions to June’s Problems

2.

In Section 3.9 of their Unix Programming Environ-
ment (Prentice-Hall, 1984), Kernighan and Pike
present a program named bundle. The command

bundle filel file2 file3

produces a UNIX shell file. When executed, it
writes copies of all the files in the bundle.

The problem asked for a self-reproducing program:
one that prints exactly its source text when exe-
cuted. Such a program exists in any universal
model of computation; the proof of that fact uses
the Recursion Theorem and the s-m-n Theorem of
recursive function theory. Hackers have long de-
lighted in writing self-reproducing programs in real
languages; Fortran and C seem to be particularly
popular. (I recently marveled at a 356-character
self-reproducing palindromic C program written by
Dan Hoey.) The problem becomes much easier if
you allow the program to self-reproduce on the
error output. If you start with a small file (say, the
single word “junk”), and then iteratively feed the
error messages produced as input back to the com-
piler, the process usually converges quickly.

The UNIX file system does not classify files by type,
but several programs use the contents of files as an
implicit self-description. The £ile command, for
instance, examines a file and guesses whether

the comments represent ASCII text, program text,
shell commands, etc. In their book cited above,
Kernighan and Pike present a program called
doctype that reads a text file and deduces what
language processors need to be run on it.

Examples of name-value pairs include PL/1’s GET
DATA statement and Fortran’s NAMELIST input.
Arrays and functions both map names to values.

A general principle states that the output of a pro-
gram should be suitable for input to the program.
This is especially important for programs that are
pipes and in window systems that allow output to
be selected and entered as input with a few mouse
motions.

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room 2C-317,
600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

July 1987 Volume 30 Number 7

