Proc. 1984 ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, August 21-24, 1984, Cambridge, Mass.
Also, Performance Evaluation Review, 12, 3, August, 1984.

Program Optimization for a Pipelined Machine
A Case Study

Jomn Sanguinetti
Amdahl Corporation

Abstract: The Amdahl 580 processor is a pipelined
processor whose performance can be affected by
characteristics of the instructions it executes.
This paper describes certain optimizations made to
a set of system software routines during their
develomment, The optimization effort was driven
by the execution frequencies of common paths
through the programs in question, and by the
execution characteristics of those paths, as shown
by a processor similator. Path optimization
itself was done with both general program
optimization techniques and with techniques
specific to the particular characteristics of the
580's pipeline., Overall, the average execution
time for these routines was reduced by over 50%.

1.0 Introduction

The performance of a pipelined central
processor typically varies depending on the
instruction sequence of the program being
executed. A significant performance improvement
can often be made to a given sequence of
instructions by altering that sequence to take
advantage of pipeline characteristics, Overall
improvement to the performance of a program can be
effected by optimizing the nost frequently
occurring instruction sequences, or paths, This
paper is a report on a project which optimized a
particular set of system software routines which
execute on the Amdahl 580 séries of computers.,
The optimizations were made taking into account
the pipeline characteristics of the 580 central
processor and they resulted in significant
performance improvement. Because this project was
done by the manufacturer of the target processor,
detailed information about the characteristics of
the processor were available.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-141-5/84/008/0088 $00.75

The software in question is a small piece of
a larger system which was designed and implemented
in the same manner as many other modern software
development projects, with the designers producing
a functionally correct implementation first, and -
optimizing its performance secord. The techniques
and tools used to improve the performance of the
initial implementation are generally applicable to
program optimization problems, though some of the
optimizations made were specific to the design of
the pipeline in the 580 processor.

In order to optimize the set of routines,
path frequencies were required to know which paths
were the most important. This required meaningful
workloads which could be instrumented to determine
the frequency with which each routine was
executed, and, within each routine, which paths
were executed, Of course, different workloads
generate different path frequencies ¢ SO the result
of this step is a set of frequencies for each
workload with which to evaluate the performance.

Once the path frequencies were identified,
their execution times were needed, Ultimately,
path times and frequencies are all that is
necessary to determine the total amount of time
the routines consume. However, in order to make
improvements in the paths, more information about
their execution characteristics is needed. In
order to provide this information, a program which
simulates the behavior of the processor was used.
The input to this simulator is an instruction
Sequence, complete with operand addresses and
values, and the output is a detailed description
of the flow of this sequence through the processor
pipeline. Identification of delays due to storage
contention and pipeline interlocks are especially
useful in optimizing an instruction sequence,

Finally, in order to ocbtain an overall figure
of merit to be used to evalwate each successive
refinement of this software, a weighted average of
time per path was obtained. This was simply the
time of each path weighted by the path's
freguency. Thus, a different weighted average was
obtained for each workload. Because the processor
simulator describes execution characteristics in
tems of cycles, time is expressed here as number
of cycles {the cycle time in the Amdahl 580
Pbrocessor is 23.25 ns),

The method for evaluating the subject
software consisted, then, of the following steps:

.
~

1) obtain path frequencies for the routines for
several different workloads.

2) generate an instruction sequence for each path
whose frequency is significant.

3) use the simulator to obtain execution
characteristics of each path.

4) use the path times and frequencies to produce a
weighted average of time/path to use as an
overall figure of merit for each workload.

Once the performance of the software in
question was evaluated, it could be optimized in a
relatively straightforward manner. This process
consisted of selecting a path to be optimized and
then analyzing its execution characteristics, A
path's execution time was improved by applying the
techniques described in section 4.

2.9 Obtaining path frequencies

Path frequency infommation is wvital to a
pgrformance evaluation of a piece of software, and
likewise, it is vital to an optimization effort.
Typically, a small number of paths accounts for
the majority of the execution time (the 90-10 rule
is nearly universal, and this case was no
exception), and these are the paths which most of
the effort should be concentrated on.

