b

Proc. 4

'th Annual Symposium on Computer Archaitecture, March 23,-25, 1977
x ? ’

AN INSTRUCTION TIMING MODEL OF CPU PERFORMANCE

+

Bernard L. Peuto
Zilog, Inc.
Cupertino, California

and

Leonard J. Shustek
Stanford Linear Accelerator Center

and
Computer Science Department

Stanford University
Stanford, California

Abstract

A model of high-performance computers is derived
from instruction timing formulas, with compensation for
pipeline and cache memory effects. The model is used
to predict the performance of the IBM 37¢/168 and the
Amdahl 470 V/6 on specific programs, -and the results
are verified by comparison with actual performance.
Data collected about program behavior is combined with
the performance analysis to highlight some of the
. problems with high-performance implementations of such
architectures. ’

Introduction
General Goals

One of the most important tasks for a computer
. designer is the evaluation of a computer architecture
and its implementation. As two specific instances of
that task, we consider (1) a comparison of the
performance of the IBM 370/168 Model 1 and the AMDAHL
470 V/6, which are two machines with the same
architecture but different implementations, and (2) an
analysis of some of the properties of the IBM 370
instruction set.

The basic goal is to apportion the time spent by
an executing program among the various system
components such as the cache memory, the instruction
pipeline and the individual instructions, so that
resource utilization and system bottlenecks will
appear. This is achieved by using models of the CPU of
each machine which also provide estimates of the total
CPU times. The total time is important insofar as it
is used to verify the accuracy of the model, since the
predicted times are compared to the actual performance
of the machines.

The decision to make implementation dependent
measures of CPU performance ~for two members of a
specific architecture family has several advantages:
(1) Some of the traditionally difficult problems
encountered when comparing two different architectures
are not present, since many confounding factors
relating to performance evaluation have the same effect
on both machines. (2) The success of one of the levels
of a complex system can often be measured by the
characteristics of the levels below. Performance
evaluation which is close to the implementation level

* Work supported in part by the U.S. Energy and
Research Development Administration under contract
E(043)515.

+ Work done while a Visiting Scientist at the Stanford
Linear Accelerator Center.

of a computer gives valuable design information at the
architecture level. (3) The speed of collection and
the precision of the results are greatly enhanced by

having tools that are tailored for a specific
instruction set. (4) Practical and useful results can
be obtained quickly, paving the way for more general
studies.

Previous Studies

The evaluation of computer systems £rom the
buyer's point of view has traditionally received a
great deal of attention. The system software often
requires careful and tender tuning, and bottlenecks
which can have dramatic effects on performance must be
jdentified and removed. An abundant literature
addresses these problems and provides techniques for
solution [AGAT75]. :

The computer system designer has similar problems
to solve, but most of the existing literature is not
written for his viewpoint. One explanation for this
phenomenon - is ‘the lack of feedback; users seldom
complain about -hardware design because they feel that
their complaints will have little effect. The result
is a scarcity of information for use by the designer.
Most of the studies closest to this work deal with the
collection of data on instruction frequencies. The
most frequent objectives involve (1) benchmark studies,
(2) computer design, (3) language design, and (4)
general programmer curiosity.

Some studies leave all interpretation to the
reader, and become a useful source of primary data
[GIB, CON]. The studies most applicable to the
computer designer's point of view often provide
instruction frequencies, register utilization, opcode
pairs, and static vs dynamic frequency comparisons, but
little timing or performance information [LUN, FLY,
WIN, HAN, AGA73, ANA, FOS7labl. The language-oriented
studies have provided similar information for specific
languages, studying the match between the language and
the machine code to which they must be translated
{ALE72, HEN, ALE75].

Wwhen their interest is only in performance
evaluation, users have generally been advised to use
benchmark runs instead of instruction mixes based only
on instruction frequencies. (ARB,SNI]. The use of
timing information with these instructions mixes is
made difficult by the lack of published information
from the manufacturers, in particular for the
high-performance machines. (Amdahl is an exception in
this regard [AMD]). This has forced users to produce
their own documents [LIP, EME]. The manufacturers

. themselves must have studied these questions, and some

165

expurgated papers reveal glimpses of large-scale

s

efforts and sophisticated tools but offer little

results [VAN, TG, MUR].

The previous studies have shown that very few
instructions (often four or five) represent 50% of
those executed, and a few more (often 20 to 30)
represent 90%. This would seem to justify the idea
that a few instructions will account for most of a
program's behaviour and one can neglect instructions
whose frequencies are below a certain threshold.
Unfortunately this applies only to a specific program.
No trend has been shown in the importance of
instructions, because the instructions which make up
the 50%, 90% and 100% groups of a program are dependent
on the program, the programmer, and the language used.
The only”instructions which seem universally important
are the branches, which most often account for about
15-30% of the instruction counts, but which still show
wide variation.

The difficulty with the frequency analysis
approach is that for performance evaluation the
designer needs information about the instructions which
account for most of the execution time. Attempting to
derive performance conclusions from an instruction
frequency list vyields poor results because some
instructions can hundreds of times slower than others.
To obtain acceptable performance results the designer
needs to consider machine dependent variables because
they are required for precise evaluation of the
instruction execution time.

The Instruction Timing Model

The Methodology
A The models of the CPUs used here are based on the
instruction timing formulas available from the

manufacturers' documents which describe their computers
[AMD, IBM]. - These documents sometimes sacrifice details
for ease of exposition (which is not to say that they
are easy to read!) and represent only the best efforts
of an engineer to describe the existing machine. (In
deriving the model for the Amdahl machine we were quite
fortunate to get some help from the designers.)

The programs to be measured were traced in user
state, and all the information required to compute the
instruction execution time from the formulas was
collected. A record was made of counts of occurrences,
values of instruction variables used in the formulas,
and information about memory performance. Typical
variables depend on the specific instruction but may
also depend on the implementation details. For
example, the number of bytes moved is implementation
independent, but measures of pipeline interlocks and
timing delays are not. Some variables depend on
instruction envirorment and therefore require
information about instruction .pair and triple
distributions.

Two primary constraints caused us to trace only
user-state instructions. (1) Tracing system software,
with the attendant performance degradation of at least
30 to 1, would modify operating system behavior in
timing dependent I/C sections. By tracing only in user
mode, which is basically not speed dependent, we
eliminate a source of error which would necessitate a
complicated interpretation of the results. (2) Tracing
the operating system introduces a large number of
problems involving the recording of the trace data.
One standard solution is the use of samples rather than
complete traces, -but then the verification of the
predicted CPU time is nearly impossible.

Since the timing formulas do not include the
effects of cache memory misses, the cache memory is

simulated for each machine. The cache penalty is added
to the instruction execution time to obtain the
expected program éxecution time. To verify the model
the expected time is compared to the operating system
accounting time corrected to compensate for the
differences between the measurement methods.

The effects of instruction interaction, which can
generally be attributed to pipeline resource
interlocks, are rather explicitly accounted for in the
Amdahl formulas. For IBM, however, the pipeline
effects seem to have been averaged into the formulas in
a way which was not clearly indicated. This was a
potential source of difficulty, but the effort required
to obtain this information from the logic diagrams and
microcode listings was prohibitive, and unjustified
when an error of a few percent is acceptable.

The techniques used here are much more complex
than benchmarking, but not as costly as total hardware
simulation. The tools are general enough so they can
be -- and have been =- used for other studies. The
importance, however, lies in the ability to change the
model variables to reflect proposed changes to the
existing hardware and to accurately predict the
performance effects of those changes.

Choice of Factors

The development of the CPU model has been greatly
influenced by the idea of an evolving system of tools
—- Gevelopment by successive refinement. A crude model
and simple tools were first assembled and by successive
iteration new tools, new measurements, and a more
refined model were designed. We think this approach
reduced the number of false starts and the elapsed time
of the whole study by allowing us to concentrate
quickly on the most important factors.

The CPU model used is an intermediate one between
full simulation at the hardware register level and a
machine-independent representation of performance. The
decision to include some factors and exclude others was
based on our estimation, often supported by
experimentation, of the effect of those factors on the
final results. Some of the justification for the
decisions are presented below.

The accuracy of the model is supported by the
match between the program execution time as predicted
by the model and the same time measured by the
operating system during actual runs. Performance
evaluation by benchmarking is repeatable only within
2-3% because of the large number of uncontrollable
variables, and this therefore defines the required
precision of the model.

An examination of previously published instruction
frequencies might suggest that the more frequent
instructions are those whose duration is constant and
therefore do not heavily depend on execution variables
like the length of operands. If this were true, then
those variables could be set to program-independent
values without introducing a significant error in the
result. To test this hypothesis, the program which
camputes execution times was given three sets of
execution variables with which to predict program
running time. One wes a programmer’'s best guess of the
true values, and the other two were the smallest and
largest extremes which could realistically be expected.
The results showed that an instruction could jump from
4% to 50% of the total time depending on the value of
its variables with all others remaining the same. This
is an unacceptable error, especially since errors in
the variables for many instructions could combine to
form large systematic errors. Most of the variables
which affect execution time were therefore measured

166

exactly or estimated from related measurements.

