Marginalia

More on randomness

Mark Kac

A variation of the old saying ““ars longa vita brevis” is
applicable to randomness, and I could probably devote
many more columns to exploring the various aspects of
this fascinating subject. But life being short and the pa-
tience of my readers limited, this discussion will have
to do for the foreseeable future.

Let me begin by considering an innocent-sounding
problem. A chord is chosen “at random” in a circle of
radius R. What is the probability that it is shorter than
the side of an equilateral triangle inscribed in the circle
(i.e, RV/3)?

Here is a solution. A chord is determined by its two
endpoints, one of which, A, may as well be fixed. Taking
A as one of the vertices of the inscribed equilateral
triangle, we easily determine the other two, B and C, by

this construction:
’ A
B ’

C

in which the arcs AB, BC, and CA are each subtended by
an angle of 120°. For a chord with one of its endpoints
at A to be shorter than (R1/3), the second endpoint must
be chosen on either the arc AB or the arc CA. It thus fol-
lows almost at once that the desired probability is 2/3.
Neat and simple. -
Unfortunately there is another solution which is
equally neat and simple. We begin with the observation
that a chord is completely determined by its center C. All
one has to do is to connect C with the center of the circle,
O, and draw a chord through C which is perpendicular

to this line:

It is clear that for the chord to be shorter than (R+/3) its
center C must lie outside the circle with the same center
O as the original one but with half the radius (R/2). Since
the area of the annulus between the two circles is 3/4 of
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the area of the bigger circle, the desired probability is
3/4.

Which of the two answers is correct? Mathemati-
cally both are. The difference is due to different inter-
pretations of the phrase “at random.” In the first case it
is assumed that all endpoints of the chord (one endpoint
having been chosen and fixed) are uniformly distributed
on the circumference of the circle; in the second case the
assumption is that the centers of the chords are uni-
formly distributed throughout the interior of the
circle.

All the example shows is that the phrase “at ran-
dom” does not have an absolute meaning. And yet when
Bertrand discussed this problem in a book based on his
lectures at the Sorbonne (1) it caused a mini-crisis in
probability theory and became known as the Bertrand
paradox.

While from a mathematical point of view there is
no paradox nor in fact any difficulty, a question may be
raised as to whether there is an empirical way of deciding
which of the many answers (there are infinitely many
ways of defining “at random,” each yielding an answer
of its own) is the “right” one.

This is not a well-defined question until one knows
something about the empirical device which is used to
draw the chords “at random.” An analysis of such a de-
vice will (we hope!) lead us to the proper interpretation
of the phrase “at random” and allow us to calculate the
desired probability, which can then be compared with
an appropriate frequency derived from empirical
data.

Now, however, one may become embroiled in
questions such as: Should the device which draws chords
“at random” be itself in some sense “random”? And if
s0, how can one tell whether it is indeed “random’”?
These questions have already been considered in an
earlier column (Am. Sci. 71:405-06), and I am only re-
peating them in a different context. We are, in short,
back to the initial question: What is random?

Iwish I could follow Mark Twain’s advice to tell the
truth, thereby “gratifying some and astonishing the
rest,” but I cannot, because the question as posed has no
answer. Rather than engage in a lengthy (and futile)
discussion of the semantics of randomness I will con-
sider an example which might help to clarify the subtle

" and hitherto unresolved (perhaps even unresolvable)

issues.

The example is an experiment first suggested in
1914 by the great Polish physicist Marian Smoluchowski,
who had worked out the theory behind it. Smolu-
chowski’s suggestion was taken up by several investi-
gators, but I shall refer specifically to Kappler’s experi-
ment of 1931 because his paper (2) includes a number of
excellent reproductions of the results.

The experiment consisted of observing the motion
of a tiny mirror suspended on a quartz fiber in a vessel
containing air. By a simple and ingenious method it is
possible to magnify the deflections of the mirror, con-
verting the angular displacements into linear ones and
photographing the results. A 30-second tracing obtained
in this way is reproduced in Figure 1. One cannot fail to
be impressed by such an ad oculus demonstration of the
existence of molecules, for if it were not for molecules
of air hitting the little mirror “at random” the tracing
would have been purely sinusoidal.
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Figure 1. By recording the deflections of a mirror suspended from
a quartz fiber in a vessel containing air, Kappler arrived at a
.pictorial representation of the “random” collisions of molecules
of air with the mirror. However, a pattern indistinguishable from
this “random” one can be produced by a purely deterministic
procedure. The two patterns will yield the same results when
analyzed statistically. (After Kappler 1931.)

It is also difficult to escape the feeling that in look-
ing at Kappler's tracing one is in the presence of chance
incarnate and that the tracing could have been produced
only by a random mechanism. Indeed, Smoluchowski’s
theory, so completely confirmed by Kappler’s experi-
ment, was based on the assumption that the mirror is hit
“at random” by molecules of air. But the phrase “at
random” is only a mathematical camouflage for the rules
of calculating the statistical properties of the motion of
the mirror. These rules must, of course, be consistent
with the mechanism of the collisions between the mol-
ecules and the mirror, and therefore the arbitrariness of
“at random” in Bertrand’s example is absent in this case.
But there are still no grounds for concluding that the
molecular bombardment is in some operationally de-
finable way “random.” It couldn’t be, because the mol-
ecules, the mirror, the quartz fiber, and the walls of the
container form a dynamical system which, as long as we
stay within the realm of classical physics, is subject to
purely deterministic laws. There just isn’t room for
chance or randomness or any such concept, and it is still
a largely unresolved question why statistical methods

in the dynamics of many-body systems are so suc-
cessful.

Worse yet, it is possible to make a perfect “coun-
terfeit” of Kappler’s tracings if one knows Smolu-
chowski’s theory and the pertinent physical parameters
(the moment of inertia of the mirror, the temperature,
and so on) of the experiment. The theory predicts that
the displacement of the mirror is what is called a sta-
tionary Gaussian process. Such a process is determined
by its so-called covariance function and this function is
also given by the theory in terms of the pertinent
physical parameters. Now, if I have this information I
can choose a sequence of numbers A;, Ay, A3, ..., and a
“scale” a such that where n and ¢ are sufficiently large
the graph of the function

cosAit + coshat + ...+ cosA,t
Xn(t) = 00— N ’

will be indistinguishable from a typical Kappler tracing
of the same duration. Not only will this graph look like
the “random” tracing in Figure 1, but when it is
subjected to the same statistical analysis it will yield the
same results (3). The moral should be abundantly clear:
given a Kappler tracing and a graph of a properly pre-
pared x,(t) there will be no way to tell which one was
produced by molecular shocks and which one was con-
trived with malice aforethought by the author of this
column. So what is random?
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“You can’t imagine how tight our budget is. We can only work
with single-digit numbers.”
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