Path frequencies, of course, are workload
dependent, and thus must be derived from workloads:
which have some relationship to the ultimate
production envirorment. Because this is system
software, it will be used by a wide variety of
workloads. We chose three workloads that
represent batch, time-sharing, and tramsaction
processing workloads.

explanation:

G - address generation

B - high—speed buffer access
L - logical testing

E - execution unit cycle

W - write results

occurs.

* The type of delay is labelled:
CCI - condition—code interlock
EEI - execute—execute interlock
EGI - execute-generate interlock
IFCH - instruction fetch cGelay

* This sequence takes 30 cycles.

e Gt S St St . S e S S, e S S e ot S e S Bl et e e A S S et S TS —— _——h S " St s Yoy S i St St St S S Smor

address instruction
048066 LR 1806 = = = =~

1 - -
2 048068 N 54008220 = = - = - GBLEW

3 04806C BC 4770C14A - - CCI - GGBLEW

4 048070 L 5820800C = = = = = = GBLEW

5 048074 1A 41300020 -~ -~ IFCH~ -~ - GBLEW

6 048078 ALR 1E32 - - - = EEI -~ - - - GBBLEW

7 04807A IR 182l = = = = = = = = =~ - GGELEW

8 04807C N 5420B2BC = = = =~ = = = = = GBLEW

9 048080 LA 41F00020 = = = = = = = = = = GELEW

10 048084 SRL 88FO0002 — = = = = = = = = = GBLEEEEW

11 048088 ALR 1E4F - =~ -~ EEl = = = ~ = ~ = GBBBBELEW

12 048082 ALR 1F48 = = = = EEI = = = = = = — GGGGGBBLEW

13 04808C MVC D2034000D040 EGI - - = = —= = - - - - GGGGGELEW
14 04808C MVC D2034000D040 = = = = = = = = = = = = = = GRLEW
15 04808C MVC D2034000D040 === ==« « -~ - - - GELEW

* The 580 central processor has a 5 stage pipeline:

* Each line in the picture represents a pipeline flow. Each character position in the pipeline flow
represents one cycle, Delays are represented by repetition of the cycle letter in which the delay

* Some instructions (e.g. 10) require several cycles in the E-stage.
* Some instructions (e.g. 13) are implemented by more than one flow through the pipe,

If more than one type of delay affects an instruction, the longer one is indicated.

Picture of the Pipeline Flow of an Instructicn Seguence
Figure 1

- — ———— ot s i et B St e S po—
— — —— — — o — o— — o . T——— T {——" ‘o — T—— b SO S T— = S St s

Actually obtaining frequencies

for these Once the instruction Sequence was obtained,

routines is simply a nmatter of running the it could be used directly by the processor
workload in question and counting each occurrence. simulator to give its execution characteristics,
Of course, there are a number of complications. Because pipeline processors have quite complicated
Since the code itself could be easily execution characteristics, a simulator ig
instrumented, obtaining the path frequencies was necessary to understand the execution behavior of
relatively easy after the system under development a given instruction sequence — see [7] for a
progressed to the point that the workloads could discussion of pipeline processors., The simulator
be run, Before the system was operational, path produces the overall number of cycles required by
frequencies could only be obtained by the instruction sequence, along with d&etailed
extrapolating from data obtained on other machines breakdowns of cycles by instruction, delay type,

using different operating software.

3.0 Obtaining path lengths

etc, For code optimization purposes, the most
useful output is a 2—dimensional picture of the
pipeline activity, as shown in figure 1. fThis
picture makes particularly inefficient sequences
of code obvious, highlighting where the code needs
to be improved, As an exanple, figure 2 has an

In order to obtain the length, and other instruction sequence which is functionally
execution characteristics, of a path, an identical to the sequence in figure 1, but the
instruction sequence for the path had to be instructions have been rearranged to improve its
generated, This was done by running the routines pipeline execution behavior, Note that all of the
in a virtual machine (a modification of VM/370) interlocks have been avoided — a fairly wnusual
that had the capability to trace instructions, A& case,

test program was used which ocould force the
various routines through the desired paths. When
the test program was executed with tracing active,

* This sequence takes 21 cycles.

