Introduction

Virtual memory is one of the major concepts that has
evolved in computer architecture over the last decade.
It has had a great impact on the design of new computer
systems since it was first introduced by the designers
of the Atlas computer in 1962. A virtual memory is
usually divided into blocks of contiguous locations to
allow an efficient mapping of the logical addresses into
the physical address space. In this paper, we are con-
cerned with paging systems, that is, systems for which
the blocks of contiguous locations are of equal size.
The memory system consists of two levels: main memory
and auxiliary memory. The occurrence of a reference to a
page that is currently not in main memory is called a page
fault. A page fault results in the interruption of the pro-
gram and the transfer of the referenced page from
auxiliary to main memory.

Since main memory has only a limited capacity, pages
already in main memory must continually be removed
to make room for pages entering from auxiliary memory.
Decisions as to when and what pages are to be removed
from main memory are critical for the efficient operation
of the system. The replacement algorithm is that part of
the system which makes those decisions. The objective
of a replacement algorithm is twofold. First, it is to keep
those pages in main memory that are currently being
used. This is necessary to keep the page fault frequency
as low as possible. Second, the replacement algorithm
is to free page frames as soon as there is a low proba-
bility that they will be referenced in the near future. This
is a requirement for the efficient utilization of main
memory by all processes.

In this paper, we first describe the behavior of several
measured programs in terms of their stack distance
probabilities and program reference patterns. Next, we
describe the page-fault-frequency (PFF) replacement
algorithm and its performance when operated in a uni-
programming and a multiprogramming environment.
Finally, the implementation of the PFF replacement
algorithm is discussed.
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Measurement of program behavior

In order to measure dynamic program behavior, an
interpreter was developed for the UCLA Sigma-7 time-
sharing system. This interpreter is capable of executing
Sigma-7 object programs by handling the latter as data
and reproducing a program’s page reference string. The
page size of the Sigma-7 timesharing system is 512
32-bit words. The page reference string can then be used
as input to programs which simulate various types of
replacement algorithms. For convenience in presenta-
tion, we let the time required for 1000 page references
correspond to one millisecond.

Four different programs of various characteristics were
interpretively executed. A Fortran program and a Fortran
compiler (Fortcomp) were chosen as representatives for
programs with small localities.* A Meta7 compiler and a
DCDL compiler represent programs with large localities.
Meta7 translates programs written in Meta7 to the
assembly language of the Sigma-7. The DCDL (Digital
Control and Design Language) is written in Meta7. It
translates specifications of digital hardware and
microprogram control sequences into machine code. To
illustrate the behavior of these programs, Figures 1a and
1b display the stack distance frequencies as defined by
Mattson et al.! The frequent occurrence of large stack
distances (20 and more) for Meta7 and DCDL indicates
that the localities for these programs are larger than the
localities of Fortran and Fortcomp.

Table 1 shows some characteristic properties of these
programs. The column “size” is divided into two parts.
“Static” refers to the number of pages sy necessary to
store the program as an executable file on a disk where
one page consists of 512 32-bit words. “Dynamic” indi-
cates the number of different pages r( actually referenced
while processing the given input data. There are two
reasons why ry is not equal to sg: first, not all the

*Locality is defined as a subset of program’s segments (in
pages) which are referenced during a particular phase of its
execution.

29




FREQUENCY

(@

FREQUENCY

(b)

Figure 1.

30

102

103

10

10°6

103

104

108

106

F T T T T T T ]
\!
L \\ .
d - 3
o L‘ ]
: "\ ]
- \ 4
)
| \ .
\ ‘\
LAY
~ vea META7 =
o v \ 1 / ]
- V p
[ (g ]
- ‘ -
\’\‘

\ i

\
N \ ] _
F FORTRAN “ 3
i | .
L { 1
R \ .

)
5 \ J
\
| I | ] LV
10 20 30 a0 50 60

STACK DISTANCE

70

T T T TTTTTT

=/— DCDL
\ FORTCOMP

1 L aaand Il Lol

L g al

1

10 20 30 40 50 60
STACK DISTANCE

Stack distance frequency for the four measured

70

programs: (a) Fortran and Meta7; (b) Fortcomp and

DCDL.

