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In particular,

” A Mby
N _pm__ A MOy
| wamia) = =B~ ey o
Aaba(1 =) - Niby (Aec)”
+MA~ [V»Q_VHA_ - V—Qav»c l.?u&svnl. A?»Qp?»&»v»_
o Nwe.} ” A "m
and \.. o AWy (z) = B{P 2L 22 2 (92)
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where the quantities on the right-hand side are given above.

NOTE
Tnr quevina process discussed in this paper has previously wca-_”_mimm:.
gated by B. Avi-Itznax, W. L. Z.>x€§.?.>2c L. W, .Z.F_.Er ,:s.«
used intuitive methods. In this paper a simple and rigorous .Eoe_:i iy
n?m: Avi-Ttzhak, Maxwell, and Miller have found an explicit mo.qn_:_:
for the expeeted waiting time. Their formula and formula (91) in the

present paper are in agroement. However, it would be interesting to cal-
culate also the higher moments by using both methods and make com-

parisons.
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Bounds are found for various measures of performance in eertain ¢lasses of
the GI/G/1 queue. - First, the mean wait in queue is found in terms of the
menan and variance of the interarrival, service, and idle distributions.
Bounds on the idle time moments lead to bounds on the mean wait and num-
ber in queue. The interarrival time distribution is then assumed Lo have
mean residual life bounded nhove by 1/x (A =arrival rate); i.c., given o time
¢ since the last arrival, tho expeeted time to the next arrival is no more than
1/x. With this assumption the menn number in quene (nnd hence system)
is bounded to within (1--p)/2 customers. Both upper und lower hounds
are tight. The stronger nssumption that, given time ¢ since the last arrival,
the probability an arrival occurs in the next Af is nondecreasing in ¢, leads
to bounds on the mean queue length to within (ea+0)/2, where ¢, is Lhe
coeflicient of variation of the arrival distribution. Again the bounds are

tight. Specializing to tho D/G/1 queue the mean queue lengih is found to
within p/2<Y4 customer.

ITTLE work has been done on approximations in queuing.  Iimphasis

has been on complex analytic results. Notablo exeeplions are papers

by Kinaman®" and recently by Newerr.™ The paper by Newell is

upplied primarily to traffic light problems, whereas Kingman’s is more
closely related to this paper.

PART 1, SOME RESULTS AND BOUNDS FOR ALL Gl/C/lI QUEUES

Some new results are found for various indicators of performance in the
G1/@/1 queue. Bounds that are easily calculable are found for such jtems
13 the expected wait in queue, expected length of an idle period and the
variance of interoutput times,

We find a relation between the idle time between busy periods and the
waiting time of a customer in queue. The expected wait in queue is found
interms of the first two moments of the interarrival, service, and idle times.
For Poisson arrivals the idle time distribution is exponential, and the ex-
pected wait is calculated easily. In general, the moments of the idle
distribution are difficult to calculate. However, an upper bound for all

1 This paper is based on part of a Ph.D. dissertation submitted to the Depart-
ment of Industrial Engineering and Operations Research at the University of Cali-
fornin, Berkeley, September 1066, This research was supported by the Office of

Naval Research under contract Non-r-222(83), and by the Army Research Office,
Durham, under contract DA-31-124-ARO-D-331.

651



652 K. T. Marshall
G1/G/1 quenes is easily found in terms of the mean and variance of the
arrival and service streauns only (sec also Kingman®¥). A lower bound 1.
found that requires knowledge of the arrival and service distributions, and
not just the first two moments. In the derivations FIFO order of service
is assumed, but with the exception of the variance of the wait all resulty
are independent of this assumption.

Notation .

We shall deal exclusively with stationary queues in this paper, by whiclk
we shall mean that the queuing process either started at time zero with
stationary conditions or that it started with some initial condition (such
as the wait in queue of the first customer is zero) but that time was at — =,
Hence Wa~W (@) for all n.

The following notation is used throughout the paper. The sign ~ i
used to signify ‘with distribution function.’

"The subscript n (e.g., W) refers to the nth customer in a stationary
stream. When it is not required to note the order of the customers the
subscript will be dropped.

T,=time between nth and (n--1)th arrival, Th~A (¢), E[T\]=1/\.

S, =service time of nth customer, S,~G (), E[S.]=1/u.