* There are no interlocks in this sequence,
* Most of the instructions have been moved within the sequence,

* The MVC instruction at 13 was replaced by a L and ST at 10 and 14,

A Modification of the Sequence in Figure 1

Figure 2

the desired instruction sequence for each path was 4.0 Optimizing techniques
obtained.
Selecting the paths to be optimized in the

We should note here that, though the proper order is easy, given the frequency and path
instruction sequence for any given path is unique, length information, Doing the optimization
the operands for each instruction in the path are itself, of course, is not so easy., It was found
not, and their variation can affect the execution that applying a few basic strategies was effective
characteristics of the path. The routines being in optimizing most of the paths. We assume here
optimized here have relatively few operands whose that there are no glaring inefficiencies in the
use is quite regular, however, so this is a algorithms used, 1In fact, all of these routines
second—order effect, and consequently was ignored.. - were quite straightforward,
'] s K3 3 ’
] address - pipeline flow |
| 1 048066 A 41F00020 = = - - - GBLEW]
| 2 04806A LR 1806 -~ ~ =« = = = = = GBLEW |
| 3 04806C LA 41300020 - - - -~ - - GBLEW |
} 4 048070 ALR 1F48 = = = = = = = = - GBLEW |
] 5 048072 SRL 88F00002 - = - « = = = GBELEEEEW |
| 6 048076 N 54008220 - - ~ = = = - - GBBBBLEW |
| 7 04807A L 5820800C - - - = = - — — GGGGRLEW |
| 8 04807E BC 4770C14A ~ - = ~ = - - - o . GBLEW |
| 9 048082 ALR 1E4F - = = = - - GELEW |
] 10 048084 L 5800D040 - = - - = - = = = _ o GBLEW |
] 11 048088 ALR 1E32 = = = m = = — = = o o — _ _ GELEW |
i 12 04808A IR 1821 = = = - e o Lo GBLEW |
| 13 04808C N S420B2BC = = = ~ = - = = o o _ _ _ GELEW |
| 14 048090 ST 50004000 - — = = = — = = — _ _ _ _ GBLEW]
| |
] |
| explanation: |
] |
] I
|]
| |
]]
|]
| |
l |
| |
] |
| |
|]

90

N

The routines which were optimized in this
project are all fairly small, but have reasonably
high frequencies. At the start of the
optimization effort, the 17 nmost comon paths
ranged in execution time from 109 cycles to 994.
In the batch workload, the weighted average was
278.6. (Note that we are concemed here with
processor cycles only. Buffer misses, which add
considerably *~ to the cycles required, are
considered separately.,) Thus, small changes in
path lengths were generally significant — each
cycle saved would usually represent 1/2% to 1% of
the path — and a number of small changes would
easily add up to significant improvements. By the
end of the optimization effort, the range had been
reduced to 50 to 360, with the weighted average
reduced to 121,8,

4.1 Machine~independent code optimizations

There are a variety of optimization
techniques which are more or 1less machine
independent which were used here (see [1]). For
other machine-independent optimizations unrelated
to the techniques used here, see [2] and [3]. The
specific techniques were:

* Optimize common cases

In optimizing a routine, knowledge of the
most commonly occurring cases allows tailoring the
code to those cases, usually at same cost to the
less frequent cases. For exanple, by assuming
that an operand will be a particular wvalue, the
time to compute a transformation on that operand
can be saved by simply checking the expected value
and supplying the precomputed transformation
result, Figure 3 contains an example of this type
of optimization,

* Optimize branches

In any given routine, there are usually
several possible paths. Usually, one or two are
the most comon, while the rest are virtually
never executed. In a pipelined processor, there
is usually a penalty associated with branches
which are taken (as opposed to conditional
branches which fall through). This is due to the
necessity of generating the branch address before
being able to begin instruction fetch, and usually
amounts to one or two cycles (in the 580, it is
one cycle). Consequently, it is advantageous to
make the most common path "fall through" — i.e.
contain no taken branches. See figure 4 for an
example. (See [4] for a more sophisticated method
for optimizing branches.)

