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Cache Memories
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Cache memories are used in modern, medium and high-speed CPUs to hold 33303._.5
those portions of the contents of main memory which are (believed to be) o:n..é::z in
use, Since instructions and data in cache memories can usually be ..»?3:8.& in10to 25
percent of the time required to access main memory, cache memories permit the

tion rate of the hil

effectively, cache memories must be carefully designed and i p . p
we explain the various aspects of cache memories and discuss in some m.»ﬁ__ the design
features and trade-offs. A large number of original, trace-driven simulation results are
presented. Consideration is given to practical implementation questions as well as to more

abstract design issues,
Specific aspects of cache

ries that are investigated include: the cache fetch

to be substantially increased. In order to function

1 ted. In this paper,

algorithm (demand versus prefetch), the pl
store-through versus copy-back updating of main memory, cold-start versus warm-start
misa ratios, multicache consistency, the effect of input/output :...oza.v a._m cache, the
behavior of split data/instruction caches, and cache size. Our m?o:ﬁ.o: includes oo:ﬂ.
luding translation lookaside buffers.

- e

t and repl t algorithms, line size,

aspects of memory sy ar e, i

the impl

tation of the cache in the

Throughout the paper, we use as pl

Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, MEM 370/168, and the DEC VAX 11/780.

An extensive bibliography is provided.

Categories and Subject Descriptors: B.3.2 [Memory Structures}: Unmmm: Styles—cache
.memories; B.3.3 [Memory Structures]: Performance Analysis and Design Aids; C.O.
[Computer Systems Organization]: General; C.4 [Computer Systems Organiza-

tion]: Performance of Systems

General Terms: Design, Experimentation, Measurement, Performance
Additional Key Words and Phrases: Buffer memory, paging, prefetching, TLB, store-

through, Amdahl 470, IBM 3033, BIAS

INTRODUCTION

Definition and Ratlonale

Cache memories are small, high-speed
buffer memories used in modern computer
systems to hold temporarily those portions
of the contents of main memory which are
(believed to be) currently in use. Informa-
tion located in cache memory may be ac-
cessed in much less time than that located
in main memory (for reasons discussed
throughout this paper). Thus, a central
processing unit (CPU) with a omnr.m.am:..
ory needs to spend far less time waiting for

- and/or stored. For examnle, in typical large,

T, P T T o 5

instructions and operands to be fetched

high-speed computers (e.g. Amdahl 470V/
7, IBM 3033), main memory can be ac-
cessed in 300 to 600 nanoseconds; informa-
tion can be obtained from a cache, o:.nrm
other hand, in 50 to 100 nanoseconds. .mSnm
the performance of such anrmsm.m is al-
ready limited in instruction execution rate
by cache memory access time, the absence
of any cache memory at all would Eo%._am
a very substantial decrease in execution
speed.

Virtually all modern large computer sys-

s ]
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Permission to copy without fee all or part of this material is .w_.auga.vnos ; € no 4
distributed for direct commercial advantage, the ACM copyright notice EE .:.5 title of the _Ed__an:o.a and .w:_
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tems have cache memories; for

the Amdahl 470, the IBM 3081 .mmﬂmw
wn—rmw.. Gust82], 3033, 370/168, 360/ _wm.
the Univac 1100/80, and the Honeywell 8\.
80. Also, many medium and small size ma-
chines have cache memories; for example,
the DEC VAX 11/780, 11/750 [ARMs81],
and PDP-11/70 [STRrE7S, Snow?78] and
s..m Apollo, which uses a Motorolla .mmooo
microprocessor. We believe that within
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tv 3 to four years, circuit speed and density
w.il progress sufficiently to permit cache
memories in one chip microcomputers
Aﬁ, n-chip addressable memory is Em::mm.
fo' the Texas Instruments 99000 [Larr81
Eiec81]) Even microcomputers no:E.
w.@,,,_mmn substantially from an on-chip cache
sirce o:.o?.u access times are much mn:.:mm
th-n off-chip access times. Thus, the ma-
te: 1al presented in this paper should be
re:svant to almost the full range of com-
pu ,ﬂ. E.oESo_Emo implementations.
he success of cache memories has
on:,.__m..:mn_ by reference to the :vgvmnww Mm_,
mo.,. ility” [DENN72). The property of local-
ity. has two aspects, temporal and spatial.
O,.,, i mro_.‘n periods of time, a program dis-
trizutes its memory references nonuni-
for :._z over its address space, and which
po:tions of the address space are favored
reraain Hm.nma_z the same for long periods of
time. This first property, called temporal
moe.,‘,.__a\. or locality by time, means that the
inf. rmation which will be in use in the near
fut ire is likely to be in use already. This
ty) 2 of e@rwie« can be expected from pro-
gra-n loops in which both data and instruc-
tio's are reused. The second property, lo-
am_._,,% by space, means that portions o».. the
ad¢ ress space which are in use generally
coriist of a fairly small number of individ-
ually contiguous segments of that address
space. .H.oo&;z by space, then, means that
the loci of reference of the program in the
near future are likely to be near the current
loci of reference. This type of behavior can
be expected from common knowledge of
programs: related data items (variables, ar-
rays) are usually stored together, and in-
structions are mostly executed sequentially.
Sir=2 the cach» memory buffers mmwamsnm
of iaformation that have been recently
“MM ?M?m swwoc@d.% of locality implies that
¢ rmation i i
mo_m,. d in the cache. e i
“stimizing the design of a ca
gen-rally has four wmvmoﬂgu che memory

(1) Maximizing the probability of finding a

“nemory reference’s target in the cache
‘the hit ratio),

2). r msmsmnm:.n .z_o time to access informa-

mm”.oﬂrse is indeed in the cache (access

(3) ninimizing the delay due to a miss, and

(4) minimizing the overheads of updating
main memory, maintaining multicache
consistency, etc.