Up=8,=Ts, Ui~K ().

.= time belween nth and (n-+1)th departure.
p=Nu. .
W, = wail in quete of nth customer, W,~W (1). .
I =length of idle period between busy periods, I~I1(¢).
B=1ength of busy period, B~B (¢). .
1t is possible in some queuing situations that an arrival and service can
take place together, leading to problems in defining what is an idle period
for the queue. We shall define P[I=0]=0, and thus if an arrival occurs al
the instant the last customer present departs, the busy period continues,
and ends only when the facility is empty for a positive length of time.
Nu=number served in g busy period.
D=total delay in system=W-+8, D~W* (1),
N,=number in the queue at a random point in time.
»\™ = nth moment about origin of random variable with distribution F.
The superseript is dropped for n=1, e.g., v=1/\, »,= 1/p,
w=EI]. ,,
o =variance of o random variable with distribution I
¢/ =07/ (v)’, where ¢, is the cocflicient of variation.
ap=P[Arrival finds the system empty]=DP[Wa.+ U.<0}t
F°(t)=1-F (t) for any distribution I, |
{ Note that ap= P{W,=0] only if P[W,+U,=0] A=0. This is not necessarily the
case in this paper as is pointed out in the discussion of the idle time above.
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The Wait in Quene and the Idle Period

Some relations between the moments of the arrival, service, idle, and
waiting time distributions are now found. We have the well-known equa-
tion

Wap=max{0, W,+4U,]. (1)
lLet Xp=-—minl0, W,4+U,]. Hence
Was—Xo=W,+U,, )
where X, >0=X,=1. Taking expectations in (2) (with p<1) we have
all=1/A=1/u. 3)

This result is given in Rice® and Riorpan.”  The result holds for more
gencral queues than the GI/G/1, but this fact will not be used in the
remainder of this paper.

As examples, for Poisson arrivals ay= (1—p) and the idle distribution is
exponential with mean 1/, T'or the constant arrival, constant service
case (D/D/1 queue) ap=1 and I'=1/A—1/p.

An expression is now derived for the expected wait in queue.
TaroreM 1. For all GI/G/1 queues with p<1,

EIW]={B{U*)/—2B[UY —{E[I*)/2E(1})

=N (o o)+ A=p) /2N (A =p) =020 (1)
Proof. Square both sides of (2) and note that W, 1 X.=0, giving
Wik X =W 4 2W, U+ UL

.

Taking expectations, since W, and U, are independent,
and . EIX. ) =aok[I7,

we have aB[1%)=2B[UJE[W |+ E[U.".

Using (3) the result follows. e

It is interesting to note the special way in which the moments of the
idle distribution occur. [v”/2w] is the mean of an equilibrium excess idle
distribution, that is, it is the mean of a random variable with distribution

{function
trye
\ H'(u) .
0

Vi

This is a well-known result in rencwal theory (see, for example, reference 1).
Consider again our two examples. For Poisson arrivals 2 /2m=1/\.
In this case (4) reduces to
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BIW)=p(1+¢,")/2u(1=p),
a well-known result.  For the D/D/1 queue oo=0,=0 and
W= (m)'= (1/A=1/n),
in which case (4) reduces to E[WV]=0.

An expression for the variance of the wait is now found in a similar

manner and is given by . o
TuroneM 2. For all GI/G/1 queues with p< 1, and FIFO order of service,

oul= [BIU")/ — SE[UN + [EU")/ ~ 2BV + [ EU /3B — EU)/2BUT),
or o= (O = v +3 (pr” =1 N/B(1—p)

I (o) + (1= p)) 2 A=) ey
where ota=n /3m— [ /2nl.

Proof. Write (2) as Wan—Xa=Wut+Ua and cube both sides. Note
that XoWan=WiuX.=0. Using (3) and (4) after taking expectations
the result follows. ,

It has been assumed in the above proofs that the necessary moments
exist. Equation (18) in Part 2 shows that a sufficient condition for this
to be true is that the first three moments of A (t) and G (1) exist.

The expression for the expected wait is of particular interest in queuing
and it is scen to depend only on the first two moments of the interarrival,
service, and idle distributions. In general these idle period moments are
difficult to caleulate but bounds will be obtained for them in later sections

of this paper.