* Optimize subroutine use

Making extensive use of subroutines is
generally accepted as a good design practice,
However, subroutine linkage nearly always imposes
a non-trivial execution cost. Depending on the
path length, the subroutine 1linkage code can
occupy a significant number of the required
cycles., In the software we started with, a
particularly flexible subroutine calling
convention had been established and was rigidly
adhered to. Even though the use of subroutines
was not excessive when looked at from a functional

91

original:
L R1,PTR low order 2 bits is the
IA R2,3 length
NR R2,R1l isolate the coded length
SLL R3,0(R2) multiply by 2**code
N R1,=X'FFFFFFFC' remove length

- -~ remainder of path - -

optimized:
™ PIR+3,3 test for the common case
BNZ UNUSUAL non-zero is unusual case
L R1,PTR low order 2 bits are 0

- - remainder of path - -

explanation:
* R3 contains a displacement to be multiplied
by 1, 2, 4, or 8.

* PIR contains an address and an encoded.
* The original code is replicated at 1label
UNUSUAL,

* The normal case has been reduced by at least
5 cycles, while the unusual case has been

lengthed by 3.

Optimizing a Common Case
Figure 3

S . S > —— —. — o B S SO) e . S Tt TS Suroe —— S S S S " St S o oo, e S

viewpoint, the cost of the subroutine linkage was
excessive, = By removing all subroutine calls from
the commwn paths, and putting the necessary code
:'uaéine, path lengths were reduced by an average of
2 .

* Optimize instruction use

In processors like the 580, instruction time
differs based on the <characteristics of the
instruction. Particularly, those instructions
which have two operands in storage are more
expensive than those with only one in storage and
the other in a register, Also, instructions which
store results into memory generally cause an extra
cycle of delay since writing the result will often
collide with (and delay) a subsequent buffer read.
Consequently, modifying a routine to avoid these
instructions can yield performance improvement.
For example, see the replacement of an MW
instruction by a Load and a STore in figures 1 and
2,

4.2 Optimize instruction seguences

This optimization is generally pipeline-
dependent and is far more difficult than the other
techniques described here. The point here is to
improve the instruction flow through the
processor's pipeline, This is done primarily by
rearranging instructions in the sequence so that
interlocks and delays are avoided. In order to do
this, an aid like the processor similator is
necessary, since the behavior of the pipeline is
quite complicated,

* The optimized code has no taken branches in
the more frequent path. This saves at least
2 cycles. .

* The most frequent path is now shorter, and
more likely to fit in the high-speed buffer,

Optimizing Taken Branches
Figure 4

| |
| original: |
] C Ri,O0Pl |
| BNE CASE2 |
| L R2,XYZ this is the more I
| A R2,O0NE .common case |
] B COMON |
| CASE2 L R2,ABC this is the less |
] S R,ONE common case |
| COMON - - remainder of path - -]I
|

| optimized: |
| C R,0RP1 |
| BNE CASE2 I
| L R2,XY7Z this is the more |
| A R,ONE common case |
| COMMON ~ - remainder of path - - {
|

] CASE2 L R2,ABC this is the less |
] S R2,0NE common case]
; B COMMON }
; explanation; :
| |
| |
|]
|]
]]
| |
|]
| |
]]

There are several classes of pipeline
interlocks which are commn to most pipeline
processors — see [6], [71, and [8] for
discussions of pipeline processors and their
interlocks. Many interlocks can be avoided,
depending on the logic of the program, by
rearranging the instruction sequence. See [5] for
an algorithm to rearrange code for a simple
pipeline.