(All of these have to be accomplished

under suitable cost constraints, of course.)
There is also a trade-off between hit ratio
and access time. This trade-off has not been
sufficiently stressed in the literature and it
is one of our major concerns in this paper.
In this paper, each aspect of cache memo-
ries is discussed at length and, where avail-
able, measurement results are presented. In
order for these detailed discussions to be
meaningful, a familiarity with many of the
aspects of cache design is required. In the
remainder of this section, we explain the
operation of a typical cache memory, and
then we briefly discuss several aspects of
cache memory design. These discussions
are expanded upon in Section 2. At the end
of this paper, there is an extensive bibliog-
raphy in which we have attempted to cite
all relevant literature. Not all of the items
in the bibliography are referenced in the
paper, although we have referred to items
there as appropriate. The reader may wish
in particular to refer to BADET79, BARS72,
Gis67, and KapL73 for other surveys of
some aspects of cache design. CLARS is
particularly interesting as it discusses the
design details of a real cache. (See also
Lamp80.)

Overview of Cache Design

Many CPUs can be partitioned, concep-
tually and sometimes physically, into three
parts: the I-unit, the E-unit, and the S-unit.
The I-unit (instruction) is responsible for
instruction fetch and decode. It may have
some local buffers for lookahead prefetch-
ing of instructions. The E-unit (execution)
does most of what is commonly referred to
as executing an instruction, and it contains
the logic for arithmetic and logical opera-
tions. The S-unit (storage) provides the
memory interface between the I-unit and
E-unit. (IBM calls the S-unit the PSCF, or
processor storage control function.)

The S-unit is the part of the CPU of
primary interest in this paper. It contains
several parts or functions, some of which
are shown in Figure 1. The major compo-
nent of the S-unit is the cache memory.
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E
.~ TCache

TLB
cPU S-Unit Transiotor
. ASIT,
I-Unit | E-Unit BIAS
Write Through Butfers]

Figure 1. A typical CPU design and the S-unit.

There is usually a translator, which trans-
lates virtual to real memory addresses, and
a TLB (translation lookaside buffer) which
buffers (caches) recently generated {virtual
address, real address) pairs. Depending on
machine design, there can be an ASIT (ad-
dress space identifier table), a BIAS (buffer
invalidation address stack), and some write-
through buffers. Each of these is discussed
in later sections of this paper.

Figure 2 is a diagram of portions of a
typical S-unit, showing only the more im-
portant parts and data paths, in particular
the cache and the TLB. This design is
typical of that used by IBM (in the 370/168
and 3033) and by Amdahl (in the 470 series).
Figure 3 is a flowchart that corresponds
to the operation of the design in Figure
2. A discussion of this flowchart follows.

The operation of the cache commences

with the arrival of a virtual address, gener-
ally from the CPU, and the appropriate
control signal. The virtual address is passed
to both the TLB and the cache storage.
The TLB is a small associative memory
which maps virtual to real addresses. It is
often organized as shown, as a number of
groups (sets) of elements, each consisting
of a virtual address and a real address. The
TLB accepts the virtual page number, ran-
domizes it, and uses that hashed number to
select a set of elements. That set of ele-
ments is then searched associatively for a
match to the virtual address. If a match is
found, the corresponding real address is
passed along to the comparator to deter-
mine whether the target line is in the cache.
Finally, the replacement status of each en-
try in the TLB set is updated.

If the TLB does not contain the (virtual
address, real address) pair needed for the
translation, then the translator (not shown
in Figure 2) is invoked. It uses the high-
order bits of the virtual address as an entry
into the segment and page tables for the
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Figure 2. A typical cache and TLB design,
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process and then returns the address pair
to the TLB (which retains it for possible
future use), thus replacing an existing TLB
entry.

The virtual address is also passed along
initially to a mechanism which uses the
middle part of the virtual address (the line
number) as an index to select a set of entries
in the cache. Each entry consists primarily
of a real address tag and a line of data (see
Figure 4). The line is the quantum of stor-
age in the cache. The tags of the elements
of all the selected set are read into a com-
parator and compared with the real address
from the TLB. (Sometimes the cache stor-
age stores the data and address tags to-
gether, as shown in Figures 2 and 4. Other
times, the address tags and data are stored
separately in the “address array” and “data
array,” respectively.) If a match is found,
the line (or a part of it) containing the
target locations is read into a shift register
and the replacement status of the entries in
the cache set are updated. The shift register
is then shifted to select the target bytes,
which are in turn transmitted to the source
of the original data request.

If a miss occurs (i.e., addresss tags in the
cache-do not match), then the real address
of the desired line is transmitted to the
main memory. The replacement status in-
formation is used to determine which line
to remove from the cache to make room for
the target line. If the line to be removed
from the cache has been modified, and main
memory has not yet been updated with the
modification, then the line is copied back to
main memory; otherwise, it is simply de-
leted from the cache. After some number of
machine cycles, the target line arrives from
main memory and is loaded into the cache
storage. The line is also passed to the shift
register for the target bytes to be selected.

Cache Aspects

The cache description given above is both
simplified and specific; it does not show
design alternatives. Below, we point out
some of the design alternatives for the
cache memory.