®)

The Variance of the Output

It is obvious that Elra]=E[T.J=1/\ The variance is found as fol
lows. Since rn=Sns+Xn, Susty X independent, .

varfr,] = var[Snul+varXa). ©)

From (2) , .

var[W a1 — Xl =var{Dn—Ts]= vt o, 0w @
But : 4

vor[Wapn—Xal= oot var[X]—2cov (WasXn). 8)
Now Wa41Xa=0 and hence,

cov (WapXn)=—E[W](1/\— 1/u).
Using this with (6), (7), and (8) gives
varlra]=oo 420, — (2/N) (1 —p) E[W]. )

-l

.

1
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Using equation (4) for E:S wo have finally,
var (ra) =, = [(1=p)*/214+-{ (1= p) N (" /). (10)

_,...2.. the M/G/1 queue this gives var(r.)=o,+[(1—p")/N], so that the
variance of Em output of the M/Q/1 queue is known exactly when the
mean and variance of the service distribution are given.

If G(t) is exponential, o, =1/x" and var(r,)=1/\%
In the case of constant arrivals, constant service, ¢,"=0 and var(r.)=0.
Some Bounds for All G1/G/1 Queues

Using erm.wmm::m of S.S previous sections, ‘some simple bounds can be
3&& for various factors in the GI/G/1 queue, such as the mean length of
an idle period and the mean wait in queue.

(8) The mean idle time. Since a;<1, (3) immediately gi
bound. on the mean length of an idle period, cly gives & lower
Bz QA/N)—(1/w).

The bound is tight for the D/D/1 queue.

(b) The wait in queue. TFrom equation (4) usi :
it follows that a (4) using (11) and var{l}20,

(11)

EW])2Noa’+0,%)/2(1—p). (12)

‘ ,;.mm upper bound for all GI/G/1 queucs is also derived by Kingman, **!
“quality holds for the D/D/1 queue.

, The importance of these bounds is that they involve at most only the
first two Ec:.o_;m. of the arrival and service distributions and further
knowledgo c.m the distributions is not required. HHowever, il K (¢) is known
_Aoq alternatively if 4 (¢) and G(t) are known) a lower bound on the wait
in queue can be found as follows.

TugoreM 3.  Let I be a solulion of

T= \.. awmag du, 220,  where (8n—Tw)~K (1)

which exist : S .
0 MS Mws.m s and s unique if and only if p<1. Then for all GI/G/1 queues,

Proof. TRecall the fundamental .macpaoz (1)
.ﬁ\ﬂ\3+n = ggnﬁon gﬁl—l qau.
Then ;
[Wusn|Wa=a]=max[0, z+ U],
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and BV, V=)= \ K)de ol 20, (13)
Now let

\ls?;?& du=g(x),

which is a continuous convex function for 220, with ¢ (¥)=K°(=z), s
K0 =g¢"(07)= '[U,>0] and g (x)—-1lasx—o. Let

0
—B=Emin(O, U)l=[ K (u) du

and w=E[max (0, Un)]= h K° (u) du.

Then

a=p=(1/p)= (1/N).
Trom (13)

.@:«\s._.L“ c!QA.dv QS\...AHV.

or .Nb.ﬁ—&\?.*uu “E—Q A—ﬂ\quv—.

Using Jensen’s inequality for the expected value of a convex function of u
nonuegative random varinble,

%\.:\—\: ...L W ] Qﬂz\:_ v.

s0 that
-]

pwiz [ Ko du. (130)

Elw)
Yonsider the equation

2= K () du, (x20)  (14)

-

This can he written

(z=0)

0
z=a+ [ K(u)du

The situation is drawn in En.. 1. 'The equation has a solution if and onb
if the two curves cross. If =0, =0 is n solution; if >0 the curves crox
if and only if for x sufficiently large,

0 0
z>at ,xhﬁ:v due=| K(u) du>e,
or if and only if f>a But >« if and only if 1/A>1/p.  Uniquene

comes from convexity arguments. Uniqueness fails only when the tw
. . ! o« s . ’
curves coincide over some range, (a, blsay. Thisimpliesg (x)=K"(—2):
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lon la @l“vs\ r)=1 O .ﬁ @ )= ves 0b Cross case p
cmﬁrﬂw—.—nzno ._Wc:.:.mm v - 4= ~. ) vltvczu.. N .—c n ‘ S1'0OSS. H: r—:— tas vd
‘9

an infinite number of solutions exist with p=1

So for p<1, let ! be the unique solution of (14). It is now shown that

3

0
y=a + [ K (u)du
-X

£ >

Fig. 1. Determination of the lower bound on the wait in queue

ISE[W]. ‘This is obvious from Fi , .
- : 5 OPOVIOU ig. 1 and equations (13
=0 the incquality is trivial. IfI> 0, then >0 and mOnA s:vcwgm AA w O