The predicted execution time is composed of the
aggregate instruction timing results and a penalty for
cache memory misses. The aggregate instruction timing
results have already taken into account the instruction
counts and basic execution speed, as well as the
pipeline interlocks. The cache miss penalty depends on
the reference pattern of the program, the cache
organization, and the data flow pattern within the
machine. The two machines differ rather markedly in
those respects: the 370/168 uses aligned doubleword
(8-byte) accesses and an associative set size of 8,
while the 470 accesses unaligned fullwords (4-bytes),
uses a“set size of 2, but has the same total amount of
data (16K bytes). There are also rather significant
differences in the amount and type of instruction
lookahead performed. To accurately measure the cache
penalty, the trace analysis program has a detailed
simulation of the cache and instruction fetch mechanism
of both machines.

Although cache memory miss ratios are known to be
low [MER], it is easily shown that the contribution of
the time penalty for the misses is too large to be
neglected. If the miss ratio is 5%, with a 480 nsec
penalty for a miss, 2 memory requests per instruction,
and an average instruction execution time of 300 nsec
(reasonable values for the 370/168) then the time for
the cache misses represents 16% of the execution time.

Two other cache organization features must be
considered in the cache penalty correction. For IBM,
stores always access main memory ("store-through")
which may cause extra delays. For Amdahl, there is an
extra penalty when a 4-byte access crosses a cache line
boundary. ‘These and the other cache corrections are
not attributed to the instructions which caused them,
but rather accumulated separately.

The execution time reported by the operating
system includes all user-state and some
supervisor-state instructions [BEN], whereas the trace
program measures only user-state instructions. The
time attributed to these supervisor-state instructions
executed in the processing of user-initiated supervisor
calls (SWCs) must be subtracted from the reported CPU
time. Measurements were made of the charged time for
2ll the relevent SWCs as the programs were traced. The
correction is very significant for almost all programs,
since both the number and cost of the SWs are high.
For the 168, for example, the time charged varies from
107 usec for an I/0 operation to 26 msec for opening a
file.

Although the SVC time correction could have been
measured for the original benchmark programs, they were
somewhat modified in view of the substantial correction
required (as much as 20%). Wherever possible, the
number of I/0 operations was reduced by increasing the
file blocking factors, but we did not otherwise alter
the operation of the programs. Despite this effort,
the SVC time correction remained the factor which
introduced the largest error in the measurements. We
also added a FORTRAN numerical analysis program from
which the I/O parts were excised, so that few
supervisor services were requested.

Since supervisor-state and user-state instructions

share the same cache, there will be some displacement
of the user's "working set" from the cache in response
to an SVC, which will manifest itself as a lower than
normal hit ratio when the user's program is resumed.
An unpublished note by Rossman suggested that this
would have a significant effect [ROS]. To verify this
we simulated the cache activity for one job with a
large number of SWs first assuming a 100% cache flush

167

for each SWC, and then again with no flush; the number
of cache misses <changed by a factor of 10.
Measurements showed that the actual fraction of the
cache displaced by an SWC varies from 0.16 to 1.0, and
that almost all non-trivial requests completely replace
the cache.

Interrupts which occur during the execution of the
program do not account for a significant increase in
accounted time (since the user-state CPU timer is
disabled during interrupt processing) but there could
be an effect due to cache displacement caused by the
interrupt routine. On a heavily loaded machine
interrupt rates as high as 4000 per minute are common,
representing 16.4 ms of extra time (1.7% for IBM) to
campletely refill the cache for each second of CPU
time. Since most of those interrupts are due to other
jobs, this effect was reduced to a negligible level by
running the job on on otherwise idle system, so that
only the few interrupts caused by the benchmark job
itself could cause interference. This is unlike the
SWC correction, for which no change in the number of
cache flushes is possible simply by controlling the
envirorment of the benchmark run. Similar calculations
for the effect of channel I/0 transfers to memory show
that they have even less effect on CPU performance.
This is true both for IBM, where the channels transfer °
directly to main memory and invalidate corresponding
cache entries, and for Amdahl, where the channels
transfer into the cache.

Qverview of the Measurement Programs

An interpretive trace program (TRACE) generates a
record for each user-state instruction of the measured
program. The record contains the instruction type,
memory addresses referenced, and the other required
information. These records are processed by a trace
analysis program (ANALYSIS) which generates instructicn
counts, variable values, and memory access statistics
such as cache memory miss counts, which are stored in a
summary file. In order to avoid saving massive amounts
of intermediate trace information (25 megabytes per
traced second), the TRACE and ANALYSIS programs execute
as coroutines. The combined overhead of the trace and
trace analysis programs amounts to 300 seconds per
second of real time. This compares favorably to other
more detailed hardware simulations, where the overhead
has been as high as 6000 seconds per second of real
time [VAN].

The summary file is converted into a count file by
an intermediate program (CONVERT). The count file
contains all the information required to compute the
timing formulas for both machines condensed into about
500 numbers. An instruction statistics program
(INSTAT) uses the count file and files of encoded
instruction timing formulas to produce the final timing
and performance information.

We devised several test programs for verifying the
formulas and understanding the measurement factors. A
general instruction timing program (LTIMER) was
designed for precise measurements of instruction times,
cache memory miss penalties, SWC times, and the effects
of SWs on cache memory contents.

The Instruction Timing Formulas

An instruction may have several timing formulas
associated with it, corresponding to different modes of
execution. Each individual timing formula may Gepend
linearly on the variables (the most common case) or
have a more complicated dependence. In general, three
types of linear formulas are encountered.

Some timing formulas reduce to a constant, and

often only one formula is associated with an

instruction. Examples of this case are most
register-to-register arithmetic or logical
instructions.

ADD REGISTER 1BM .080 usec

(AR) Amdahl .065 usec

Many formulas have a simple linear dependency on
execution variables. An example is a Load Multiple
(LM) instruction which can be expressed as

«520+.080*R usec
.065+.065*R usec

Load Multiple IBM
(B4) Amdahl

where R is the number of registers loaded.

Some formulas may involve variables which are
concerned with the general enviromment of the
instruction. These are often measures of the effect of
pipeline interference which causes a delay in the
execution of an instruction., Examples are the Amdahl
variables S1 and DWD. Sl accounts for some cases of
pipeline interlocks, and ranges from 0 to .065 usec
depending on the "number ‘of execution cycles
attributable to the three words of the instruction
stream following the instruction of interest" [AMD].
DWD, which is either 0 or .0325 usec, compensates for
the occurrence of a doubleword result instruction
before the subject instruction, because the machine is
fundamentally single word oriented.

Store (ST) Amdahl .065+S1+DWD

When several formulas are associated with one
instruction, each formula applies only to a specific
case of its execution. For example, the Move Character
instruction execution formulas depend in important ways
on the degree of overlap of the two operands. The
different cases involve not only different
coefficients, but often different variables.

Move IBM .760+.040*B usec (no overlap)
Character .640+.240*B usec (any overlap)
(M)

Amdahl .195+S1+.130*WB+MV usec

where MV = ,130*W (no overlap, or
overlap>32 bytes)
MV = .1625*W (3<overlap<=32 bytes)
MV = .130*B (l<overlap<=3 bytes)
MV = .195*B (overlap=l byte)

number of bytes moved
number of words moved
number of bytes which must be
moved to have the destination
on a word boundary when b>63.

and where B

=
[|

For all the individval linear formulas, we need
only accumulate the counts and average variable values
for each of the timing formula cases.

Unfortunately, some formulas are not linear in
their variables. Typical examples are the decimal
arithmetic instructions, where the duration depends on
the product of the lengths or the average value of the
digits used. For these we compute the appropr iate
products of variables at the time the program is
analyzed, and average these values for use by the other
programs in an equivalent linear form. These cases of
non-linear formulas are sufficiently infrequent to
justify this special treatment, but the effect on
timing values is too important to ignore them. A
simpler approach would assume that the product of the
averages is a sufficient estimate of the average

168

product, but the potential error is great.

The formulas are encoded as a string of records,
each corresponding to the coefficient of a term in a
subcase of a timing formula for a particular
instruction; there are a total of 3200 variable names
and coefficient values. A numbering and naming scheme
was devised that allows variables which are common to
many formulas to be propagated to all appropriate
places, as well as giving individual identities to
variables which are more specific.

Verification of the Model

Measurement of Cache Miss Penalty

Although cache miss penalty information is
available from the manufacturers, it was difficult to
interpret precisely what the effect on instruction time
is. Since measurements are not difficult and the
correction could be significant, the values were
verified experimentally. To determine the cost of a
cache miss, a test program simply fills the cache with
known data. A second loop is then timed, in which
either the same data is reloaded, or new data displaces
the old. The difference in time between the two
versions of the second loop, divided by the number of
cache misses caused by the loop which displaces the
data, provides the cache miss time. The value found
for IBM is 480 nsec, which is not inconsistent with
information from the hardware manuals., For Amdahl,
cache misses are found to cost 650 nsec, which also
agrees with information from the designers.