Cache Fetch Algorithm. The cache fetch
algorithm is used to decide when to bring
information into the cache. Several possi-
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_\xno_ Address 43_ Data _ Votid ;

Coche Entry

_ﬂ:( § _ Entry 2 — vsen

Cache Set

Entry E _nou.oooa.o:. w.o.:a_

Figure 4. Structure of cache entry and cache set.

bilities exist: information can be fetched on
demand (when it i3 needed) or prefetched
(before it is needed). Prefetch algorithms
attempt to guess what information will soon
be needed and obtain it in advance. It is
also possible for the cache fetch algorithm
to omit fetching some information (selec-
tive fetch) and designate some information,
such as shared writeable code (sema-
phores), as unfetchable. Further, there may
be no fetch-on-write in systems which use
write-through (see below).

Cache Placement Algorithm. Informa-
tion is generally retrieved from the cache
associatively, and because large associative
memories are usually very expensive and
somewhat slow, the cache is generally or-
ganized as a group of smaller associative
memories. Thus, only one of the associative
memories has to be searched to determine
whether the desired information is located
in the cache. Each such (small) associative
memory is called a set and the number of
elements over which the associative search
is conducted is called the set size. The
placement algorithm is used to determine
in which set a piece (line) of information
will be placed. Later in this paper we con-
sider the problem of selecting the number
of sets, the set size, and the placement
algorithm in such a set-associative memory.

Line Size. The fixed-size unit of infor-
mation transfer between the cache and
main memory is called the line. The line
corresponds conceptually to the page,
which is the unit of transfer between the
main memory and secondary storage. Se-
lecting the line size is an important part of
the memory system design. (A line is also
sometimes referred to as a block.)

Replacement Algorithm. When infor-
mation is requested by the CPU from main
memory and the cache is full, some infor-
mation in the cache must be selected for
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Virtual versus Real Addressing. In com-
puter systems with virtual memory, the
cache may potentially be accessed either
with a real address (real address cache) or
a virtual address (virtual address cache). If
real addresses are to be used, the virtual
addresses generated by the processor must
first be translated as in the example above
(Figure 2); this is generally done by a TLB.
The TLB is itself a cache memory which
stores recently used address translation in-
formation, so that translation can occur
quickly. Direct virtual address access is
faster (since no translation i8 needed), but
causes some problems. In a virtual address

cache, inverse mapping (real to virtual ad-
dress) is sometimes needed; this can be
done by an RTB (reverse translation buffer).

Cache Size. It is obvious that the larger

the cache, the higher the probability of
finding the needed information in it. Cache
gizes cannot be expanded without limit,
however, for several reasons: cost (the most
important reason in many machines, espe-
cially small ones), physical size (the cache
must fit on the boards and in the cabinets),
and access time. (The larger the cache, the
slower it may become. Reasons for this are
discussed in Section 2.12.). Later, we ad-
dress the question of how large is large
enough.

Multilevel Cache. As the cache grows in
size, there comes a point where it may be
usefully split into two levels: a small, high-
level cache, which is faster, smaller, and
more expensive per byte, and a larger, sec-
ond-level cache. This two-level cache struc-
ture solves some of the problems that afflict
caches when they become too large.

Cache Bandwidth. The cache bandwidth
is the rate at which data can be read from
and written to the cache. The bandwidth
must be sufficient to support the proposed
rate of instruction execution and 1/0.
Bandwidth can be improved by increasing
the width of the data path, interleaving the
cache and decreasing access time.

1. DATA AND MEASUREMENTS

1.1 Rationale

As noted earlier, our in-depth mnc&ma of
some aspects of cache design and optimi-
zation are based on extensive trace-driven
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simulation. In this section, we explain the
importance of this approach, and then dis-
cuss the presentation of our results.

One difficulty in providing definitive
statements about aspects of cache opera-
tion is that the effectiveness of a cache
memory depends on the workload of the
computer system; further, to our knowl-
edge, there has never been any (public)
effort to characterize that workload with
respect to its effect on the cache memory.
Along the same lines, there is no generally
accepted model for program behavior, and
still less is there one for its effect on the
uppermost level of the memory hierarchy.
(But see AROR72 for some measurements,
and Lenm78 and LExMS0, in which a model
is used.)

For these reasons, we believe that it is
possible for many aspects of cache design
to make statements about relative perform-
ance only when those statements are based
on trace-driven simulation or direct mea-
surement. We have therefof®¢ tried through-
out, when examining certain aspects of
cache memories, to present a large number
of simulation results and, if possible, to

generalize from those measurements. We
have also made an effort to locate and
reference other measurement and trace-
driven simulation results reported in the
literature. The reader may wish, for exam-
ple, to read WIND73, in which that author
discusses the set of data used for his simu-
lations.