0
r<at 3 Kf(u) du

from the uniqueness property of 1. Hence, if E[W]<!, then
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pwi<| K

®lw}

which contradicts (13a) and the theorem is proved.
Summarizing, we have shown that for all GI /G/1 queues with p<1

IS E[W] 2N (o' +0,")/2(1—0), (15)
where [ is the unique solution of (14). Tor oo +o, >0 (i.e., all except the
D/D/1 queue), both bounds tend to infinity as 1/A=>1/p>0. However,
their ratio may diverge in a particular case as is shown below for the case of

the M /M /1 queue.
Tor the Poisson arrival, exponential service queue it is found that

k@)= Qw/p4N)e™ (tz0)
= (\w/utr)e™, (ts0)
which gives :
K°(t)=[o/ (1+p)le™ (t=0)
=1-[1/(1+p))e". (t<0)

Using this in (14) it is found that the lower bound for this case is given
by:

1= — (1/M)log,(1—p"),  which—> o agp=>1".

Iowever, it is cagy to show that lim,.,- (1—p)log.f1/(1—p")}=0 and
hence, the bounds diverge. The upper and lower bounds and true value of
F[W] are shown in Fig. 2 for fixed A=1 and varying u.

(e) The variance of the oulpul. The variance of the output distribution
is given in equation (9). Using arguments gimilar to those in (b) the fol-
lowing upper and lower bounds are found for all general arrival, gencral
service single channel queues,

oS <§TLMQ=»+w§»im~C\>I#\5. , (16)
where ! is the solution of equation (14).

PART 2. BOUNDS FOR TWO SUBCLASSES OF G1/G/1 QUEUES

in Panrt 1 it was seen that the moments of the idle time distribution oc-

curred in many of the expressions. ‘The idle time distribution is some com-
plicated tail distribution of an interarrival time and it might be conjectured

that by placing some restriction on the interarrival time distribution one |

might obtain some desirable properties of the moments of the idle period
regardless of the service distribution, This indeed turns out to be true.
Three restrictions on A (1) will be applied in turn in increasing order of
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_ strength. - In the following definitions and in the remainder of this paper

MWM _m\%_i_m ioowmpmmcmw and ‘increasing’ are used in the weak sense They
h always be read to mean nonincreasin ing

! . . g and nondecreasin eC-
tively, EE. will be given the symbols | and T. Mxvnomwmo?,w S ymbals
and s.o.&m n parentheses should be read together. v
Definition 1. A nondiscrete &ms.mvcaoz F has its mean residual life

symbols,

10

sl .

6
e[w]

4 .

UPPER BOUND
> TRUE E[w]
LOWER BOUND
0
] i
° 0.2 0.4 06 o8 1.0
P

Fig. 2. Bounds on the expeeted wait in the M/M /1 queune,

hounded above (below) by v, denoted y-MRLA ?L_& RLB) if and only if

“F(u) du <
T (2)Y A =0,

where  y<oo,

Definition 2. A nondiscrete distributi

. g on I has d i i i

mean residual life, denoted DMRL (IMRL), if and Mwﬂmﬁ_sm (inereasing)

YF(u) du |
¢ Ie(e) Aj

Definition 8. A nondiscrete distributi i
: 3. ibution F' has increasing (d i
hiilure rate, denoted IFR (DFR), if and only if, for any >V%. (docrensing)

forall - 120 F(t)>0,
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P a+A)=F @)/ O forall  t20  where  F°(t)>0.

Definitions corresponding to these can be given for F' discrete, but to sim-
plify the notation and avoid repetition we shall usually assume that F is
nondiscrete. We always assume that F (07)=0.