Once the cache miss penalty is established, the
effect of a supervisor reguest on the user data in the
cache can be measured easily. In a similar fashion the
cache is filled with known data, the SVC is issued, and
the cache is refilled with the same data. The second
loop is timed, and compared to the identical loop when
the SWC is not present. The time difference divided by
the cache miss penalty gives the number of cache lines
that were displaced by the SWC. Note that the second
loop must fill the cache in the opposite order from the
first loop, otherwise the LRU replacement algorithm
would cause the original data to be removed instead of
the data added by the SVC. Table 1 shows the fraction
of cache displacement for some of the more common
supervisor requests.

*%k**x TABIE 1 =-- SVC TIMES AND CACHE EFFECTS
(AVERAGED FOR ALL PROGRAMS)
IBM Amdahl —=——
Name CPU time % cache CPU time $cache
usec., displaced usec. displaced
OPEN 26658 100% 17605 100%
CLOSE 16929 100% 13488 100%
EXCP 1/0 107 58% 101 24%
WRAIT 234 168 139 7%
REGMAIN 394 30% 219 17%
LINK 3629 100% 1613 41%
OVERLAY 5214 100% N/A N/A

One of the most interesting differences of
implementation between the two machines is the effect
of data stores on the cache, The IBM approach is to
always store data directly into main memory, and to
update the cache only if the line already exists. The
Amdahl machine updates the cache line if the data is
present without storing into main memory. If the data
is not in the cache, the line will be read from memory.
If the replacement algorithm must remove a line which
was modified in the cache, the memory is updated at the
time the line is replaced. The IBM method, called
"store-through", has often been criticized because it

requires a8 main memory access for all stores [KAP].
Although the store can proceed in parallel with
subsequent instructions, any subsequent main memory
accesses must be suspended until the memory becomes
available. Since the timing formulas do not explicitly

account for this effect, it is important to determine
its magnitude.

There are three factors which combine to minimize
the possible deliterious effects of the store-through
policy used by IBM. The first is that the memory is
organizeé with four-way interleaving of adjacent
doublewords, so that consecutive stores may well
reference separate memory banks. The second is simply
that based on the opcode pair distribution we have
accumulated, consecutive instructions which store data
into memory are relatively infrequent. The third is
that even for pairs of such instructions, there appears
to be a level of buffering for data that must be
written to main memory, at least for the case when that
data is also in the cache. A penalty appears only for
the third consecutive store, and then is 360 nsec. The
full write cycle time penalty of 640 nsec occurs only
for the fourth and subsequent store. These factors are
sufficient to justify not including a
difficult-to-compute correction for store-through
writes.

SVC Time Measurement

As previously discussed, the CPU time charged for
SWCs was measured in order to be able to correct the
time given by the operating system. The time charged
for each SVC is often large and varies from program to
program even for the same SWC type. To account for
these variations we measured the time charged to the
user for each SVC as the benchmark programs were being
traced. The SVC correction computed by summing the
measured SVC times is therefore quite accurate for the
168 because it was the machine used for the tracings.
For the 470, the timing program LTIMER was used to give
estimates of the average SVC costs. This latter method
does not take into account the variation from program
to program and the SVC corrections are much less
accurate than for the 168. Table 1 shows the time

charged for some important SVCs averaged over all
prograns.
It is interesting that the time charged for

supervisor services is often comparable to what would
be required if there were no operating system. For 1/0
operations, previous measurement have shown that the
hardware I/0 instructions (SIO, TIO, etc.) are
incredibly expensive; 100 usec is not unusual [JAY].
This is to be compared with, for instance, the measured
charge of 107 usec for the request to the operating
system for an I/0 operation. Note that both of these
are more than two orders of magnitude larger than,- for
example, the 0.61 usec needed for a double precision
floating point multiplication. It would seem that
improvements in the ar ithmetic units of computers have
not been accompanied by similar improvements in the 1/0
interface despite the existence of 1/0 channels.

The Benchmark Jobs

The results presented here are derived from the
analysis of seven benchmark Jjobs written at SLAC.
Except for one (LINSY2) they were all production jobs
written for purposes other than performance evaluation.
To avoid biasing the results with artifacts from
specific languages or programs, we purposely chose the
three most used language compilers and programs
compiled by them.

(1) FORIC is a compilation by the IBM Fortran-H

optimizing -compiler.

(2) FORTGO is the execution of the FORTRAN program
compiled by FORIC. It is a numerical analysis program

which solves partial differential equations.

(3) PLIC is a compilation by the IBM PL/I-F
compiler. -

(4) PL1GO is the execution of a PL/I program which
accumulates and prints accounting summaries from
computer use information.

(5) COBOIC is a compilation by the IBM ANST
Standard COBOL compiler.

(6) COBOLGO is the execution cf a
which reformats and prints computer
information.

COBOL program
use accounting

(7) LINSY2 is the execution of a FORTRAN
subroutine which solves large-order simultaneous
equations. No 1/0 is done.

Table 2 summarizes some characteristics of the
benchmark jobs.

%%%x TABLE 2 —— PROGRAM CHARACTERISTICS

Data Inst/Cache Miss

reads

Data

Program # Instr. writes

per inst per inst IBM Amdahl
COBOLC 6,048,476 0.431 0.130 82,57 36.95
FORTGO 23,865,168 0.352 0.204 104.06 28.07
PLIGO 23,863,497 0.473 0.261 73.28 61.16
LINSY2 11,719,853 0.195 0.067 20597 19598
COROLGO 3,559,533 0.738 0.453 13.42 30.93
FORIC 17,132,607 0.433 0.146 39.86 24.47
PL1C 24,338,101 0.379 0.137 145.33 63.48

Model validation

Verification basically consists of comparing the
time predicted by our model for each benchmark job with
the corrected real execution time. The time predicted
for each benchmark, Tpred, consists of the following
terms:

Tins, the total time predicted from the timing
formulas, which does not include the cache miss
penalty.

M * Tmiss, where M is the number of cache misses
as reported by the cache simulator, and Tmiss is the
cache miss penalty. The number of cache misses
includes the effect of SWC execution on the cache
contents.

Tcross, the time penalty, for Amdahl only, paid
when references to the cache cross a line boundary.
The penalty is two cycles (.065 usec) for reads and
three cycles (.0975 usec) for writes, and is computed
using numbers provided by the cache simulator.
Virtually all the penalty arises from instruction
fetch, since none of the programs access unaligned
data. There is no equivalent penalty for IBM because
its larger instruction pbuffer prefetches enough so that
two successive doublewords can be accessed without
introducing an additional delay.

The corrected time for the actual execution, Trun,
consists of the following terms:

Tacc, the time as given by the standard IBM
accounting routines.

169

jpeer:

Tsvc, the time attributed to the user for the
execution of all the supervisor calls, which must be
subtracted from Tacc.

Table 3 provides the values for each of these
times for each of the benchmarks. For Tpred and Trun,
the relative percentage of each of their components is
given. The absolute error, Trun-Tpred, and the percent
error, (Trun-Tpred)/Trun, appears on the last lines.
The verification process points to large discrepancies
between raw execution speed (Tins) and the speed as
perceived by the user (Tacc).

The.results for IBM are generally extremely good;
for all except one program the differences between the
predicted and actual running time are less than 2%.
The agreement for Amdahl is not as good, but we
attribute most of the error to the crude method for
measuring the SWC time correction. A factor of two in
the the SVC correction, which is certainly conceivable
when an OPEN as measured on the 168 can vary from 6 to
33 msec, could easily account for all the the error.

**kkkk TABLE 3 -~ MODEL AND BENCHMARK TIMES

CUBOLC === IBM ——— —— Amdahl =--- RATIO
Time % Time % IBM/Amd

Tins 2.213 98.44 1.179 88.45 1.878

M*Tmiss .035 1.56 .106 7.95 .330

Tcross .048 3.60

Tpred 2.248 100.00, 1.333 100.00 1.686

Tacc 2.57 100.00 1.71 100.00 1.503

~Tsvc .348 13,54 .320 18.71 1.088

Trun 2.222 86.46 1.390 81.29 1.599

Trun-Tpred -.026 -.057

% error -1.170 -4.101

FORTGO ——— IBM ———— -—- Amdahl =--- RATIO
Time S Time % IBM/Amd

Tins 6.176 98.25 3.286 83.81 1.879

M*Tmiss 110 1.75 .553 14,10 .199

Tcross .082 2,09

Tpred 6.286 100.00 3.921 100.00 1.60

Tacc 6.42 100.00 N/A

~Tsvc .082 1.28

Trun 6.338 98.72

Trun-Tpred «052

$ error 0.82

PL1GO === IBM ==— ~— Amdahl -—— RATIO
Time 3 Time $ IBM/Amd

Tins 4.561 96.69 2.233 85,88 2.042

M*Tmiss .156 3.31 .254 9,77 614

Tcross .113 4.35

Tpred 4,717 100.00 2.600 100,00 1.814

Tacc 5.45 100.00 3.42 100,00 1.594 .