1.2 Trace-Driven Simulation

Trace-driven simulation "is an effective
method for evaluating the behavior of a
memory hierarchy. A trace is usually gath-
ered by interpretively executing a program
and recording every main memory location
referenced by the program during its exe-
cution. (Each address may be tagged in any
way desired, e.g., instruction fetch, data
fetch, data store.) One or more such traces
are then used to drive a simulation model
of a cache (or main) memory. By varying
parameters of the simulation model, it is
possible to simulate directly any cache size,
placement, fetch or replacement algorithm,
line size, and so forth. Programming tech-
niques allow a range of values for many of
these parameters to be measured stmulta-
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neously, ‘during the same simulation run
[GEcs74, MATTT0, SLuTr?72]. Trace-driven
simulation has been a mainstay of memory
hierarchy evaluation for the last 12 to 15
years; see BELAG6 for an early example of
this technique, or see PoM73. We assume
only a single cache in the system, the one
that we simulate. Note that our model does
not include the additional buffers com-
monly found in the instruction decode and
ALU portions of many CPUs,

In many cases, trace-driven simulation is
preferred to actual measurement. Actual
measurements require access to a computer
and hardware measurement tools, Thus, if
the results of the experiments are to be
even approximately repeatable, standalone
timeis required. Also, if one is measuring
an actual machine, one is unable to vary
most (if any) hardware parameters. Trace-
driven simulation has none of these diffi-
culties; parameters can be varied at will and
experiments can be repeated and repro-
duced precisely. The principal advantage of
measurement over simulation is that it re-
quires 1 to 0.1 percent as much running
time and is thus very valuable in establish-
ing a genuine, workload-based, actual level
of performance (for validation). Actual
workloads also include supervisor code, in-
terrupts, context switches, and other as-
pects of workload behavior which are hard
to imitate with traces. The results in

this paper are mostly of the trace-driven
variety.

1.3 Simulation Evaluation

There are two aspects to the performance
of a cache memory. The first is access time:
How long does it take to get information
from or put information into the cache? It
is very difficult to make exact statements
about the effect of design changes on access
time without specifying a circuit technology
and a circuit diagram. One can, though,
indicate trends, and we do that throughout.
this paper.

The second aspect of cache performance
is the miss ratio; What fraction of all mem-
ory references attempt to access something
which is not resident in the cache memory?
Every such miss requires that the CPU wait
until the desired information can be
reached. Note that the miss ratio is a func-
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tior: not only of how the cache design affects
the number of misses, but also of how the
machine design affects the number of cache
me:ory references. (A memory reference
rep-2sents a cache access. A given instruc-
tion requires a varying number of memory
refe ences, depending on the specific imple-
mer:iation of the machine.) For example, a
different number of memory references
wou:d be required if one word at a time
wer:: obtained from the cache than if two
wor:’s were obtained at once. Almost all of
our trace-driven studies assume a cache
witl a one-word data path (370 words = 4
bytes, PDP-11 word = 2 bytes). The WA-

TEY, WATFIV, FFT, and APL traces as-

sum: a two-word (eight-byte) data path.

We measure the miss ratio and use it as the

majer figure of merit for most of our stud-

ies. “Ve display many of these results as
x/y lots of miss ratios versus cache size in
orde: to show the dependence of various
cach : design parameters on the cache size.

1.4 "he Traces

We ‘nave obtained 19 program address
traces, 3 of them for the PDP-11 and the
other 16 for the IBM 360/370 series of
computers. Each trace is for a program
developed for normal production use.
(These traces are listed in the Appendix,
with a brief description of each.) They have
been used in groups to simulate multipro-
gramming; five such groups were formed.
Two represent a scientific workload (WFV,
APL, WTX, FFT, and FGO1, FGO2, FGO3,
FGO4), one a business (commercial) work-
load ‘CGOi, CTN2, CGO3, PGO2), one a
misc laneous workload, including compi-
lation's and a utility program (PGO1,
CCOMP, FCOMP, IEBDG), and one a
PDP11 workload (ROFFAS, EDC,

TRAJE). The miss ratio as a function of
cach¢ size is shown in Figure 5 for most of
the t:aces; see SMIT79 for the miss ratios of
the rmaining traces. The miss ratios for

each of the traces in Figure 5 are cold-start

values based on simulations of 250,000

meme ry references for the IBM traces, and

333,3::3 for the PDP-11 traces.

1.5 S:mulation Methods

Almc:t all of the simulations that were run
used * or 4 traces and simulated multipro-
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Figure 5. Individual trace miss ratios.

amming by switching the trace in use
Mwﬁ.v. Q mmao.:anm {where Q was :m:wzw
10,000, a cache memory 8?858 grow )
time-unit, and a miss requires 10). Multi-
programmed simulations are used for two
reasons; they are considered to be more
representative of usual computer mzmnmﬂw
operation than uniprogrammed ones, mﬂ
they also allow many more traces to w
included without increasing the =:5¢9.. [¢}
simulation runs. An acceptable alternative,
though, would have been to use unipro-
gramming and purge the .amorw o<mQa0
memory references. > still better 1 om
would have been to interleave user an
supervisor code, but no supervisor traces

sre available. . )
sem_:om the multiprogrammed simulations
(i.e., Figures 6, 9-33) were run for one B_m.
lion memory references; thus approxi-
mately 250,000 memory references iﬁm
used from each of the IBM 370 traces, an
333,333 from the PDP-11 traces.

in the sim-
The standard number om sets in tl
ulations was 64. The line size was generally
32 bytes for the IBM traces and 16 bytes
for the PDP-11 traces.