* CCI - condition code interlock

A CCI interlock occurs when one instruction
sets the condition code and the next instruction
is a conditional branch. This is a common
sequence, whose execution looks like:

C R1,0P GBLEW
BE TARGET GGBLEW
|
CCI interlock

This interlock can be eliminated by inserting
another instruction, which does not change the
cordition code, between the two instructions. In

effect, the otherwise wasted cycle is used to do
something that would have to be done later:

C R1,0pP GBLEW

L R2,10C GBLEW

BE TARGET GBLEW

92

* EEI - execute-execute interlock

An EEI interlock occurs when an operand for
the execute stage (E-stage) of the instruction is
Still being modified by a previous instruction.
An example is:

A R1,0PA GBLEW
s R1,0PB GBBLEW
|
EET interlock

This interlock is eliminated by separating the two
instructions with others which do not use the
operand in contention. Note that, in this case,
it requires 2 intervening instructions (cycles)
rather than one:

A R1,0PA GBLEW

L R2,10C1 GBLEW
L R3,L0C2 GBLEW
S R1,0PB GBLE

W
Again, the interlock is eliminated by making use
of the otherwise wasted cycles.

* EGI - execute-generate interlock

An EGI interlock occurs when one instruction
computes a value and the next instruction uses
that value to generate an address. An example is:

GBLEW
GGGGBLEW
N I B
EGI interloc

A Rl,OP
ST R2,0(,R1)

The solution to this case is the same as for the
previous two cases, separate the two contending

instructions:
A Rl,0P GBLEW
L 3,101 GBLEW
L R4,10C2 GBLEW
L R5,L0C3 GBLEW
St R2,0(,R1) GBLEW

* SFI - store-fetch interlock

An SFI interlock occurs when one instruction
stores a value and the next instruction uses it
for an operand. an example is:

ST R2,ABC GBLEW
A R1,ABC GB I'.' LLEW
1
SFI interlock
Bere, the value being modified cannot be

referenced as an operand until after it has been

written, causing a delay of 2 cycles. The
solution to this interlock is similar to the
others, but this one requires 2 instructions
inserted between the STore and the Add:

ST R2,ABC GBLEW

L R3,10Q1 GBLEW

L R4,10C2 GBLEW

A R1,ABC GBLEW

i

There is a better solution to this particular
sequence, however, and that is to replace the Add
instruction with an AR (Add Register) instruction:

GBLEW
GBLEW

ST R2,ABC
AR R1,R2

there are no interlocks,
instructions are required. This example is not as
specious as it at first appears. In most cases of
SFI interlocks, the value being stored is being
stored from a register, and it can be used from
the source as well as the destination in many
instances.

Now,

There are other classes of interlocks, but
those are the most common ones that it is feasible
for the programmer to eliminate., Of course, the
cost of rearranging code as suggested here is in
tems of readability, and thus, maintainability.
It is also the case that for these techniques to
be successful, the instruction sequence must

contain a number of unrelated instructions.
Typically, logic constraints prevent moving
instructions around encugh to eliminate all
interlocks.

Another phencmenon which occurs when moving
instructions around is that one interlock will be
removed, only to be replaced by another. The
existence of bypasses (see below) complicates the
pipe's behavior to the point that it is very
difficult to predict the result of a substantial
change to an instruction sequence.