~Tsve .293 5.38 .206 6.02 1.422

Trun 5.157 94.62 3.214 93,98 1.604

Trun-Tpred «440 .614

% error 8.53 19.10

170

LINSY2 e IBM e -~ Amdahl === RATIO
Time % Time ¥ IBM/Amd
Tins 1.970 100.00 1.561 96.48 1.262
M*Tmiss .000 0.00 .000 0.00 1.000
Tcross .057 3.52
Tpred 1.970 100.00 1.618 100.00 1.218
Tacc 1.98 100.00 1.69 100.00 1.172
=Tsvc .040 2.02 .031 1.83 1.290
Trun 1.940 97,98 1.659 98.17 1.169
Trun-Tpred -.030 041
% error -1.55 2.47
COBOLGO e IBM ~—— Amdahl =--- RATIO
Time % Time % IBM/Amd
Tins 4.291 97.13 2.451 95,67 1.751
M*Tmiss .127 2.87 .075 2.93 1.693
‘Tcross .036 1.40
Tpred 4.418 100.00 2.562 100.00 1.724
Tacc 4,82 100.00 2.92 100.00 1.651
~Tsve .428 8.88 .289 9.90 1.481
Trun 4,392 "91.12 2.631 T 90.10 1.669
Trun-Tpred =-.026 -.069
% error -0.59 2.62
FORTC ~ee— IBM —e—e -—— Amdahl ~-- RATIO
Time % Time $ IBM/Amd
Tins 3.711 94.74 1.886 77.62 1.968
M*Tmiss .206 5.26 .455 18.72 .452
Tcross .089 3.66
Tpred 3.917 100.00 2.430 100.00 1.612
Tacc 4.64 100.00 3.10 100.00 1.497
=-Tsve .652 14,05 .430 13.87 1.62
Trun 3.988 85.95 2.670 86.13 1.494
Trun-Tpred = .071 .239
% error 1.78 8.95
PLIC == IBM ~—— —— Amdahl --~ RATIO
Time 2 Time $ IBM/Amd
Tins 7.372 98.93 3.846' 88.94 1.917
M*Tmiss .080 1,07 250 5.78 .320
Tcross .228 5.27
Tpred 7.452 100,00 4.324 100,00 1.723
Tacc 8.16 100.00 4.93 100.00 1.655
-Tsvc .794 9,73 .388 7.87 2.046
Trun 7.366 90.27 4,542 792,13 1.622
Trun-Tpred -.086 .218
% error -1.17 4,80

Analysis of Results

Opcode Distributions

It has been observed many times that very few
opcodes account for most of a program's execution. The
COBOIC program, for example, uses 84 of the available
183 instructions, but 48 represent 99.08% of all
instructions executed, and 26 represent 90.28%. Table
4 gives the opcodes which account for at least 50% of
all instructions executed for each of the benchmark
jobs. In addition to the frequencies of execution, the
table gives the fraction of execution time attributable

to each of the instx_'uctions listed. Note that it is time. Table 5 shows the instructions which, for each

cormnon_for an instruction to have a ratio of 2to 5 in of the programs, represent at least 50% of the

execution time percentage versus execution frequency. execution time. Some of the more exotic and many of .
For i:;mpé;.)};he ;Move Chararacter” (MWC) instruction the variable-length instructions of the 370 .
in C job represents 3.92% of all instructions architecture now demonstrate their i : jvi

executed, but accounts for 14.97% of 1IBM execution influence; Divide

time, and 16.47% of the Amdahl execvtion time. In sxxk#% TABLE 5 - OPCODE TIME DISTKIBUTIONS
contrast, the "load" (L) instruction in the COBOLGO job
represents 16.58% of all instructions executed, but CaBoLC 1BM Amdahl -

$Inst $Exec gInst %Exec

accounts only for 1.65% of IBM execution time, and
Name Time Count Name Time Count

1.57% of Amdahl execution time.

1 “BC 18.81 22.31 W« 16.47 3.92
xxak** TABLE 4 =-- OPCODE FREQUENCY DISTRIBUTIONS 2 MVC 14.97 3.92 BC 13.83 22.32 R
a 3 sm 11.47 2.19 XC 9.65 0.49
CoBOLC Inst %of Inst % of Execution Time 4 IM 8,38 2.77 EX 8.31 2.08
Name Count IBM Amdahl 5 CLC 6.07 2.72 IM 7.70 2.77 .
1 BC 22.32 18.81 13.83 Totals ~59.70 33.92 55.97 31.58
2 1A 7.10 2.52 2.37 .
3 L 6.21 2.03 2.07 FORTGO IBM -Amdahl .
4 ™ 4.87 1.60 1.62 %Inst RExec $Inst . %Exec .
5 CLI 4.19 1.37 1.40 Name Time Count Name Time Count
6 MW 3.92 14.97 16.47 1 TSTE 9.80 10.54 BXLE 11.22 5.33 :
7 BCR 3,31 2.84 2.64 2 BXLE 7.41 5.33 DR 11.13 0.94 T
Totals 5l.91 32715 —30.40 3 IM 7.41 1.98 L 6.64 14.05 .
4 ST 7.27 7.81 IM 6,14 1,98 T
FORTGO Inst %of Inst % of Execution Time 5 DR 7.16 0.94 AR 5.70 12,06] [
Name Count IBM Amdahl 6 SM 6.66 0.67 DER 5.58 0.87 i
1 L 14.05 6.54 6.64 7L 6.54 14.05 STE _5.33 _10.54 1
2 AR 12,06 3.74 5.70 Totals ~52.24 4l.32 51.74 45.77 o
3 LE 11.12 5.17 5.26
4 STE 10.54 9.80 5.33 PL1GO IBM Amdahl
5 ST 7.81 7.27 3.95 tInst %$Exec sInst %Exec i
Totals T5.58 32.52 26.87 Name Time Count Name Time Count
1 WVT 23.23 15.86 L 19.56 28.17 ,
PL1GO Inst %of Inst % of Execution Time 2 L 17.68 28.17 MVI 12,61 15.86 ;
Name Count IBM Amdahl 3 BC 9,53 5,37 AR 10.31 14.84 o
1 L 28.17 17.68 19.56 4 ST 8.99 7.16 BC 8.36 5.37 £
2 MVI 15.86 23.23 12.61 Totals ~59.43 ~56.55 50.84 64.23
3 AR 14.84 6.21 10,31
Totals 58.66 47.12 42,48 LINSY2 IBM Amdahl
gInst %Exec $Inst tLxec N
LINSY2 inst %of Inst % of Execution Time Name Time Count Name Time Count
Name Count IBM Amaahl 1 BC 21,70 12.46 MDR 17.48 3. 10
1 IR 17.96 8.55 10.11 2 MDR 11.27 3.10 BC 12.35 12.46
2 AR 13.10 6.24 7.39 3 IR 8.55 17.96 LR 10.11 17.96 N
3 BC 12.46 21.70 12.35 4 ST 8.17 5.72 STD 10.02 5.72 ;
4 SR 7.28 3.46 4,10 5 AR 6.24 13.11 AR 7.38 13.11 i
Totals 50.80 35.94 33.94 Totals 55.92 52.35 57.34 52.35 !
COBOLGO Inst sof Inst § of Execution Time COBOLGO IBM -Amdahl \
Name Count IBM Amdahl gInst $Exec $Inst %Exec .
1 L 16.58 1.65 1.57 Name Time Count Name Time Count N
2 AP 10.72 15.45 10.63 1 DP 18.65 1.47 DP . .
3 ZAP 8.96 16.03 10.70 2 gAP 16.03 8.96 ZAP 10.70 8.96 N
4 BCR 9.92 2.20 1.75 3 AP 15.45 10.72 AP _10.63 10.72
5 MW 7.31 8.48 8.85 Totals ~50.14 ~34.00 54.09 21.15 i
Totals 52.49 43.82 33.29 L
‘FORTC IBM -Amdahl o
FORTC Inst sof Inst % of Execution Time tInst $ExeC tInst $Exec i
Name Count IBM Amdahl Name Time Count Name Time Count .
1 L 27.47 15.22 16.22 1 BC 18.76 13.01 L 16.22 27.47 o
2 BC 13.01 18.76 14.65 2 L 15.22 27.47 BC 14.65 13.01
3 8T 12.16 -13.47 7.60 3 ST 13.47 12.16 ST 7.60 12.16
Totals 52.64 47.45 38.47 4 s 7.64 0.79 IM 5.69 1.21 L
5 BCR 6.37 4.67 BCR 5.64 4,67 i
PL1C Inst %of Inst % of Execution Time 6 IM 6,02 1,21 Ssm™ _ 5.52 _0.79
. Name Count IBM Amdahl Totals 67.48 59.31 55,32 59.31
1 BC 24.40 24,78 19.49
2 1A 7.77 3.34 3.20 PL1C IBM -Amdahl
3 CLI 6.76 2.68 2.78 ¢lnst RExec $Inst $Exec .
4 L 5.26 2.08 2.16 Name Time Count Name Time Count N
5 MW 4.31 16.35 19.73 1 BC 24,78 24.40 MW 19.73 4.31 .
6 BCR 3.96 4.07 3.90 2 MY 16.35 4.31 BC 19.49 24.40 Lo
Totals 52.47 £3.30 t1.26 3 TRT 5.38 1.00 EX 5.42 1.10 i
4 Ssm 4.41 0.68 BAL 5,06 3.08 [
The most commonly executed instructions are often 'i'otgclzg —5-4-9—4:03 _m3:gg TRT —-5-3-54:13 _53_8'1:08 ; ;