TABLE 1. Characteristics of measured programs.

SIZE NUMBER OF
PAGE
PROGRAM STATICs, DYNAMICr, REFERENCES
FORTRAN 24 38 4,870,000
FORTCOMP 24 39 3,810,000
DCDL 44 71 3,010,000
META7 84 165 2,590,000

pages which make up the program may be referenced
while processing a particular set of input data; second,
a number of data pages are created and accessed during
execution to provide for working storage space, buffer
areas, etc.

The number r is of special interest because it is equal
to the minimal number of page faults which will be
incurred by every replacement algorithm based on demand
paging. Actually, r, page faults will occur even if not a
single page is replaced. In this case, all page faults are
caused by the very first reference to a page. Figures 2a-d
display the reference patterns of the sample programs.
The horizontal axis represents virtual processing time
measured in units of 50,000 page references, while the
vertical axis represents the virtual memory space at
512-word resolution. The dark areas show what pages
have been used during a given time interval. This
reference pattern illustrates the sudden change of pro-
gram behavior as observed during the execution of the
program. We notice that the Meta7 compiler has more
sudden changes of referenced pages than the other three
measured programs.

The page-fault-frequency replacement
algorithm '

Description of the PFF algorithm.? An “ideal” replace-
ment algorithm should not make use of prior knowledge
about program behavior; instead, all of the informa-
tion needed to assure efficient memory allocation should
be gathered during program execution.

The page-fault-frequency algorithm uses the measured
page fault frequency as the basic parameter for the
memory allocation decision process. In general, a high
page fault frequency indicates that a process is running
inefficiently because it is short of page frames. A low
page fault frequency, on the other hand, indicates that a
further increase in the number of allocated page frames
will not considerably improve the efficiency and, in fact,
might result in waste of memory space. Therefore, to
improve system performance (e.g., the space-time product)
one or more page frames could be freed.

The basic policy of the PFF algorithm is: whenever
the page fault frequency rises above a given critical
page fault frequency level P, all referenced pages which
were not in the main memory—therefore causing page
faults—are brought into the main memory without replac-
ing any pages. This results in an increase in the number
of allocated page frames, which in turn usually reduces
the page fault frequency. On the other hand, once the
page fault frequency falls below P, those page frames
which have not been referenced since the last page fault
occurred are freed. The same operation will be repeated
whenever the page fault frequency rises above P again.
Thus the PFF replacement algorithm provides very fast
response to a sudden increase or decrease in memory
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Figure 2. Reference patterns of the (a) Fortcomp program,
(b) Fortran program, (c) DCDL program, and (d) Meta?
program.

requirements. The PFF parameter P = 1/T is measured
in the number of page faults per millisecond (1 msec = 1000
page references), where T is the critical interpage fault
time.* The reciprocal of the interpage fault time is used
as a running estimate of the page fault frequency. We
note that T is somewhat similar to the working set
parameter 7. However, there is an important difference.
While 7 indicates when a page should be freed, T
represents only a lower limit. Furthermore, in contrast
to the working set algorithm, T ® page frames in the main
memory are only freed at the time of a page fault.
Therefore, the time at which a page frame is freed
depends not only on 7 but also on the page fault
frequency. The PFF replacement algorithm may therefore
be considered as a working set algorithm with variable 7,
where the value of 7 is determined by the page fault
frequency and the lower limit of Tis T = 1/P. The PFF
algorithm may also be viewed as a LRU replacement
algorithm with variable size memory allocation where the
size is determined by 7 and the interpage fault times.

Performance of the PFF algorithm.

Performance measures. The page fault frequency and
the space-time product are commonly used measures for
the study of the performance of replacement algorithms.
In the following we shall define these performance
measures.

For a given page reference string w and a given replace-
ment algorithm the page fault frequency fi is defined
as the ratio of the number of page faults during process-
ing w to the total number of references in c:

flw) =7/,
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*A variation of the PFF algorithm is to use several neighbor-
ing interpage fault times to estimate the current page fault
rate. Because of the adaptive nature of the PFF algorithm,
our study of this modified scheme did not show improvements
in performance over the PFF algorithm reported here.