These concepts are widely used in reliability theory where strong physi-
cal justifications ean be given for their use in particular problems. In
queuing an IFR orrival distribution would have the following physical
interpretation. Given it has been a time ¢ since the last customer arrived,
the probability that a customer arrives in the next small interval A is in-
creasing in {. Besides any physical justification many paramectric families
have this property; for example the gamma and Weibul distributions in
certain parameter ranges, and the truncated normal and modified extreme
value distributions. The degenerate distribution of the constant arrival
queuc also has the IFR property. It is easy to show that for FF (1),

IFR (DFRY=DMRL(IMRL)=sv;~ MRLA (v~ MRLB).

For a fuller discussion on these properties the reader should consult
Chap. 2 of R. E. BArrow Anp T. Proscran."

For va— MRLA/G/1 queues, (that is, the class of @I/G/1 queues whose
arrival distributions have the vo—MRLA property) it is shown that simple
expressions can be obtained to bound, for example, the expected number in
the queue to within at most one customer. These bhounds involve only the
mean and variance of the arrival and service streams. For the special
class of D/G/1, (constant arrival, general service), the expected number in
the queue is bound to within at most one half.

Some Properties of the Idle Time Distribution

In this section three theorems are proved that give some useful proper
tios of the idle distribution. These are used in the next seetion to bound
certain measures of performance in various classes of queues.

Turorem 4. Vor the class of GI/G/1 queues where A (1) has y-MRLA
(y-MRLB), denoted y-MRLA /G/1 (y-M RLB/G/1) queues,

n2ns (2 ). oan

Equality holds when A (t) is exponential and v=1/\.

Before proving this theorem we relate the distributions of idle time and
interarrival time, as these relations play a key role in the proofs of all three
theorems in this section. Throughout this section the integrals are le
besque-Stieltjes integrals. :

In the third scetion of Part 1 we defined X,= —min[0, W,+U, ), and
noticed that if X»>0 then X,=1I. If X,=0 an idle period does not occur 3

i publication discussions with the referees has lead to a cleare
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i ,
“ after customer n. Henee 7 is only defined on that part of the sample space

c:*s%e_esif?.i.a:zaa9 ..
; “n k# »,;‘Q O: A n ..
For any i=0 <¢ on positive values.

PXp>t)=P[Ty— (Wa+8,)>1]

H‘\c A (t+zx) dW,* ().
Since we are nssuming stationarity,

H°(t)=P[X>1|X>0] =P[X>1]/Plx>0],
or H@W=M [ A(+a) aw(a), (18)
where the normalizing constant
—1 ° c
M H\.H A°(y) dW*(y) =ay.

Proof of Theorem 4. Using (18) we have

.\,smaé:v &:HE‘\.S\”\%?;AS dW*() -du

ﬁa\s.\o, .\.. A’(utx) du-dW*(z),

since the integrals converge absolutely. Making a change of variable and

multiplying numerator and denomi o il . ¢
o nominator of the right-hand side by A°(t+.)

.\“:A:v &:HE\.. A'(t4-2) _A() dv-dW *(x)

vis AT 2)
A wvé \_. A(t4-2) dW*(z)

ftom the y-MRLA (v-MRLB) assumption. Hence

t The author is indebted to WirLiam 8. Jewrri for this: approach. Pre-

0 . . ﬂ i
derivation of (18) for which the author is grateful. In na_.o._.ﬂw.wwsmpwom.m%h..wwm

spproach ig taken and a different representation of H(2) is

1 bluined, namely He(@) = [ AU+

e &en«y where  ®(1) is

the distribution of total del ; i i
i indeyion of te 265%\ Msx of the last customer in a busy period. The author

i erees for showing the equivalenc
tations, which, it is underst i : Ath more ¢ o ﬁ_mmo of (18) in
. s:.:..ec 26.2:8_.. rstood, will appear together with more discussion of (18) in
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all =0,

\s::?v du < ~I°(1)
¢ A W v 14
and integrating over ¢ on both sides proves the theorem.
Punouwsm 5. For the elass of GI/G/1 queucs where A(:) has DMRL
(IMRL), denoted DMRL/G/L (IMRL/G/1) queues,

<

“H(z) do = “A°(x) dx
v H(1) (2) A1)

Equality holds when A (1) is exponential.