4.3 Pipeline bypasses

Pipelined processors usually include bypasses
from stage to stage within the pipe to avoid
interlocks. The EEI example above illustrates one
in the 580, which is why the interlock case has
only a 1 cycle delay instead of a 2 cycle delay.
Another commonly used bypass in the 580 pipeline

improves the flow of a Load-STore sequence, If°

there were no bypasses in the pipeline, a Load-

STore sequence would look like this:

L R1,10C1 GBLEW
ST R1,LOC2 GBBBBLEW
In fact, there is a bypass here which is a

special data path that allows the result from the
E~cycle in the Load instruction to be fed back to

the beginning of the E—cycle of the STore
instruction. So the Load-STore sequence 1looks
like this:

L R1,1CCL GBLEW

ST R1,LOC2 GBLEW

This bypass is effective for any instruction
following the Ioad instruction which uses the
contents of the register as an operand — i.e,
this eliminates an EEI-type interlock. It was
found that using this bypass could eliminate a
large number of interlocks in the routines that
were optimized here. For these sequences, the
instructions could either be separated by several
instructions, or put immediately adjacent.

and no additional

An interesting consequence of bypasses is
that some instruction sequence modifications which
appear to be improvements in fact introduce delays
instead of reducing them. As an example, consider
the following sequence:

L R1,LOC1 GBLEW
ST R1,LOC3 GBLEW
L R2,10C2 GBLEW

Without using the processor simulator, it would
appear that the sequence would be better if it was
rearranged as follows:

L R1,10CL GBLEW
L R2,10C2 GBLEW
ST R1,10C3 GBBBLEW
Il
EEI interlock

In fact, as can be seen from the picture of the
pipe flow, the reordered seguence is worse.

Another example of the complications which
bypasses introduce into pipeline optimization is
as follows, This is a seguence which both uses an
operand and copies it to another storage location.
It is not obvious that there should be a
difference in the pipeline characteristics of the
two altemative sequences. The first sequence
uses the bypass between the L (Load) and AR (Add

Register) instructions, but defeats the bypass
between the L and ST (STore) instructions.

L R1,10C1 GBLEW

AR . RL,RL GBLEW

ST R1,LOC2 GBBBLEW

I
EEI interlock

The second altemative uses the bypass between the
L and ST, However, the AR instruction does not
require a bypass because the wvalue in Rl has been
updated in time (the L cycle).

L R1,LOC1 GBLEW
ST R1,10C2 GBLEW
AR R2,R1 GBLEW

4.4 High-speed buffer considerations

Buffer (cache) misses could have a
significant impact on the execution time of a
sequence, If an instruction or operand is not in
the buffer, a penalty of anywhere from 11 to 30
cycles could occur, depending on the special case.
Just one or two buffer misses could lengthen an
instruction sequence by up to 30%. For
instructions, the execution frequency of the path
will determine the 1likelihood that the math
suffers buffer misses. For operands, the
reference frequency will detemine the miss
frequency. Consequently, if paths overlap (i.e.
use common subroutines) or use common data areas,
the reference frequencies of those common items
will be higher than they would be otherwise, and
dtge:efo:e, the path's overall miss rate will go

WI,

s
e

e

_ Scratch storage.

The high-speed buffer in the 580 processor is
managed in a fairly conventional way,
approximating a least~recently used replacement
policy. Depending on the workload's memory
reference characteristics, the frequency of
reference required to maintain a given memory
location in the buffer can be calculated. This
frequency was found to be around 600 invocations
per secord for the workloads studied. So, those
paths which were executed less frequently than 600
times per second were candidates for use of
subroutines for common operations, while those
with a higher frequency always used inline code.

It turned out that the most common paths had
invocation frequencies greater than 600 per
second, so using inline code was always better
than using subroutines. However, there were paths
whose frequencies were not high enough to assure
buffer residence, In these cases, it was found
that by using a mich more special purpose (i.e. ad
hoc) calling convention, the space and buffer
benefits of using a subroutine could be obtained
at an acceptable cost in terms of additional
cycles in the path.,

Most of these routines use a work area for
By ensuring that they all use
the same work area, that set of memory locations
is guaranteed to be referenced frequently enough
to always be buffer-resident, Similarly, most
routines use assembled-in constants. By packing
all the constants together, the minimum number of
buffer locations can be used, and their frequency
will be high enough to assure buffer-residence.