+This is, of course, only true for the strict implementation of
the working set algorithm which has been simulated.
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where r is the total number of page faults and ¢ the total
number of page references.

Another parameter to measure performance is the space-
time product which can be considered as being propor-
tional to the cost of storage. Belady and Kuehner*
define the space-time product C during the real-time

interval (0, t) as
C= XS(z) dz, (1)

where S(z) is the amount of storage occupied by the process
at time z. The real-time occupancy of information in main
memory can be much longer than the virtual processing
time. This occurs because of multiple processes being
multiprogrammed and because of page-wait times. In a
uniprogramming environment, only page-wait times need
to be considered.

If we consider the execution of a program as a dis-
crete process, the integral in (1) can be replaced by a sum
which consists of two parts. The first part is the space-
time product due to the virtual processing, while the
second part is due to the total page-wait time. Thus the
space-time product C can be rewritten as

t r
C= 2Sle+ Zsti.f_]‘R'Tm’ (2)
=1 i=1

where t is the total number of references; r the total \

number of page faults; S; the number of allocated page
frames prior to the ith reference (i is called the number
of the reference); T}, the access time of main memory or
the time of one page reference (10—3 msec); ¢; the number
of the reference which causes the ith page fault (since
we do not preload any pages t; = 1); S;;+1 is therefore
the number of page frames which are allocated during
the ith page-wait time; and R is the speed ratio of a
particular combination of auxilitary and main memory.

SinceXi—; Sy+1 * Ty and Z;=; S;Ty, are independent
of R, C is a linear function of R. If we know C for
R =0 and C for another R (0< R< ), then we can com-
puteZ_; S; 4+, ° Ty, from (2), and thus C for any R for
0<R<ee,

Performance of the PFF algorithm in a uniprogramming
environment. Measurement results from simulation of the
PFF Algorithm for four different programs reveal that
the performance (in terms of space-time product) of this
algorithm is better than the performance of the best
LRU replacement algorithm' (for which the optimal
memory allocation that yields minimum space-time prod-
uct is known a priori), and is comparable to the working
set replacement algorithm (Figures 3a and 3b).? Further,
the performance is relatively insensitive to changes in
the PFF parameter P as shown in Figure 3b.

In Figure 4, the number of allocated page frames is
displayed as a function of virtual processing time. As can
be seen, the memory allocations for the four programs are
quite different, and the number of allocated pages varies
during execution, particularly for Meta7 and Fortran.
This clearly demonstrates the adaptive capability of the
PFF algorithm. The area below the four curves corre-
sponds to the space-time product due to virtual processing
time. For simplicity in representation, only major changes
in the number of allocated page frames are indicated in
Figure 4. Nevertheless, the figure shows clearly that the
majority of page faults which resulted from changes in
program locality occurred during relatively short time
intervals.
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Performance of replacement algorithms with different
page sizes.® To study the effect that changing the page
size has on the performance of a replacement algorithm,
we again use reference strings as input to the programs
which simulate various types of replacement algorithms.
For the recording of reference strings of page sizes smaller
than 512 words, we partition the address space into page
sizes less than 512 words.

Our study reveals that for the LRU replacement algo-
rithm, the influence of page size on the page fault
frequency is highly dependent upon the size of the
allocated memory space. If the program is forced to run in
a relatively small memory (compared with the total
number of referenced pages) the page fault frequency is
smaller for small page sizes. If enough space is available
so that only a few replacements are to be made during
processing, this relationship is reversed and the page

-fault frequency is mainly determined by the number of

references pages. But this number is clearly smaller for
large page sizes (Figure 5a). This empirical observation
has been recently verified theoretically by Fagin and
Easton.® The space-time product for all page sizes depends
critically on the size of the allocated space. The minimum
space-time product for B = 10,000 tends to be smaller
for large page sizes, and the minimum space-time product
for small page sizes occurs at a smaller memory size than
the minimum space-time product for the larger page sizes.