2. ASPECTS OF CACHE DESIGN AND
OPERATION

2.1 Cache Fetch Algorithm
2.1.1 Introduction

we noted earlier, one of the 25. aims .om
Mrmmoro design is to minimiz ..o the miss JQOm
Part of the approach to this mo.& is to se aw
a cache fetch algorithm S.m.n is very ES_ \
to fetch the right information, if possib %.
before it is needed. The mgamw& awnwo
fetch algorithm is demand fetching, by
which a line is fetched when and if m.“ _M
needed. Demand fetches cannot vow avoide
entirely, but they can be z&:.o& if imm nwc
sucessfully predict i.:a: lines w ro
needed and fetch them in mm?gom. > awnv e
fetch algorithm which gets information be-
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fore it is needed i
rithm. is called a prefetch algo- refer nce. Let D be the penalty for a de-

Prefetch algorithms . .. ~manc miss (a miss that
detail in MZWMMW. mm_wwua ww@: mEEmn.E targe ; is needed msaa&mmﬁwm%mm%%”mrm
those results and give 9:1.5 M %Mnmsg from machine idle time while the ?w%m
sion. We al portant exten-

r comy-‘etes. The prefetch ¢
other works [ %quwrom‘mwwﬂm 8wmm<o§~ from "he cache cycles used AMMM. nﬁ._uﬂﬁm_uzg
ENGE73, PERKSO, and Ra 761 ¢ ERG78, wise unavailable) to bring in a prefet 72.
tional discussions .o £ somme o%ﬁ.u or addi- line, "sed to move out (if :maawmvaoma_.&
We mention the importan mman_mmcmm. repla: ed by a prefetch, and spent in d _:5
nique known aa fetoh b ce of a tech- while main memory modules are bus % g
through. When s wrias o%%:eu“a .M« load- a pre:ztch move-in and move-out, q«r%_:n
rectified in two ways: either th .E” can be cess cst, A, is the penalty due to additi mnm
can be read into the cache mm N%m:,oa cache prefetch lookup accesses which inter
then reinitiated (this was m..v _“5 t! rm mmn.or fere with the executing program’s use onm m_n.
il Amdahl £700/6 [Sveron). o peons,  gtche Aprefetchalgorithm i ffctive only
the desired bytes can be passed wwmozw the ‘ollowing equation holds:

WN.NM Wﬁ“m&h B»MEoQ to the Em.a.:nzos #) « miss ratio (demand)
unit, bypes g the cache. In this latter > [D * miss ratio (prefetch)
strate mw.m.w im %%wa».% ﬁw%&. either simul- + P+ prefetch m&e
 fetch bypass or after th io —
Mw.%,www o%%m_ﬂ\.mﬁr.m nwanwom is used in ﬁrw + A faccessratio =] (1)
, 8, an the IBM 3033. (A wra- We stould note also that th i i
ﬂw—mmn:mrwoﬂw E__Mm ﬂw:ﬂﬁ%bﬂm&.nﬂg—wwm%”_ in Myras ﬂmmnw prefetching may Mcms Nmﬂﬂn%
with the bytes an -he miss ratio for dema i
Mvonomwwnv and wraps around to the rest of A..ra F oblem here is cache Saﬂewwewwﬁw..
X Wes ¢ 8%87&7::8 may pollute memory
y exuelling other lines which
M 1.2 Prefetching M—M»MM.W 0 ncm ncﬁao:non. This mmeMommS%”
refetc . extensively and wi
A nﬂ relet w.%w%“m_ﬂ. Bc_“m be oB.am.uE. de- at ana ysis in m:w_.qms ﬁ%h“ﬁ%vnhgsva
froed I the machi e %o ormance is to be ber of :xperimental results are sho Eﬂ.\:.
s Father {1 wﬂw egraded, In order to  found =arlier [Sm1T78b] that the E%ﬁ. fi .o
e termnre clea Nn.u.mohw\w:ww M.Mmocﬂamno tor in -letermining whether E&&%Z:msﬂ
ratio of the number of lines transferred m:m Towor |y (oo aize Lines of 266 or

o profetehan to the ones trans fewer b ytes (such as are commonl d i
er of pro- caches’ in useful pro.

 Drefe generally resul

gr emory references. And let transfer fetchin; larger _W.Em A.E.‘wm Mmmmacﬂh.m_n WHM.

ratio be A
ratios, ﬁhwﬁﬁoﬂoowo E&MS: and miss  fetching ineffective.The reason for this i
the cache: aetual and ypes of references to  that a prefetch to a large line bri P
tual references E.mm: nvb refetch lookup. Ac- great deal of information S:nrdswwh__s :
source external to nroowm mmao_ﬁa& by a  which may not be needed, and :Ewmﬁ x
reat of the CPU (-unit, m.mE.omv Mﬂo””onmrwa Mmcm%wr_ﬂmc amount of information mwhw
n - which may sti i !
8»%@;»5”%“& o“omwmm M%o:nm when the A E.a».oaow m&:howw__,ﬂ_ﬂww three maj
line is resident or if it must wmo _».% gven concemns: (1) when to initiate a uamwﬂﬂ.
The ratio of the total accesces L. th etched.  (2) which line(s) to prefetch, and (3) what
.onE plus prefetch _oo_EE»mo z.w M:mmmw”. Www_ﬂamﬁoﬂ _mnn«:n to give mrc E&msgmﬂ_
of p ck. Ve balieve that i :
of %a%:& references is called the access becaus: of the ..moh_ ”.wn_wmwﬂnwmp.w:%“mamm.

3 : im-

There are costs associated wi plemeiy: ation, the only possible li
) with ; . " e line to pre-

the above ratios. We can define nroMM MWwMM fetch i the immediately sequential one;

in terms of i this type of prefetching i
of lost machine cycles per memory one blo: % Somggu Mwmw_mv .m%mechﬂ-meM

-
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i is referenced, only line i + 1 is considered
for prefetching. Other possibilities, which
sometimes may result in a lower miss ratio,
are not feasible for hardware implementa-
tion in a cache at cache speeds. Therefore,
we consider only OBL.