not the ones which account for most of the execution

171

Decimal (DP) accounts for 18.65% of the Amdahl time for
COBOLGO, and Translate and Test (TRT) accounts for
5.38% of the IBM time for PLIC. The particular
strengths and weaknesses of the implementations are
apparent; the Amdahl implementation of DR suffers in
comparison to IBM (FORTGO), whereas IBM fares rather
poorly on S™M. Certain dips in performance are clearly
evident, and two such examples appear in COBOLC. The
Execute (EX) instruction, which the Amdahl designers
expected not to be important, is a particularly obvious
problem, and has been noted before [EME]. The
Exclusive Or Character (XC) instruction, which accounts
for 8.31% of the execution time, is almost always a
case of overlap discussed later, which IBM optimized
but Amdahl did not.

Instruction Length

The 370 architecture has three instruction
lengths: 2, 4, and 6 bytes, which loosely correspond
to register to register, register to memory, and memory
to memory instructions. Table 6 gives the fraction of
each type encountered and the average instruction
length. The average instruction length does not vary
considerably from program to program; the range is 2.92
to 4.49, with most programs around 3.6 bytes. The only
exceptions are the COBOL programs, for which 6-byte
storage to storage instructions predominate, and the
LINSY2 program, for which 2-byte register to register
instructions predominate. Although the average does
not vary considerably, the proportion of 4-byte
instructions varies from 46% to 81%, and similarly
2-byte instructions vary from 15% to 60%. The high
fraction of 2-byte instructions for LINSY2 results from
the fact that most of the instructions executed are
part of 2 short (26 byte) inner loop that was highly
optimized by the compiler.

***%%* TABLE 6 -- INSTRUCTION LENGTHS

Program $2-byte $4-byte %6-byte Average

COBOLC 16.15 75.91 7.94 3.836
FORTGO 29.02 70.69 0.29 3.425
PL1GO 16.99 82.37 0.64 3.673
LINSYZ2 53.96 46.04 0.00 2.920
COBOLGO 14.74 45.77 39.49 4,495
FORTC 18.52 80.86 0.62 3.642
PLIC 17.20 75.45 7.35 3.803

Branch Opcode Analysis

For most programs studied, branch instructions
represent a considerable fraction of all instuctions
executed (usually 15% to 30%). In five of the seven
programs traced, at least one of the branch
instructions (usually the simple conditional branch BC)
appears in the 50% group.

In Table 7, the column marked '% Count' indicates
the fraction of all instructions executed that were
potential branch instructions. The column marked '%
Success' which follows, shows the fraction of those
potential branches that were successful. In the 370
architecture there are two classes of branches:
unconditional branches, and conditional branches whose
success depends on values at execution time. Each
class contains both successful and unsuccessful
branches. The only wunusual subclass is the
unconditicnally unsuccessful branch, which is a no-op
instruction. The second part of Table 7 shows the
fraction of branches in each of these four subclasses
as a fraction of all potential branches encountered.

Branch instructions can create difficulties for
pipelined implementations of computer architectures.
The instruction fetch mechanism is often a stage in the

xk TABLE 7 -— ANALYSIS OF BRANCH INSTRUCTIONS

Unconditional Conditional
‘Program %Brnchs %Success %Succ %Unsucc %Succ $Unsucc

COBOLC 31.26 61.75 35.01 6.22 26.74 32,03
FORTGO 13.49 81.81 31.89 6.62 49.92 12.57
PL1GO 6.65 76.04 11.80 9.17 64.25 14.78
LINSY2 14,13 49.34 0.29 0.05 49,64 50.01
CeBOLGO 15.78 71.23 35.87 2,75 35.36 26.02
FORTC 21.60 64.41 24.59 3,22 39.82 32.37
PLIC 35.27 67.65 33.50 4.03 34.15 28.32
pipeline which is independent of the instruction
decoder, and therefore does not recognize branch
instructions. A naive implementation results in a
large number of wunnecessary instruction fetches

following a branch instruction, since the recognition
of the need to fetch instuctions from the branch target
comes too late,)

To address this problem the 168 has a rather
sophisticated mechanism by which both the instructions
following the potential branch and the instructions at
the branch target are fetched into two separate sets of
instruction buffers. Although the fraction of success
for potential branches seems to be a fairly consistent
60-80%, table 8 demonstrates that it depends heavily on
the particular type of branch instruction. The
designers of the 168 accounted for this fact by having
the instruction fetch mechanism use the specific opcode
of the branch to estimate the likelihood of success.

#%kk%x** TABLE 8
INSTRUCTIONS WHICH CAUSED BRANCHES, SORTED BY FREQUENCY

$ OF % SUCCESS

OPCODE = COUNT BRANCHES FOR THIS OPCODE
47 BC 1343374 56.365% 60.260% OF 2229306
07 BCR 555745 23.318% 69.504% OF 799591
87 BXLE 272120 11.418% 92,208% OF 295116
05 BALR 97030 4.071% 53.303% OF 182036
46 BCT 81041 3.400% 96.562% OF 83926
45 BAL 19646 0.824% 100.000% OF 19646
86 BXH 14387 0.604% 25.434% OF 56565
06 BCIR 3 0.000% 0.009% OF 34229
0A SsW 1 0.000% 0.420% OF 238

2383347 100.00%
In contrast, the 470 simply treats branch

instructions as if they had memory operands, and uses
the normal memory operand fetch mechanism to fetch the
first two words at the branch target location.
Pipeline complexity is minimized by having the
execution unit determine the results required for
conditional branches as early as possible. This is
consistent with the very successful philosophy of the
Amdahl designers to keep the pipeline as simple as
possible. Since we generally find that branch
instructions represent a smaller percentage of the
execution time for the 470 than the 168, it appears as
though the decision to use a simpler mechanism was a
good one. ’

Branch and Execution Distances

One of the common criticisms of the 370
architecture involves the absence of
program-counter~relative branch instructions. Table 9

is a typical branch distance distribution which
supports this attack, since 75-85% of the branch
distances are within 2048 bytes of the program counter.
The displacement of 12 bits used in RX branch
instructions could therefore have been used for most

172

branches so that base registers would have been
unnecessary for most program references. The fact that
50-60% of the branch distances are within 128 bytes of
the program counter indicates that even an 8-bit
displacement could be used to considerable advantage.

Although 95~99% of the longer branch distances are
within 32K bytes, there are still a substantial number
of longer branches (8M bytes and above) representing
calls to supervisor routines far from the user's
program area.

Most programs show a few important peaks in the
branch . distance distribution corresponding to the
important program ~loops. Note that the asymmetry
around the program counter is not sufficient to justify
other than a symmetric signed displacement for relative
branch instructions.