For the PFF replacement algorithm, larger page sizes
yield lower page fault rates than smaller page sizes
(Figure 5b). The space-time product for the larger page
sizes is always lower than that of the smaller page sizes
if the critical interpage fault-time T is relatively small.
As T increases, the large page sizes do not necessarily
yield the best performance (Figure 5¢). In general the
performance of the PFF replacement algorithms does not
change as drastically with the page size as it does in
the case of the LRU algorithm.

For the larger page sizes and R = 10,000, the perform-
ance of the PFF replacement algorithms (in terms of the
space-time product) is better than the performance of the
LRU algorithm.

As the speed ratio R decreases (which is the current
trend), small page sizes gain more performance improve-
ment than large page sizes. For example, if R is decreased
by an order of magnitude, the performance of small page
sizes is already much better than that of large ones. For a
more detailed discussion of this topic, the interested
reader should refer to the work of Chu and Opderbeck.*

An analytical model for the PFF algorithm. The per-
formance of a replacement algorithm depends largely on
the behavior of the running program, which for our pur-
poses, will be described by its reference strings. These
reference strings can be obtained in two ways. First, a
program is interpretively executed and its reference string
is recorded; simulation techniques are used usually to
evaluate replacement algorithms as discussed in previous
sections. Second, the reference string is generated by a
model of program behavior. In this case, the reference
string is only described in terms of its statistical
properties, These properties are then used to evaluate the
performance of replacement algorithms, thereby con-
siderably decreasing the overall effort in terms of cost
and time. For this purpose, we use the LRU stack
model’ for representing program behavior, and we use a
semi-Markov model for modeling the PFF algorithm. The
LRU stack model is based on the memory contention
stack generated by the LRU algorithm. To represent
a program by this model, we assign to each position of
the stack a time-invariant fixed probability. At any time,
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Figure 3. Performance comparisons between (a) the LRU and PFF algorithms and (b) the working set and PFF algorithms.

the stack position of the next reference is chosen with
this probability. If stack position j is chosen; the page
in that position is moved to the top of the stack. The
pages at stack positions 1 through j — 1 are pushed
down one position.. The consecutive stack positions are
chosen independently of each other.

To represent the PFF replacement process, we let the
number of allocated page frames represent a state in the
page replacement process. Thus, if the page replacement
process is in state j (0< j <M ), then j page frames are
allocated, where M is the maximum number of pages
that can be stored in the memory system. Since the
number of allocated page frames (state) can only be
changed at the time of a page fault, the page replacement
process makes a transition whenever a page fault occurs.
Since there is a finite but variable holding time (the
number of pages referenced since the last page fault)
associated with each state, we have to use a discrete
time semi-Markov process to represent the PFF replace-
ment process.

For the detailed development of the analytical model,
the interested reader should refer to the work of Chu and
Opderbeck.® Here, we shall provide the allocation state
distributions (the number of pages allocated in the memory)
of the Fortcomp and Meta7 programs for the PFF algo-
rithm which were computed from the analytical model.
We notice that the allocation state distribution is
asymmetrical. Further, as the PFF parameter decreases,
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the mean of the allocation state increases, and its variance
decreases as shown in Figures 6a and 6b.

Next we validate the analytical model by comparing
the predicted page fault frequency and space-time product
with that of measurement results. The measurement
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Figure 4. Dynamic changes in memory allocation of the PFF
algorithm.
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results were generated by using the page reference string
as input to a program which simulated the PFF replace-
ment algorithm. These results, as shown in Figures 7 and
8, reveal that the analytical model provides a good predic-
tion of the performance for the PFF algorithm. We notice
that the analytical model yields a better prediction for
the Fortcomp program than for the Fortran program.
This is mainly due to the more sudden {nonstationary)
changes in the number of allocated pages for the Fortran
program when compared with the Fortcomp program
(see Figures 2a and 2b).

Application of the semi-Markov model for simulating
the PFF algorithm. In a multiprogramming environment,
we would like to study the interaction of various processes.
Simulation based on every memory page reference
becomes so costly as to be prohibitive. Since the PFF
algorithm changes the allocation state only at the time of
a page fault, we can estimate the interpage fault time by
taking a random sample from the interpage fault time
distribution. Simulating the replacement algorithm per-
formance based on interpage fault time greatly reduces
the simulation time. Further, if the sampled interpage
fault time is less than the critical interpage fault time T,
we increase the allocation state by one and no further
computation is required. According to the PFF algorithm,
all the pages that have not been referenced since the last
page reference will be released. Therefore we must use
the semi-Markov model to calculate the distribution of
the number of distinct pages being referenced since the
last page fault. For more detailed discussion on the model
the reader should refer to the work of Chu and Opderbeck.?