If some lines in the cache have been
referenced and others are resident only be-
cause they were prefetched, then the two
types of lines may be treated differently
with respect to replacement. Further, a pre-
fetch lookup may or may not alter the
replacement status of the line examined. In
this paper we have made no distinction
between the effect of a reference or a pre-
fetch lookup on the replacement status of
a line. That is, a line is moved to the top of
the LRU stack for its set if it is referenced,
prefetched, or is the target of a prefetch
lookup; LRU is used for replacement for all
prefetch experiments in this paper. (See
Section 2.2.2) The replacement status of
these three cases was varied in SmiT78c,
and in that paper it was found that such
distinctions in replacement status had little
effect on the miss ratio.

There are several possibilities for when
to initiate a prefetch. For example, a pre-
fetch can occur on instruction fetches, data
reads and/or data writes, when a miss oc-
curs, always, when the last nth of a line is
accessed, when a sequential access pattern
has already been observed, and so on. Pre-
fetching when a sequential access pattern
has been observed or when the last nth
segment (n = 4, 1, etc.) of a line has been
used is likely to be ineffective for reasons of

timing: the prefetch will not be complete
when the line is needed. In SmiT78b we
showed that limiting prefetches only to in-
struction accesses or only to data accesses
is less effective than making all memory
accesses eligible to start prefetches. See
also BENN82.

1t is possible to create prefetch algo-
rithms or mechanisms which employ infor-
mation not available within the cache mem-
ory. For example, a special instruction
could be invented to initiate prefetches. No
machine, to our knowledge, has such an
instruction, nor have any evaluations been
performed of this idea, and we are inclined
to doubt its utility in most cases. A prefetch
instruction that specified the transfer of
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large amounts of information would run the
substantial risk of polluting the cache with
information that either would not be used
for some time, or would not be used at all.
If only a small amount of information were
prefetched, the overhead of the prefetch
might well exceed the value of the savings.
However, some sophisticated versions of
this idea might work. One such would be to
make a record of the contents of the cache
whenever the execution of a process was
stopped, and after the process had been
restarted, to restore the cache, or better,
only its most recently used half. This idea
is known as working set restoration and
has been studied to some extent for paged
main memories. The complexity of imple-
menting it for cache makes it unlikely to be
worthwhile, although further study is called
for.

Another possibility would be to recognize
when a base register is loaded by the proc-
ess and then to cause some number of lines
(one, two, or three) 3:025&1?¢ loaded
address to be prefetched [PoMESOD,
Hokgv8la, HoEv81b]. Implementing this is
easy, but architectural and software
changes are required to ensure that the
base registers are known or recognized, and
modifications to them initiate prefetches.
No evaluation of this idea is available, but
a decreased miss ratio appears likely to
result from its implementation. The effect
could be very minor, though, and needs to
be evaluated experimentally before any
modification of current software or hard-
ware is justified.

We consider three types of prefetching in
this paper: (1) always prefetch, (2) prefetch
on misses, and (3) tagged prefetch. Always
prefetch means that on every memory ref-
erence, access to line i (for all {) implies a
prefetch access for line i + 1. Thus the
access ratio in this case is always 2.0. Pre-
fetch on misses implies that a reference to
a block i causes a prefetch to block i + 1 if
and only if the reference to block i itself
was a miss. Here, the access ratio is 1 +
miss ratio. Tagged prefetch is a little more

complicated, and was first proposed by
GIND77. We associate with each line a sin-
gle bit called the tag, which is set to one
whenever the line is accessed by a program.
1t is initially zero and is reset to zero when
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Figure 8. Comparison of miss ratios for twe arefetch strategies and no prefetch,

the line is removed from the cache, Any
line brought to the cache by a prefetch
operation retains its tag of zero, When a tag
changes from 0 to 1 (i.e., when the line is
referenced for the first time after prefetch-
ing or is demand-fetched), a prefetch is
initiated for the next sequential line. The
idea is very similar to prefetching on misses
only, except that a miss which did not occur
because the line was prefetched (i.e., had
there not been a prefetch, there would have
been a miss to this line) also initiates a
prefetch, )

Two of these prefetch algorithms were
tested in SMIT78b: always prefetch and pre-
fetch on misses, It was found that always
prefetching reduced the miss ratio by as
much as 75 to 80 percent for large cache
memory sizes, while increasing the transfer
ratio by 20 to 80 percent. Prefetching only
on misses was much less effective; it pro-
duced only one half, or less, of the decrease
in miss ratio produced by always prefetch-
ing. The transfer ratio, of course, also in-
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creased by a much smaller amount, typi-
cally 10 to 20 percent.
The experiments in SmM1T78b, while very

thorough, used only one set of traces and
also did not test the tagged prefetch algo-
rithm. To remedy this, we ran additional
experiments; the results are presented in
Figure 6. (In this figure, 32-byte lines are
us: -} in 2ll cares except for 16-byte lines for
th: PDP-11 traces, the task switch interval
Q - 10K, and there are 64 sets in all cases.)

It van be seen that always prefetching cut
the (demand) miss ratio by 50 to 90 percent

for most cache sizes and tagged prefetch

wa:: almost equally effective. Prefetching

on! 7 on misses was less than half as good as

always prefetching or tagged prefetch in
reducing the miss ratio. These results are
seeq to be consistent across all five sets of
traces used.