Proof. 'The proof is essentially the same as that in Theorem 4, but
applying the DMRL (IMRL) assumption. Details are left to the reader.
Tugorem 6. For the class of GI/G/1 queues where A (1) has IFR (DFR),
denoted IFR/G/1 (DFR/G/1) queues,

() [H(+A)—H@)I/H )2 (2)[AW+2)—AWD)/A° (1) for A>0, and
all 120 where finile,

14D

i) H@/AOLD)  all 120,
(iii) \smng@wv\sﬁmv% all 120,

e

When A (L) is cxponential (1) and (iti) are equalitics and the ratio (i) i
equal lo 1.

Proof. () Using (18), since I (1--A) T (1) = H* (¢) = H° (t+4),
HA) =) M [ . A%t |
R T =0 [A°(t42) — A°(t-+24-A)] dW*(x)
M [TAQ+eTA) =AW+ o, (.
=5 S A (t+a) AW (@)
=z AU+A)-A(1)
(2) A1)

from the IFR (DFR) assumption.
(i) Add and subtract 1 from both sides of (i),

() z A
He(t) (8)  AQ) "’
| H(Y) = H(1+A)
or A 2)A(+A) all - 4>0, 120,

which proves part (ii).
argument is reversible.
(iii) From Theorem 5

Notice that (i) and (ii) are equivalent as this

ko

(19) « \M I (w) 3-\\.8\1A,:v die, = AO)
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II(v)

(2)A<(t)(z)A(v)
from (i) _m__:m the fact that IFR(DFR)=DMRL(IMRL) (see Barlow and
Proschan™™"), Putting this in determinant form,

,\“ H(w) du I (v)

all 0ol

IV IA

\ﬁ.s\_A:v du  A°(v)

Integrating » over (0, t)
smAS du .EA:V du
[ 0

\-8KAGA AN 4\; . ,
. u) du A A°(u) du
Adding the first column to the second gives

\4 He(u) du u
t

\M A(w) du Ve

e

which proves (iii) and completes the proof of the theorem.
. Part (iii) leads to the following :
CoroLrAnry. For IVR/G/1 queues (DFR/G/1 queues)

n < nd X et (1Y ] =+
n(2)%, 2 T\N) 1T T

Equality is taken on by the M /G/1 queue.

(20)

Bounds for Two Subclasses of the GI/G/1 Queue

(a) The mean idle time and the probability an arrival finds the system
emply.

“Reeall from Part 1, equation (3) that

an= (1/A) (1-p). .

dmm:m (19) above and (11) in Part 1 gives
(i) For 1/\-MRLA /G/1 queues,

AulvaQoM »

/N (L=p) S S/
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(it) For 1/\-MRLB/G/1 queues, .
0Sa0= (1-p),
~\7 < .

The upper bound in (i) and lower hound in (ii) are taken on by the vomm.
son arrival queue. The lower bound in (i) is taken on by the D/D/1
queue. * .

From the relations

E[B]={p/(1—p)E[] E[Ny]=pE[B]

one can obtain simple bounds on the mean length of and number served in
a busy period. .
(b) The mean wait and number in queue.

1 with Theorem 4 gives .
(i) For all 1/\-MRLA/G/1 queues with p<1,

and

Using (4) and (12) from Part

J=[(14-p)/2\| S EIW]=J, (21)
M =[(14+p) /2] S EIN J=X, (22)
where J= (¢ N0, ) /2N (1—p). (23)

iquation (22) follows from G_H_v by applying the important queuing
] 4
formula E[N,)=AE[W] (see Little.™) o
Ezzimozaﬁs shows that for o broad class of queuces the moean ss_.n in
queue (or system) has been bound to within at most a mean inte .E.~.._<=_
time. Iiquation (22) gives bounds on the expected number in queue :__i
differ by al most mme customer. The lower bounds are taken on by the
M /671 queue, the upper ones by the D/D/1 queue. . | L
\4.‘“6%_ _Vc_:,ix are linear in the variance of the arvivals and the varianc
of the service, for any fixed p.  The narrowness of the vo:_ﬁ_% icmE m:“u..
gest that the mean wait and mean number in queue increase ‘approximately
linearly’ with these variances. . . _
Eﬂsaﬁ:_m the stronger assumption of IFR arrivals, using (4) and (12)
in Part 1 with the corollary to Theorem 6 we obtain
(ii) For all IFR/G/1 queues with s <1,

J— (e’ +p)/2NSEWISJ, (212)
N — (e +p) 2 S EINJ SN, @1b)

where J is given in (23). Again there is equality with the lower bound

with the M/G/1 queue, and with the upper vomsam with the trivial .cﬁ\.v\.tn_.
queue. A property of IFR arrivals is that ca =1 @ﬁ Barlow and Pros

chan™). .