Since the page fault rate of a system is around 10—4,
simulation of page fault events rather than simulation of
each page reference represents a reduction of 104 events.
Because we need to compute the number of distinct pages
being referenced since the last page fault for an interpage
fault time greater than T, the computation for the simu-
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lation of one event is about ten times more costly than
that of the simulation of a single page reference.
Therefore, simulation based on page faults rather than
every page reference represents a reduction of 103 in
computation time.

We have used the semi-Markov model in studying the
performance of the PFF algorithm in a multiprogram-
ming environment (results will be presented in the next
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analytical model prediction (solid line) and measure-
ment (dashed line) for the PFF algorithm.
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section). For simulating 1000 page faults for a given set
of parameters, the required computation time is less than
one minute on the IBM 360/91 system at a cost of about
$20. Using the semi-Markov model to estimate analytically
the number of distinct pages being referenced during the
page fault interval permits us to evaluate the perform-
ance of the PFF algorithm based on the page fault
intervals. As a result, we were able to complete our
study with about two hours of computation time. Had we
used every page reference in our simulation, it would
have required about 2000 hours of computer time and
the cost would have become prohibitive.

Performance in a multiprogramming environment. In a
multiprogramming environment, the obvious advantage
of the fixed storage partitioning (e.g., LRU) scheme is its
easy implementation. The dynamic storage partitioning
scheme (e.g., PFF), on the other hand, is more flexible.
The number of allocated page frames may grow and shrink
according to the dynamically changing memory require-
ments. Coffman and Ryan® used a mathematical model of
locality to compare the two methods of storage partition-
ing. They report that the total memory size required for
the dynamic partitioning scheme can be up to 30% less
than that required by the fixed method for a given per-
formance level if the variations in working set sizes are
relatively large.

For the fixed storage partitioning scheme, new processes
are usually started when a block of memory becomes free.
For the dynamic storage partitioning scheme, on the other
hand, a new process is not automatically started after
the termination of a process. There is a separate activa-
tion decision which depends on the current state of the
system. Further, a process may be deactivated when the
pool of available page frames is empty and an additional
page frame is demanded by some process.

Activation and deactivation policies. It is a well-
known fact that when a process is first started, it rapidly
demands page frames. At least some of these page
frames should be available in the pool of available page
frames. We therefore define a critical pool size N, such
that no new process is activated unless the current
number of page frames in the pool of available page
frames is greater than or equal to N,. Once the new
process is started, it demands page frames and thereby
reduces the size of the pool. If the size of the pool drops
below N, , no new processes are started. We also define
a critical activation time interval 7, such that a process
is only activated if the current virtual processing time
of the most recently activated process is at least T,.In
short, a new process is activated if and only if the size of
the pool of available page frames is greater than or equal
to N, and the current virtual processing time of the most
recently activated process is at least T, . Neither of these
activation decisions require prior knowledge about program
behavior.

If the pool of available page frames is empty a process
must be deactivated. We studied the following five types
of deactivation:

Typel: the process that demands the additional page
frame (and thereby initiates the deactivation) is
deactivated;

Type2: the process which the currently smallest number
of allocated page frames is deactivated;

Type3: the process with the currently largest number
of allocated page frames is deactivated;

Type 4: the process with the currently smallest virtual
processing time is deactivated; and

Type5: the process with the currently largest virtual

processing time is deactivated.
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We also studied the case where the least recently used
page of the page faulting process is replaced. For nota-
tional consistency, we shall call this a Type 0 deactiva-
tion.