T'hese experiments are confirmed by the
res :lts in Table 1. There we have tabulated
the miss, transfer,-and access ratios for the
throe prefetch algorithms considered, as

Table 1. Comparison of Three Prefetch Strategies®

Tagged prefetch

Prefetch on misses

Always prefetch

Access
ratio

Access
ratio

Access  Transfer

Memory  Demand

Transfer
ratio

Miss ratio

Transfer
ratio

Miss ratio

ratio
0.0297
0.0152

0.0263

ratio

Miss ratio

size

0.01275
0.02245

0.00362
0.03892
0.03168

0.0240

0.00840
0.0408

0.01223
0.0348

0.00722

0.01491

1.0233
1.0107
1.0176
1.0098
1.0059
1.0030
1.0331
1.0274
1.0194
1.0077
1.0333
1.0286

0.00405
0.00873
0.00404
0.00268

0.00893

0.00780
0.00785
0.00320

0.01136

0.00127
0.0095
11 traces. Multiprogramming interval @: 10K. Number of sets: 64.

0.00922

0.01178
0.0107

0.00320
0.03798
0.0288

0.02239
0.00868
0.03928

0.03010

1.00656
1.0059

1.00184
1.01234

1.0197
1.0153
1.00489
1.02087
1.0163

0.00656
0.00593
0.00184

0.01997
0.0153

0.01234

0.00489
0.02087

0.0163

0.0126
0.0085
0.0047
0.0391
0.0331
0.0234
0.0108
0.0413

0.0365

2.0
20
20
2.0
20
2.0
20
2.0
20
2.0
20

2.0

0.00883
0.00407
0.00867
0.00356
0.00232
0.00123
0.00851
0.00670
0.00314
0.0112

0.00960

0.00736

0.02162
0.00910
0.0155
0.00845
0.00470
0.00255
0.0341
0.0236
0.017
0.00628
0.0343
0.0236

miss ratio

6K
8K
16K
32K
16K

32K
16K

CGO2

PGO2

FGO2

FGO4

CCOMP
,IEBDG 32K

Program traces
CGOL

CGO3

FGO1,

FGO3

PGO1

FCOMP,

= Line size: 32 bytes for IBM 370 Traces, 16 byte lines for PDP-
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well as the demand miss ratio for each of
the sets of traces used and for a variety of
memory sizes. We observe from this table
that always prefetch and tagged prefetch
are both very successful in reducing the
miss ratio. Tagged prefetch has the signifi-
cant additional benefit of requiring only a
small increase in the access ratio over de-
mand fetching. The transfer ratio is com-
parable for tagged prefetch and always pre-
fetch.

It is important to note that taking advan-
tage of the decrease in miss ratio obtained
by these prefetch algorithms depends
very strongly on the effectiveness of the
implementation. For example, the Amdahl
470V /6-1 has a fairly sophisticated prefetch
algorithm built in, but because of the design
architecture of the machine, the benefit of
prefetch cannot be realized. Although the
prefetching cuts the miss ratio in this ar-
chitecture, it uses too many cache cycles
and interferes with normal program ac-
cesses to the cache. For that reason, pre-
fetching is not used in the 470V/6-1 and is
not available to customers. The more re-
cent 470V/8, though, does contain a pre-
fetch algorithm which is useful and im-
proves machine performance. The V/8
cache prefetch algorithm prefetches (only)
on misses, and was selected on the basis
that it causes very little interference with
normal machine operation. (Prefetch is im-
plemented in the Dorado [CLARS1], but its
success is not described.)

The prefetch implementation must at all
times minimize its interference with regular
machine functioning. For example, prefetch
lookups should not block normal program
memory accesses. This can be accom-
plished in three ways: (1) by instituting a
second, parallel port to the cache, (2) by
deferring prefetches until spare cache cy-
cles are available, or (3) by not repeating
recent prefetches. (Repeat prefetches can
be eliminated by remembering the ad-
dresses of the last n prefetches in a small
auxiliary cache. A potential prefetch could
be tested against this buffer and not issued
if found. This should cut the number of
prefetch lookups by 80 to 90 percent for
small n).

The move-in (transfer of a line from main
to cache memory) and move-out (transfer
from cache to main memory) required by a
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pre étch transfer can be buffered for per-
for:1ance during otherwise idle cache cy-
cles: The main memory busy time engen-
der: d by a prefetch transfer seems unavoid-
able, but is not a serious problem. Also
unsvoidable is the fact that a prefetch may
not be complete by the time the prefetched
line: is actually needed. This effect was ex-
amaed in SMIT78b and was found to be
miror although noticeable. Further com-
me::ts and details of a suggested implemen-
tation are found in SM1T78b.

V’e note briefly that it is possible to
cor sider the successful use of prefetching

«n indication that the line size is too
smu:ll; prefetch functions much as a larger
line size would. A comparison of the results
in '*igure 6 and Table I with those in Fig-
ure: 15-21 shows that prefetching on misses
for 32-byte lines gives slightly better results
the.a doubling the line size to 64 bytes.
Always prefetching and tagged prefetch are
bot " significantly better than the larger line
gize: without prefetching. Therefore, it
wo:ld appear that prefetching has benefits
in sddition to those that it provides by
sin-ulating a larger line size.

2.2 Placement Algorithm

Tt 2 cache itself is not a user-addressable
me nory, but serves only as a buffer for
men memory. Thus in order to locate an
ele.nent in the cache, it is necessary to have
sor-1e function which maps the main mem-
or; address into a cache location, or to
sezrch the cache associatively, or to per-
form some combination of these two. The
placement algorithm determines the map-
ping function from main memory address
to cache location.