4.5 Hardware modification

Changing the hardware was an option which was
available to this project that is not normally
available to a software development effort. In
this case, two expensive instructions were
improved (substantially), resulting in an overall
reduction of 128 in the weighted average path
length for these routines. Because changing the
hardware is the most ive optimization
available, it is very difficult to make a case for
a hardware change unless all avenues for improving
the software have been explored. Once the
frequent paths had been analyzed by the processor
similator, the long instructions became obvious,
and the impact of speeding them up could be
detemmined easily,

5.0 Conclusions

The techniques used in this project are well-
established, with the exception of the pipeline
optimizations. The highlights of this effort lie
in the tools used. Obtaining the path frequenc;ies
is the crucial first step of an organized
optimization effort. Obtaining path execution
characteristics is likewise necessary, though the
method used here is not the only one that could be
used, Particularly, an estimate of path timings
could have been obtained using graph techniques as
described in [9].

94

The results of doing these optimizations were
significant, As in most performance enhancement
pProjects, a few changes were made at a time, with
measurement after each set of changes, as a
result, the performance enhancement due to each
set of changes could be tracked, allowing the

- effectiveness of ‘these technigues to be evaluated,

to the extent that each set of changes implements
a different optimization method. In fact, some of
the changes represented &plication of a single
optimization, and same represented more than one,
From the data obtained, we can infer,
approximately, the effectiveness of each
technique.

Overall, the weighted average execution time
of the paths in question was reduced by 56% for
the batch workload, 59 for the time-sharing
workload, and 61% for the transact ion-processing
workload. The improvement due to the different
optimizations is (approximately) as follows:

L % improvement
optimization batch TSO 1P
subroutine calls 19% 21% 7%
common cases and branching 1238 138 10%
hardware 12% 113 248
instr.uction'sequer.xces 108 108 10s
buffer considerations 3% 3% 1os
total 56% 58% 613

The optimization techniques themselves are
generally applicable to other software improvement
projects. imizing common cases, cammon. paths,
and subroutine usage are all general techniques
that can be applied with little more than
knowledge of path i required,
Optimizing expensive instructions and seguences
requires detailed knowledge of the pipeline
structure of the processor. This would be very
difficult without a tool 1like the processor
similator,

Acknowledgements

The code optimizations described here were
done by John Andoh, Joe Tuminaro, and the author.
Mark Gobeen wrote the pipeline simulator and
helped to analyze code sequences. Dave Stinchcomb
supplied the early frequency estimates and
facilitated use of the subject workloads, Mac

References

1. Bentley, Jon, Writing ici Programs.
Prentice~Ball, New Jersey, 1982

2, DeMillo, R.A., S.C. Eisenstat, and R.J. Lipton,
"Can Structured Programs be Efficient?",
Sigplan Notices, Vol. 11, No. 10, Oct. 1976,

g

™

3.

4.

5.

7.

8.

9.

Dongarra, J.J. and A.R. Hinds, "Unrolling Loops
in Portran", Software Practice and Experience,
Vol. 9, No. 3, March 1979.

Fisher, J.A. and J.J. O'Donnell, "VLIW
Machines: Multiprocessors We Can Actually
Program”, Spring CompCon 84 Digest of Papers,
Feb, 1984. ’

Hennessy, John and Thomas Gross, "Postpass Code
Optimization of Pipeline Constraints,”
Transactions on Programming Languages and
Systems, Vol. 5, No. 3, July 1983.

MacDougall, M.H. "Instruction-Level Model of
Performance for Processor Design," IEEE
Computer, Vol. 17, No. 7, July 1984.

Ramamoorthy, C.V. and H.F. Li, "Pipeline
Architecture®. Computing Surveys, March 1977,
Pp.61-102.

Rymarczyk, James W., "Coding Guidelines for
Pipelined Processors,” Computer Architecture
News, Vol. 10, No. 2, March 1982, pp.12-19.

Smith, C.U. and J.C. Browne, "Performance
Engineering of Software Systems: A Case Study.”
Proc. AFIPS National Computer Conference,
Houston, June 1982.

95