*%%*x** TABLE 9
BRANCH DISTANCES FOR SUCCESSFUL BRANCHES

(RELATIVE TO THE ADDRESS OF THE INSTRUCTION
FOLLOWING THE BRANCH INSTRUCTION.)

cmM %
INTERVAL COUNT FRM -2
-8388608 TO ~16777214 438 36.51%
~-4194304 TO -B8388606 0 36.47%
-2097152 TO -4194302 0 36.47%
-1048576 TO -2097150 0 36.47%
-524288 TO -1048574 0 36.47%
-262144 TO -524286 11 36.47%
-131072 TO -262142 0 36.47%
-65536 TO -131070 0 36.47%
-32768 TO -65534 5797 36.47%
-16384 TO -32766 36522 35.97%
-8192 TO -16382 36939 32.85%
-4096 TO -8190 22100 29.68%
-2048 TO -4094 23397 27.79%
-~1024 TO -2046 16830 25.79%
-512 TO -1022 24076 24.35%
-256 TO -510 36941 22.28%
-128 TO =254 31159 19.12%
-64 TO -126 65120 16.45%

=32 TO -62 69591 10.87%

=16 TO =30 46926 4.91%

-8 TO -14 10160 0.90%

-4 TO -6 292 0.03%

-2 T0 2 43204 3.70%

4 TO 6 109920 13.11%

8 TO 14 119401 23.34%

16 TO 30 97510 31.69%

32 TO 62 38946 35.03%

64 TO 126 44641 38.85%

128 TO 254 36311 41.96%

256 TO 510 45227 45.83%

512 TO 1022 38096 49.10%
1024 TO 2046 41504 52.65%
2048 TO 4094 28314 55.08%
4096 TO 8190 23357 57.08%
8192 TO 16382 30697 59.70%
16384 TO 32766 37796 62.94%
32768 TO 65534 5956 63.45%
65536 TO 131070 0 63.45%
131072 TO 262142 0 63.45%
262144 TO 524286 10 63.45%
524288 TO 1048574 0 63.45%
1048576 TO 2097150 0 63.45%
2097152 TO 4194302 0 63.45%
4194304 TO 8388606 0 63.45%
8388608 TO 16777214 438 63.49%

TOTAL 1167627

Table 10 shows information related to execution
distances, which is defined to be the number of bytes
of instructions executed between successful branch
instructions. The last column gives the equivalent
distance in number of instructions, obtained by
dividing the average execution distance by the average
instruction length for that program. It would seem to
be a reasonable estimate of the true average number of
instructions between successful branches.

x%%k%* TABLE 10 —— EXECUTION DISTANCE
Program Average Std. Dev. Avg. # Inst
COBOLC 19.86 17.25 5.18
FORTGO 28.52 31.03 8.33
PL1GO 69.40 34.11 18.89
LINSY2 41.40 25.92 14,17
COBOLGO 33.96 48,07 7.56
FORTC 26.05 25.08 7.15
PL1C 15.94 13.51 4.19

For most programs, the average execution distance
is surprisingly small (less than 32 bytes, which is the
cache line size) but the standard deviation is large.
There are often isolated peaks for relatively large
execution distances (see Table 11). With the exception
of the PLIGO program, which has the highest average
execution distance, 77% to 85% of execution distances
are less than 32 bytes. Distances less than 16 bytes
account for 40-60% of the execution distances. This
tends to justify the choice of 32 bytes for the
linesize of the cache on both machines, at least as far
as instruction fetch is concerned. This is also
consistent with older designs for instruction fetch
buffers, such as the IBM 360/91 which has a 64 byte
instruction stack.

**kxkkk TARLE 11
EXECUTION DISTANCES

AVERAGE LENGTH 33.964 BYTES
(7.556 INSTRUCTIONS OF AVG
LENGTH 4.495 BYTES)

LENGTH

(BYTES) COUNT CM %
0 0 0.0%
2 0 0.0%
4 12830 3.21%
6 61386 18.55%
8 24800 24.75%
10 18364 29.34%
12 44346 40.43%
14 26190 46.97%
16 12370 50.07%
18 55437 63.92%
20 12826 67.13%
22 12717 70.31%
24 8272 72.38%
26 2931 73.11%
28 15868 77.08%
30 5058 78.34%
32 114 78.37%
34 1926 78.85%
36 3552 79.74%
38 2 79.74%
40 1574 80.13%
42 2886 B0.85%
44 1 80.85%
46 8049 82.87%
48 100 82.89%
50 5601 B84.29%
52 0 B84.29%
54 228 84.35%

173

Opcode Pairs

The measurement of opcode pair frequencies
confirms that the overall frequency of an opcode is not
independent of the surrounding instructions. Pair
occurrences are also important in performance analysis
because of pipeline interlocks and other miscellaneous
issues such as memory store-through. Table 12 gives
the five most frequent opcode pairs for each program.
It is not uncommon for the measured frequency of those
pairs to be 4 to 9 times greater than the product of
the individual opcode frequencies.

An examination of the frequent opcode pairs fails
to discover any pair which occurs frequently enough to
suggest creating additional instructions to replace it.
Many of the instruction pairs which do occur frequently
are those that when combined would save only one opcode
field since the other instruction fields would still be

kx TABLE 12 — OPCODE PAIR DISTRIBUTIONS

COBOIC First Second % Pair % Freq.
Instr Instr Count Product RATIO

1 ™ BC 4,74 1.09 4.36
2 (CLI BC 4.08 0.93 4.36
3 CIL BC 2.67 0.61 4.40
4 BC CLI 2.57 0.93 2.75
5

BC ™ 2.00 1.09 1.84

FORTGO First Second & Pair % Freq.
Instr Instr Count Product RATIO

1 LE ST 7.37 1.72 6.29
2 ST AR 5.34 1.27 4.20
3 AR AR 5.29 1.45 3.64
4 AR BXLE 5.28 0.64 8.21
5 BXLE LE 5.13 0.59 8.66

PLIGO First .Secord % Pair % Freq.
Instr Instr Count Product RATIO

1 MVI MVI 7.65 2.51 3.05
2 AR AR 7.65 2,20 3.47
3 AR L 7.16 4,18 1.71
4 L AR 6.67 4,18 1.60
5 L A 6.00 1.71 3.50
LINSY2 First Second & Pair $% Freq.

Instr Instr Count Product RATIO
1 IR SR 7.26 1.31 5.55
2 BC LR 6.65 2.24 . 2,97
3 SLL Lb 5.39 0.40 13.54
4 LR SLL 5.22 1.01 5.19
5 LR AR 4,72 2.35 2,00

COBOLGO First Second % Pair $% Freq.
Instr Instr Count Product RATIO

1 L BCR 5.79 1.48 3.92
2 AP NI 5.20 0.72 7.28
3 L CwD 4.21 0.79 5.31
4 NI L 3.96 1.11 3.58
5 BCR L 3.73 1.48 2.52

FORTC First Second % Pair $% Freq.

Instr Instr Count Product RATIO
17 BC L 6.25 3.57 1.7
2 L L 6.19 7.54 0.82
3 ST L 4.03 3.34 1.21
4 L BCR 3.76 1.28 2.94
5 L ST 3.66 3.34 1.09

PLIC First Second % Pair % Freg.
Instr Instr Count Product FRATIO

1 CLI BC 6.54 1.65 3.986
2 BC IA 4.20 1.90 2,22
3 BC CLI 3.76 1.65 2.28
4 ™ BC 2.93 0.79 3.71
5 CR BC 2.26 0.58 3.89

174

required. Examples of this nature are test or compare
instructions followed by conditional branches (TM/BC,
C/BC). Many other frequent pairs are artifacts of the
program structure; a simple example is the pair which
consists of a loop branch and its target instruction.
Alexander [ALE75] mentions the load-branch pair as an
extremly frequent one for the XPL compiler (L-BC is
12.4% of the count). We find no pairs with such high
frequencies, and in particular find the load-branch
cambination to be significant only in two of the seven
programs. Frequent pairs often result from
peculiarities of software conventions; the
subroutine-call instruction (BALR) is often followed by
the unconditional branch (BC) because the first
instruction in almost all subroutines is a branch
around the name of the program. For the FORTGO
program, the extra branches (which could be easily
eliminated by putting the name before the first
instruction of the subroutine) cost 0.70% of the
execution time of the entire program. Many of the
programs have a similar extra cost of between 0.5% and
1.0% due to the same convention.

The distinction between the distribution of
instruction pairs executed and the static distibution
of instruction pairs in the program text should be
carefully made. Our results do not contradict findings
based on static analysis [FOS7la, HEH] that certain
pairs of instructions might be frequent enough to
justify replacement by a single instruction to improve
code density.

Registers and Address Calculation

The 370 architecture expresses addresses as the
sun of a 24 bit base value in a register with a 12 bit
displacement in the instruction. Some instructions
allow an additional 24 bit quantity in another register
to be used as an index. In all cases specification of
register 0 for the base or index indicates that a value
of zero is to be used in lieu of the contents of the
register. The hardware does not distinguish between
registers which contain addresses and registers which
contain index 'values, so the interpretation of
statistics about base and index register utilization
are difficult to relate to the program organization.
Nevertheless information about the occurrence of zero
in the register fields can be easily interpreted.
Table 13 shows that it is very infrequent for
instructions to specify the use of both index and base
registers. Except for the program LINSY2, which is
known to have many array references, 80% to 95% of the
indexed instructions 4o not use both base and index
registers. A reorganization of the 370 addressing
modes could profitably include a non-indexed mode in
which the space saved is wused for a longer
displacement.

kkkkkk TABLE 13

REGISTER USE FOR RX-INSTRUCTION
EFFECTIVE ADDRESS CALCULATION

Program ¥No Regs 81 Reg %2 Reg

COBOLC 0.39 95.51 4.09
FORTGO 0.96 77.25 21.79
PL1GO 0.09 82,05 17.86
LINSY2 0.24 65.04 34.72
COBOLGO 0.01 98.93 1.06
FORTC 4.08 87.95 7.97
PLIC 1.93 92.48 5.59

The distribution of register utilization for
address calculation shows that no more than 3 registers
account for most of the use. The others are used for
address calculation less frequently, or are used for
program accumulators.