Note that none of these deactivation types requires
prior knowledge about program behavior. They are there-
fore in agreement with our general philosophy: memory
allocation and process scheduling should not depend on
information which is provided from outside (e.g., the user);
instead, the system should gather all the information
needed for scheduling dynamically during the execution,

In a multiprogramming environment, the performance
measure we use is throughput, which measures the number
of processes completed per unit of time. Qur studies
reveal that the performance of the PFF algorithm is rather
insensitive to the values of the parameters of the activa-
tion policies. Among the deactivation policies, we found
the deactivation of the process with the currently smallest
virtual processing time (Type 4) to be a good deactiva-
tion rule. If this deactivation type is chosen, then usually
that process is deactivated which has been started most
recently (and is still collecting the pages for its initial
working set). This policy appears to be a good deactiva-
tion rule. Our observation is supported by the good results
for deactivation of type 2, i.e., the deactivation of the
process with the currently smallest number of allocated
page frames, since the process with the smallest number
of page frames is in many cases the one which has been
started most recently. For further detailed information,
the interested reader should refer to the work of Opderbeck
and Chu.® '

Throughput comparisons between the LRU and the PFF
algorithm. In our study, we used a mixed system of pro-
grams, i.e., a system with a mixture of Meta7-like and
Fortcomp-like programs, as our workload. We associate
with each process which is about to be started a probability
@ that it is a Fortcomp-like program and a probability
of 1 — a that it is a Meta7-like program. For the LRU
replacement algorithm, a process is started whenever
one of the equal-sized memory blocks becomes free. For
the PFF replacement algorithm, the starting of a new
process is determined by the activation policies. Thus,
neither algorithm assumes any knowledge about the type
of the started process.

The most important overhead function of the PFF algo-
rithm is the handling of page faults. Let ¥ be defined as

_ overhead per page fault (PFF algorithm)
overhead per page fault (LRU algorithm)

Since the overhead for page fault handling is directly -
proportional to the average number of page faults per
process, we can determine the throughput for all values
of 7 from a single simulation experiment.

Figure 9 displays the throughput for such a mixed sys-
tem with a mix ratio @ = 0.5. The results for the mixed
system are similar to those for systems with Meta7-like
or Fortcomp-like programs only. The PFF algorithm
gives a much better throughput between 60 and 100 page
frames than the LRU algorithm for any degree of multi-
programming. The degree of multiprogramming for the
LRU algorithm must be chosen very carefully since too
large a number of processes may drastically decrease the
performance, whereas too small a number of processes
results in inefficient use of system resources. For example,
for 120 page frames the throughput for two processes is
about 32% better than the throughput for one process.
For 80 page frames, on the other hand, the throughput
for one process is more than 32% better than the through-
put for two processes. The optimal degree of multipro-
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Figure 9. Throughput comparison between LRU (solid lines)
and PFF algorithm (dashed lines).

gramming that yields maximum throughput is therefore
an important design parameter for the LRU algorithm.
The determination of this number is complicated by the
fact that different programs usually have different
memory requirements. Therefore this optimal number
is usually a function of the current load of the system.
For the PFF algorithm, because it is a dynamic memory
management policy, the number of optimal degree of
multiprogramming varies by its activation and deactiva-
tion policies and is adaptive to the current load of the
system.

The results for the execution of single programs (Fig-
ures 3b and 5b) showed that the page fault frequency
and the space-time product are rather insensitive to
changes of the critical interpage fault interval T if T is
sufficiently large. It was pointed out that this is an
appealing feature of the PFF algorithm since it alleviates
the problem of selecting an “optimal” interpage fault
interval for implementation. For the same reason it is
important to determine how the throughput of a multi-
programming system depends on the choice of the critical
interpage fault interval. Therefore we repeated the previ-
ously described simulation experiment for a given memory
size and varied the critical interpage fault interval from
10 to 100 msec. Figure 10 shows the throughput as a
function of the critical interpage fault interval.

We observe that the throughput is very insensitive
to changes of the critical interpage fault interval T for T
greater than 30 msec. The throughput decreases for small
values of 7. This decrease corresponds to the increase in
the average page fault frequency and the space-time
product we observed for single programs when T is very
small.
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Implementation of the PFF replacement algorithm

In this section, we describe the implementation of the
PFF algorithm and the handling of modified (dirty) pages
and shared pages. Associated with each page, there is
a page status bit which designates whether that page
has been modified. Further, each activated process has
its own USE-BIT table to record the used page of that
process during an interpage fault time.