“interarrival times (the D/G/1 queue).
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An important special subcluss of these queucs are those with constant,
In these queues ¢,=0 so that
(21b) gives the mean number in queue to within al most L4 customer.

Using the results obtained so far bounds for the other subelasses of the
G1/G/1 queue are casily obtained. For example, using (15) and (20), for
all DFR/G/1 queucs with p<1

ISEWISJT = (ca’+p)/2\.

As shown in Part 1 these bounds may diverge. In the interests of brevity,
since no new techniques are involved, the bounds for each class will not be
written out explicitly. :

It should be noted that bounds in terms of the first moments of 4 @)
and G (t) only, such as those for ay and E[]], are not improved by making
the DMRL or IFR assumption in place of the 1/\-MRLA assumption,
In the case of E[N,] or E[W] the DMRL assumption gives no improvement
over the bounds obtained under 1/A—~MRLA. _ E

Using the results obtained so far it is easy to obtain bounds on such
quantities as the variance of the wait and the variance of the output under

-~¢<pmo:m.mmm=3vaonmo:hs.gg%om?mmmpgm?oc explicitly in
Marshall.®! :
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Cnse Weslern Reserve Universily, Cleveland, Ohio
(Received December 15, 1967)

MZ THE prepublication discussions of Mansuart’s paper the validity of
his equation (18) was questioned. This question was confounded further by
the comment in the footnote following the equation that an alternative discussion
could be given. 'This nete is intended to elaborate on these questions and hopefully
to help any reader who also is unsure about these questions and their relations.

To start it might be well to consider the following random variables although
they represent an expansion of the author’s system.

I/ =length of the ldle period between nth and n+1 customer (In' =0 if there
is no idle time betwsen customers).

I, =length of the mth idle period in the system.
Moreover, let I =limumw Iy assuming that it exists. It is the distribution of I
that is involved in equation (18). The correspondence between the sequences

(1, and (1,'] i of course that Iy =Ty, i.e, the mth idle period is the idle time-

helween two customers n(m) and n(m) +1 and conversely if I’ >0, then it is one
of the sequenees (Ju)y The subsequences of ('} of those having positive values
is precisely the sequence (J,). The common limit of these subsequences is /.
Now the distribistion ! of 1,/ is ensily computed in the terms used in the paper.

:.._A@n ,\.s.;.._:._.&v dW (1), 1)
0

T'his is because the cvent that [, >z] =U [T >t +alN[Dacxt) ), where Dy, is the
time customer 7 spends in the system, Dy =W,+8,. Thus, the second event in
the intersection is that D, be approximately ¢, and the first event in the intersection
is that the interarrival time between customers n and #+41. These two events
are clearly independent and thus (1) follows. Now I, is & member of the sequence
I if I/ >0 and the distribution of

1.’ given that it is positive will be given by

L]
Hoe@) =M \ Ae(t2) AW e (1),
0 .

w0
where My'= .\. Ac(t) AW Sy (1),
0.

For any sequence n(m) the corresponding sequence Hn° converges to the limit
He(x) given by )
646
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He(x)=M \. Ac(l4-x) dW*(1),
0

Eln\. Ae(t) dw (1),
0

Since this is true for any given i i
placement of the idle periods, it is tru
of such placement, which is Marshall’s contention in his va._ " remnrdlos

If one approaches the idle times {In) di
che: m} directly, then I, corresponds to I,
i_oamw .ss latter is w:9<=. to be positive. Thus one analyzes the situation mz?u
conditional sample space giving an event relation of the form

In>l=U LE.:?;V“.T&_S.?;VE n —uisv\k&_&.isvvn«:.
Thus

o [At2)
A= [ 4y )

which converges to the relation of the footnote.

5 i s & Now the two are cquivalent if

dw*(z)/ \.“ A<(z) dW* (2) = d(pz)/A*()

or Ac(z) dW* (2) = .\. A2(z) dW*(z) | dp(x).
0

Tho loft-hand sido is
v prob{[7'>2] N [Doex)),
since the component events are independent. The right is literally
prob{{T>D} N {Davz|T> D).