P Cs e e i o e " - T ——

Operand Lengths

The TRACE program accumulates the distribution of
the lengths of all the operands for instructions for
which the operand lengths are not implied by the
opcode. These operand lengths are either fixed and
defined in other fields of the instructions (like the
number of registers specified in the Load Multiple
instruction), or are data dependent (like the number of
bytes which must be referenced before an inequality is
detected in a Compare Character instruction). These
variables are required to calculate the instruction
execution times.

For the purposes of exposition we have divided the
variable operand length instructions into three
classes: (1) the multiple register load and store
instructions (IM and SM), (2) the character
manipulation instructions, like Move Character (MVC),
and Compare Character (CIC), and (3) the decimal
arithmetic instructions like Add Decimal (AP).

IM/STM. The ST and IM instructions save and load
a contiguous set of registers designated by a starting
and ending register. From one to sixteen registers may
be moved by a single instruction. Table 14 shows a
typical distribution (from FORTGO) of the number of
registers stored and loaded. It is common for there to
be two peaks, one for a low value of about 2 to 3
registers for accessing data stored in consecutive
words, and another at a high value of 11 to 15
registers for saving and restoring registers across
procedure calls. The IM and S™ are not used
symmetrically: for a given number of registers loaded
or stored the frequency counts are often quite
different. For the FORTGO program, the average number
of registers used for S™M is 13.23, and for IM is 5.99.
For both machines, the marginal cost of storing one
more register is smaller than the execution time of a
load or store instruction, but there is a higher
overhead for starting each instruction for IBM than for
Amdahl. In both cases it is faster to use several
store or load instructions when 3 or fewer registers
are involved. Despite the fact that these instructions
are never among the most frequent, they contribute much
more to the CPU time than their frequency would suggest
because of their long execution time. For the FORTGO
program for example, the 0.67% of instructions which
are STM account for 6.66% of the IBM execution time and
4.59% of the Amdahl execution time.

Character Instructions. The second group of
storage-to-storage (5S) instructions are those which
specify a source and destination location for a
character string and a single length for both operands
in the range 1 to 256. One of the characteristics of
these instructions that makes their implementation very
difficult is that overlapped operands are allowed and
must be treated a byte at a time. This allows, for
example, a single byte to be propagated throughout a
string by a move instruction whose destination address
is one greater than the source address, since the
fields are processed left to right. Lower performance
machines in the 370 family implement these instructions
in all cases by processing each byte individually, but
for high performance machines this would be too slow.
Therefore both computers exhibit execution speeds for
the non—overlapped cases which are much higher than
that for overlapped. For the IBM Move Character
instruction, for example, the non-overlapped case takes
40 nsec per byte moved, but 240 nsec per byte of
overlapped move.

On jobs for which MVC is a frequent instruction
(PLIC and COBOIC) we find that the nonoverlapped case
occurs about 50 times more frequently than the
overlapped case., However, the average number of bytes

®kkk** TARLE 14

LENGTH DISTRIBUTION FOR STM

#REGS #TIMES PERCENT

2 17982 11.223
3 521 0.325
5 1082 0.675
6 839 0.524
8 1 0.001
9 4 0.002
10 3471 2,166
11 77 0.048
12 3741 2.335
15 128589 80.259
16 3911 2.441
AVG: 13.231 REGS

LENGTH DISTRIBUTION FOR IM

#REGS #TIMES PERCENT

2 151704 35.174
3 19726 4.574
4 25302 5.866
5 63802 14.793
6 897 0.208
7 10 0.002
8 30146 6.990
9 1105 0.256
10 3392 0.786
11 127559 29.576
12 3741 0.867
13 1 0.000
14 519 0.120
15 1 0.000
16 3392 0.786
AVG: 5.989 REGS

moved is less than 8 for the nonoverlapped move, and
greater than 50 for the overlapped move, The result is
that the 2% of the MWs which are overlapped are
responsible for 20% of the total MW time.

The overlapped MC instructions are used primarily
to fill a work area with a specific character, and are
probably most used to initialize 1/0 buffers. This is
confirmed by the peaks near 80 and 133 which correspond
to card and line printer buffers. For programs which
don't otherwise use MW but still do 1/0, the
overlapped case is an even higher fraction of all
occurrences of MW, For FORTC, for example, the 6%
overlapped MCs account for 52% of the MVC time.

Table 15 is the distribution of operand length for
MVC instruction in FORIC. It is representative of the
other distributions in the presence of large peaks for
small values, and an overall average of 10.06 bytes.
Since the startup overhead for these instructions is
large, there is almost always a less expensive way to
do the equivalent operation for a small number of
bytes. For one byte, a IC/STC combination takes less
than half the time of a one-byte MC on both machines.

Most of the other instructions in this variable
operand class are much less frequent than MVC. Among
them are the instructions for which the number of bytes
processed may be much smaller than indicated in the
instruction, such as Compare Character (CIc) and
Translate and Test (TRT). For these instructions, the
distribution of the length specified in the
instructions is a poor indicator of the length actually
used. A typical examples is COBOLC, where the average
CLC instruction specifies 4.53 bytes, but an average of

175

#*k%kx* TARLE 15

LENGTH DISTRIBUTION FOR MVC

BYTES #TIMES PERCENT

1 24263 52.518
2 2809 6.080
3 957 2.071
4 12871 27.860
5 898 1.944
- 6 64 0.139
7 10 0.022
8 34 0,074
9 4 0.009
10 3 0.006
1 3 0.006
12 2 0.004
13 1 0.002
14 10 0.022
15 5 0,011
16 5 0,011
17 2 0.004
18 1 0.002
19 1 0.002
20 11 0.024
21 8 0.017
22 9 0.019
23 2 0.004
24 9 0,019
25 14 0.030
26 1 0.002
27 2 0.004
28 9 0.019
29 1 0.002
30 2 0.004
32 6 0.013
33 8 0.017
a3 2 0.004
46 1 0.002
48 3 0.006
54 1 0.002
55 447 0.968
. 70 7 0,015
79 495 1.071

80 1367 2,959
81 872 1.887

89 2 0.004
90 14 0.030
120 21 0.045
132 942 2.039
TOTAL: 46199.

AVG: 10.062 BYTES
only 1.744 bytes are examined by the hardware.

Another instruction of note is the Exclusive Or
Character (XC) which is predominately used in total
overlap mode in order to zero fields. This fact was
used to advantage in the 168, where the total overlap
case is specially optimized to be 15 times faster than
the other overlap cases. This was not done for the
470, which explains that X accounts for 9.6% of the
COBOLC program for the 470, but only 3.0% for the 168.

Decimal Instructions. The third group of
storage-to-storage instructions consist primarily of
those for decimal arithmetic. They appear in
significant numbers only in the COBOLGO program. ¥For
that program, however, they account for 26.29% of the
count, and represent 66.39% of the IBM execution time
and 64.30% of the Amdahl execution time. These
instructions can vary in execution time by as much as
16 to 1 depending on the operand lengths, but the large
execution time arises despite the fact that relatively
short operands are common. Most operands are 2 to 6

176

bytes long even though the maximum possible is 16. The
average execution time of the Divide Decimal (DP)
instruction is about 15 usec for both machines. Not
suprisingly, the average instruction execution rate for
the COBOLGO program (.810 MIPS for IBM, 1.353 MIPS for
Amdahl) is drastically smaller than the average for all
the programs (3,519 MIPS for 1IBM, 5.518 MIPS for
Amdahl). Considering the popularity of COBOL as a
programming language, these instructions, which require
slow serial byte processing, represent a major
degradation of the speed of the machines.

In view of the poor performance of many of the
variable operand length instructions, their inclusion
in the the architecture of a high-performance computer
is questionable. The absence of such instructions in
machines like the CDC 7600 and the CRAY-1l is indicative
of their emphasis on high speed. The arithmetic which
must occur before these instructions begin their data
transfer suggests that it is quite difficult to
optimize them for short operands. A compromise, if the
execution of these instructions cannot be optimized,
may be to supply simpler instructions from which the
more complex character and decimal instructions can be
composed, as illustrated by the byte instructions of
the PDP-10. An immediate improvement could be obtained
if compilers were to replace these instructions by
faster equivalents when they are available, but this
would require tailoring the compilers to specific
models of the computer series.