We need only a clock in the CPU to measure the
process (or virtual) time between page faults of every
process.  The current process time of each process is
recorded in the process’ statusword. The page table entry
can be used to determine which pages are residing and/or
have been modified in the main memory. For those
paging systems that have a USE-BIT feature, this
feature can be used to determine those pages which have
been referenced during the time interval since the last
page fault occurred for a process. When the PFF algo-
rithm operates in a multiprogramming environment, each
process is assumed to have its own USE-BIT table.
Whenever a page fault occurs in the ith process, the
supervisor determines whether the process i is operating
below the critical page-fault-frequency level P. For this
purpose, the time of the last page fault has to be stored.
If the last page fault occurred more than T = 1/P msec
ago, the supervisor examines the USE-BITS of all the
activated processes as well as the page status bits to
determine those pages of the ith process that have been
neither shared nor modified since the last page fault. The
supervisor then releases these pages from the main
memory and resets their USE-BITS for the ith process.
If the process is operating above the critical page-fault-
frequency level P, no page frames are freed, and the refer-
ence page is added to the main memory. However, if there
are no page frames available, then the supervisor accord-
ing to the deactivation rule determines which process to
deactivate. Again, by examining the USE-BITS of all
the active processes as well as the page status list, the
supervisor determines the set of pages of the deactivated
process that can be released from the main memory and
then resets the USE-BITS of that process. Whenever
the pool of page frames reaches a level at which a new
process can be activated, a new process is activated, its
pages are bought into the main memory, and the USE-
BITS of that process are reset.

Let us now consider the overhead of the above men-
tioned operations. We know that:

(1) The total overhead is proportional to the number of
page faults. Since the PFF algorithm assures a low page
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fault frequency, the overhead for handling page fault is
simple, therefore, the overhead is low.

(2) Due to sudden changes of program localities, the
virtual processing time between page faults is very short
in many cases (see Figure 4). Whenever the time between
page faults is less than 7' = 1/P, no page frames are freed
and therefore there is no overhead involved in the
“‘decrease decision” in these cases.

(3) The activation and deactivation rules do not require
prior knowledge of program behavior and their overheads
are very low. Comparing their implementation costs with
the corresponding costs for the LRU and working set
algorithm, we notice that the PFF algorithm is simple and
is easier to implement, and requires less overhead to
operate than the LRU and the working set algorithm.

In the PFF algorithm, increased or decreased page
frames only occur when page fault occurs. Should a
process operate in a loop many times, and all the refer-
enced instructions and data be within the allocated pages,
the interpage fault time could be exceedingly long. There-
fore some of the nonreferenced pages of that process might
not be released from the main memory. This problem
can be dealt with in the following way: When the pool of
available page frames becomes empty, the supervisor
interrupts the active processes whose interpage fault
interval exceeds the maximum interpage fault time, then
releases these page frames that have not been referenced
since the last page fault, and rests the USE-BITS as if a
page fault had occurred.

Conclusion

The major purpose of this study was to gain insight
into the behavior of programs in a paged memory system,
to develop models of program behavior, and to use these
models for an overall system evaluation. It was shown
that the interaction between program behavior and
memory management is very important for the efficient
operation of a paged memory hierarchy. Therefore memory
management policies which automatically adapt to program
behavior should have great potential for the design of
future computer systems. This is particularly true of the
page-fault-frequency replacement algorithm, since it is
relatively easy to implement.

We have shown that the PFF algorithm allows the
number of allocated pages frames for a process to grow
and shrink according to the dynamic changing memory
requirements of the running program. The degree of multi
programming varies by its activation and deactivation
policies and adapts to the current system load. Therefore
the PFF algorithm is less sensitive to changes of program
behavior and in many cases gives a better performance
(throughput) than the LRU replacement algorithm. Of
course, all these comparisons were based on simulations
and analytic studies with simulated system load. We still
have to test the PFF algorithm in a more realistic
environment. However, our results suggest that the PFF
algorithm should be implemented.* An implementation
would then clearly show what the benefits of such a
dynamic memory policy are. B
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