‘::M ..,_wc.co”_m joint event is precisely the same as the first of this pair

his discussion is still highly heuristic in that the limiti . i

abound have all been assumed to behave properly. The Emh._nﬂm “wm”wwoﬁﬂozhm”
convergence of ._?.. although I think justifiable at any level of rigor desired, has
a,m:_csiw a:;._m a bit discomforting. A more direct approach is of course ..opmwzo

The approach is to develop in greater detail the relation between {7,'} and (I, ..
mmsvcmm .ﬁsn the mth idle period occurs between customers n(m) M:; n(m) ﬂ_.
Given this, what is the distribution of I.41?  One obvious approach is to meacavomm |

the eve . :
:.w MMQMR wﬁ.?.t .VN_ according to the possible values of n(m+1), which are n(m) +k
Thus

00
Inpn>t=U U __ﬁ.?:.vv~+e~3€”?;;\ki*,

k=l g

vhere the basic cvents are that appropriate arrival times ave sufficiently large and
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that the deluy of eustomer n(m) +k is approximately @ mzz_ customer zw?.v ks
the kth customer in a busy period that began with the 9:“::; of c‘cmmcEam i.sv +_
"This latter restriction is denoted by using the random variable D, with distribution
function W' for delays under these conditions.

Hiah= Y \ (A8 gy 4200+2) AWy (2}
0

k=1

> awt'@).

k=1

- .\.., s~>ac+§

; ree, nssumes Jegitimate the manipulations of the mibm_.i..o:m. ..::,.
MHMM%M%MM .MMSB‘ ba %,ow_x& because of the gmcﬁcao:.om oozi.wou Eﬁam_.ﬁw:w
distribution One can also drop the n(m) part of ﬁ_a mzvmo:.w_.. on W7 (my+k thin Er
in terms of & prototype busy period that starts 2:& the arrival of w first ocwaoE:. _
It appears that for I7,,() to converge to the solution to Marshall’s (18) we mus

have
Sk qwy' (z)=de(@)/Ac@) =M dW* (),
or considering the first equality
k=2 gc(z) AW} (2)=dp(2).

This is true #ince this in-event terms is just the decomposition of the event *.,r_pe the
Jast customet in & busy period has delay approximately z according to which cus-
tomer in a busy poriod is the last one.

AN ORDERING POLICY FOR REPAIRABLE
STOCK ITEMS}

Stephen G. Allen and Donato A. D'Esopo
Stanford Rescarch Institute, Menlo Park, California

(Received June 12, 1967)

When g stock item fails, it is assumed to be repairpble with a known positive
probability less than one. In this case stock must be replenished on oc-
casion with new supplies. An ordering policy of the familiar reorder point-
order quantity type is considered, and expressions developed for expected
shortages, inventory, and number of orders per unit of time. Decause
shortlages within a replenishment cycle ean decrense beeause of returns from
repair, the derivation of expected shortages is of particular interest.

E CONSIDER a system in which a number of identical items are in
use but subject to failure. We shall assume that the failure of any
one item is independent of the status of the others and that the number of
items which fail in a unit of time follows a Poisson law with mean ). When
an item fails, it immediately enters a repair cycle with probability » from
which it emerges in serviceable condition after a fixed repair time R. A
fuiled item is nonrepairnble with probability 1—p and is discarded. A
stock of serviceable items is normally maintained to replace failed items.
We shall finally assume that when serviceable stock is zero and a failure
oceurs, A backorder is ereated. '
In this paper, we shall study a replenishment policy of the familiar type:

When the total inventory of serviceable items plus items in repair less backorders is
reduced to & reorder point X, a replenishment order is immediately placed for @
wits that are then received after a fixed lead time L.

Above and in the sequel, the number of items in inventory shall not include
those currently in use in the system nor failed items that are nonrepairable,

Our main task will be to derive an expression for the total cost of such a
policy, namely, the sum of the expected shortage cost, inventory holding
wst, and ordering cost, all per unit time. These three components of total
tost are assumed, respectively, to be proportionate to expected units short,
mventory, and orders per unit time. Since a decision to repair versus
eplenish is not being considered, the expected repair cost and cost of units

t Presented at the Thirty-First Annual Meeting of the OrerATIONS RBSEARCH
Soutgry o¥ America, New York City, N. Y., May 31, 1967.
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