Cache Effects

The correction due to cache misses ranges from 1%
to 5% for IBM, but from 3% to 19% for Amdahl,
indicating that the memory subsystem is a major
bottleneck for the Amdahl machine. In some sense the
memory architecture forces the 470 to lose some of the
raw speed advantage of the CPU. There are two factors
which contribute to the problenm. The cache
organization of the Amdahl machine produces from 1.7 to
3 times the number of cache misses, and the penalty for
each miss is 1.56 times that for IBM. Thus the overall
cache penalty for Amdahl is 2.5 to 4 times more than
IBM, whereas the raw execution speed, defined as Tins
(the time required to execute the instructions with no
cache misses) is 1.9 times faster than IBM. The loss
due to the cache organization could have been
eliminated, but to maintain the raw speed advantage
would have required a cache miss penalty of 250 nsec,
which would not have beern economically feasible at the
time. The dilemma of Amdahl may result from a mismatch
between the MOS memory chips available commercially and
its proprietary ECL LSI technology which is far more
advanced.

Pipeline Effects for the 470

Because the timing formulas for the Amdahl machine
include specific pipeline variables, we can assess
their effect on the execution. The pipeline is
optimized for 4-byte instructions which have single
word operands, and any deviation causes potential
conflicts with subsequent instructions.

The seven pipeline variables depend upon local
instruction sequences (for exammple S1 and DWD
described earlier), and therefore cannot be computed
from glcbal averages. The exact evaluation of these
variables would require a complete ‘and complex
simulation of ‘the pipeline at the time the program is
traced. As a compromise, we use the pair and triple
frequency data collected while tracing to reconstruct
instruction sequences and average the variable value
for each sequence.

gt

In general, the speed degradation due to pipeline
conflicts seems to be quite small. For most programs,
each of the variables contributes less than 0.5% to the
total execution time. The only cases of a larger
contribution are when the variables affect specific
instructions which occur frequently. For the COBOLGO
job, an average additional 1.1 cycles (35.75 nsec) is
2dded to each decimal instruction. This represents a
1.35% increase in execution time. For PL1GO, the
doubleword store instructions result in an additional
1.17%. For LINSY2, the delay caused by late setting of
the condition code needed for conditional branches adds
0.3%. Although there are wide variations, these worst
case examples demonstrate the overall good design of
the pipeline.

Summary

A verifiable model of CPU performance using simple
and reusable tools shows that basic CPU speed as seen
by the user is significantly degraded by memory and
operating system effects., This performance analysis,
based on instruction timing rather than frequency data,
shows also that a few instructions can be
disproportionately costly. Many traditional problem
areas for high performance computers seem to be under
control. The instruction pipeline functions well and
branching has little deliterious effect. Memory can be
a bottleneck, but the effects of cache store~-through
policies are negligible. No popular instruction pairs
cause particular difficulties, and they are often
program-specific artifacts.

Program usage seems to be inconsistent with
high-performance implementations in some areas.
Decimal arithmetic may be convenient for some
applications but is disastrously slow. Storage to
storage instruction operands are almost always short
and those instructions have high startup costs. Some
special cases allowed by the architecture (such as
totally overlapped Exclusive-Or) must be individually
optimized or performance will suffer. Interaction with
the operating system is not only visible because of the
time charged for its services, but also because it
seriously affects the program miss ratio by disturbing
cache memory contents.

These conclusions suggest that designers of
high~per formance computers should consider the
following items to be important: (1) faster memory,
(2) more efficient cache, (3) simple pipelines, (4)
avoidance of . instructions which require serial
processing of small data elements, and (5) high-speed
decimal arithmetic if it must be included at all.

Conclusion

The performance evaluation techniques described in
this paper allow us to draw conclusions about the
architecture and the implementation of two
high~perfomance computers with the same architecture.
The time spent by an executing program can be
apportioned among the various system components. The
confidence in the results derives from the verification
of the model with actual performance. The accuracy
exhibited by these techniques and the ability to change
the timing formulas to reflect changes in . an

implementation allow the designer to predict the
performance effects of those changes on future
machines.

ACKNOWLEDGEMENTS

The considerable assistance and advice of Forest
Baskett was essential to this work. John Banning was
very helpful in criticizing an early version of the
paper. We thank Amdahl Corporation, and specifically
Kornel Spiro, Manager of Computer Architecture, for
their cooperation and for the generous use of an early
version of the instruction statistics program
originally developed at Amdahl. We are indebted to
Chuck Gray at the University of Michigan for running
benchmark jobs on their Amdahl 470. The original
incentive for the analysis of machine traces is due to
Harry Saal. It should be emphasized that the results
and discussions are strictly unrelated to any current
or future architectural efforts of the manufacturers
involved.

REFERENCES

Efficient
12/72,

[AGA73] D.P., "Design of an

Agarwal,
Set", Carnegie-Mellon,

Instruction

11/73
[AGA75] Agajanian, A.H., "A Bibliography on System
Performance Evaluation", Computer, November
1975, pps 63-74.
[ALE72] Alexander, W.G., "How 2 Programming Language
is Used", Computer Systems Research Group,
University of Toronto, Report CSRG-10,
February 1972.

Alexander,; W.G., Wortman, D.B., "static and
Dynamic Characteristics of XPL Programs",
Computer, November 1975, Vol 8, 11, pps
41-46.

IALE?S]

Reference Manual,
MrM 1000-1, 2nd

[AMD] Amdahl 470V/6 Machine
Amdahl Corporation, Form No.
Ed., 1976, Sunnyvale, Calif.
[ANA] Anagnostopoulos, P.C., Michel, M.J., Sockut,
G.H., Stabler, G.M., VanDam, "Computer
Architecture and Instruction Set Design", NCC
1973, pps 519-527.

Arbuckle, R.A., "Computer Analysis and
Throughput Evaluation", Computers and
Automation, January 1966, pps 12-15.

[ARB]

Bencher, D., "0S/VS2 Release 1 Functional
Description", SHARE XL Proceedings, March
1973, pps 320-324.

[BEN]

Connors, W.D., Mercer, V.S., Sorlini, T.A.,
"5/360 Instruction Usage Distribution", IBM
Systems Development pivision, Report TR
00.2025, Poughkeepsie, N.Y., May 1970.

fCon]

{EME] Emery, A.R., Alexander, M.T., "A Performance
Evaluation of the Amdahl 470V/6 and the IBM
370/168", MG IV, October 1975, San
Framcisco.

[FLY] Flynn, M.J., "Trends and Problems in Computer

Organizations", Information Processing 74,
North Holland Pub. Co., pps 3-10, 1974.
[FOS7la] Foster, C.C., Gonter, R., "Conditional
Interpretation of Operation Codes", I1EEE
'{Bgnﬁl on Computers, January 1971, pps

177

[FOS71b] Foster, C.C., Gonter, R.H., Riseman, E.M.,

[GIB]

[HAN]

[BEH]

[HUG]

[IBM]

[JAY]

[KAP]

[LIP]

[LUN]

[MER]

[MUR]

[ROS]

[SNI]

[VAN]

[WIN]

"Measures of Opcode Utilization", IEEE
Transactions on Computers, May 1971, pps
582-584.

Gibson, J.C., "The Gibson Mix", IBM System
Development Division, Report TR 00.2043,
Poughkeepsie, N.Y., 1970. Research done in
1959,

Haney, F.M., "Using a Computer to Design
Computer Instruction Sets", Carnegie-Mellon,
May 1968 PhD Thesis

Hehner, E.C.R., "Matching Program and Data
Representations to a Computing Environment",
Computer Systems Research Group, University
of Toronto, Report CSRG-44, November 1974.

Hughes, J.H., "A Functional Instruction Mix
and Some Related Topics", International
Symposium on Computer Performance Modeling
Measurement and Evaluation, Cambridge, Mass.,
March 1976.

IBM System/370 Model 168 Theory of Operation
/ Diagrams Manual, Form No. SY22-6931-6936,
Volumes 1-6, IBM Corporation, Poughkeepsie,
N.Y., 1974.

Jay, R.M., National CSS Inc, Distribution at
SHARE, New York, August 1975.

Kaplan, K.R, Winder, R.O, "Cache-Based
Computer Systems", Computer, March 1973, pps
30-36.

Lipps, H., "Instruction Timing for the CIC
7600 Computer®™, European Organization for
Nuclear Research, CERN 75-19, Geneva,
December 1975.

Lunde, A., "Evaluation of Instruction Set
Processor Architecture by Program Tracing”,
Depar tment of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pa.,
July 1974.

Merrill, B., "370/168 Cache Memory
Performance", SHARE Computer Measurement and
Evaluation Newsletter, July 1974, pps 98-101.

Murphey, J.D., and Wade, R.M., "The IBM
360/195 in a world of Mixed Job Streams",
Datamation, April 1970, pps 72-79.

Rossmann, G.E., Palyn Associates, unpublished
cammunication.

Snider, D.R., et al, "Comparison of the
Amdahl 470 V/6 and the IBM 370/195 Using
Benchmarks", Argonne National Laboratory
Report ANL-76-50, March 1976.

VanTuyl, W.H., "An Engineering View of
Performance, IBM System/370 Model 168", SHARE
Computer Measurement and Evaluation Selected
Papers, Volume II, p 816-829, August 1973

Winder, R.O., "A Data Base for Computer
Performance Evaluation", Computer, March
1973, pps 25-29.

178