The most commonly used form of place-
ment algorithm is called set-associative
mapping. It involves organizing the cache
into S sets of E elements per set (see Figure
7). Given a memory address r(i), a function
f il man ~fi) into a set s(i), so that
(D)) = s(i). ‘I'he reason for this type of
oryanization may be oberved by letting
either S or E become one. If S becomes
or:, then the cache becomes a fully asso-
ciezive memory. The problem is that the
la: ze number of lines in a cache would make
a .ally associative memory both slow and
ve-y expensive. (Our comments here apply

Cache Memories . 487

E

elements

per set IR I

S sels

Figure 7. The cache is organized as S sets of E elements

each,

to non-VLSI implementations. VLSI MOS
facilitates broad associative searches.) Con-
versely, if E becomes one, in an organiza-
tion known as direct mapping [CoNT69},
there is only one element per set. (A more
general classification has been proposed by
Harp75.) Since the mapping function f is
many to one, the potential for conflict in
this latter case is quite high: two or more
currently active lines may map into the
same set. It is clear that, on the average,
the conflict and miss ratio decline with
increasing E, (as S « E remains constant),
while the cost and access time increase. An
effective compromise is to select E in the
range of 2 to 16. Some typical values de-
pending on certain cost and performance
tradeoffs, are: 2 (Amdahl 470V/6-1, VAX
11/780, IBM 370/168-1), 4 (IBM 370/168-1,
Amdahl 470V/8, Honeywell 66/80, IBM
370/158-3), 8 (IBM 370/168-3, Amdahl
470V/T), 16 (IBM 3033).

Another placement algorithm utilizes a
sector buffer [CONT68], as in the IBM 360/
85. In this machine, the cache is divided
into 16 sectors of 1024 bytes each. When a
word is accessed for which the correspond-
ing sector has not been allocated a place in
the cache (the sector search being fully
associative), a sector is made available (the
LRU sector—see Section 2.4), and a 64-
byte block containing the information ref-
erenced is transferred. When a word is ref-
erenced whose sector is in the cache but
whose block is not, the block is simply
fetched. The hit ratio for this algorithm is
now generally known to be lower than that
of the set-associative organization (Private
Communication: F. Bookett) and hence we
do not consider it further, (This type of
design may prove appropriate for on-chip
microprocessor caches, since the limiting
factor in many microprocessor systems is

b Memory Address |

EEXEEERERREDER

[T ¥ VU
Se! number Byle within line

Figure 8. The set is selected by the low-order bits of
the line number.

bus bandwidth. That topic is currently un-
der study.)

There are two wmvooQ.imo selecting a
placement algorithm for the cache. First,
the number of sets S must be chosen while
S+ E = M remains constant, where M is
the number of lines in the cache. Second,
the mapping function £, which translates a
main memory address into a cache set,
must be specified. The second question is
most fully explored by SM1T78a; we sum-
marize those results and present some new
experimental measurements below. A num-
ber of other papers consider one or both of
these questions to some extent, and we refer
to reader to those [CamP76, CONTGS,
Cont69, Fuxu77, KapL73, Lirr68,
MATT71, STRET6, THAK78] for additional
information.

2.2.1 Set Selection Algorithm

Several possible algorithms are used or
have been proposed for mapping an address
into a set number. The simplest and most
popular is known as bit selection, and is
shown in Figure 8. The number of sets S is
chosen to be a power of 2 (e.g, S = 24.
If there are 2/ bytes per line, the j bits
1 ... j select the byte within the line, w.:m
bitsj+ 1 -+« j+ kselect the set. vs.mog_:n
the mapping is thus very simple, since all
that is required is the decoding of a binary
quantity. Bit-selection is used in all com-
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Figure 9. Comparison of miss ratios when using random: or bit-selecti

puters to our knowledge, includin ic-
ularly all Amdahl and IBM ooszmwa.RS
moam. people have suggested that be-
cause E« selection is not random, it might
..om_.:n in more conflict than a random al-
mo:%i.. which employs a pseudorandom
calculation (hashing) to map the line into
a set, It is difficult to generate random
==5~§“w nc.mn_% in hardware, and the usual
suggestion is some sort of folding of the
address ?ro&& by exclusive oring of the
bits, That is, ifbitsj+ 1 ..+ b are available
for %Sm‘BﬂEam the line location, then these
v.l..\ bits are grouped into % groups, and
within each group an Exclusive Or is per-
formed. Hso resulting k bits then designate
a get, (This algorithm is used in TLBs—see
Section 2.16.) In our simulations discussed
later, we have used a randomizing function
om%..o m”:a: 8(1) = a « r (i) mod mm.
imulations were performed to co
random and set-associative anE:m:.._ %ﬁm
results are shown in Figure 9. (32 bytes is
the line size used in all cases except the
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set

PDP- 1 traces, for which 16 bytes

It car. be observed that npzmwm.:w”m_wm%ﬂw
seems to have a small advantage in most
cases, but that the advantage is not signifi-
cant. Random mapping would probably be
preferable to bit-selection mapping if it
n.o:E be done equally quickly and inexpen-
sively, but several extra levels of logic ap-
pear to be necessary. Therefore, bit selec-

tion seems to be the most desi
pon & ost desirable algo-

2.2.2 ‘et Size ar.. ‘e Number of Sets

There are a number of considerations in
select ng <w€¢m for the number of sets (S)
and .«vo set size (E). (We note that Sand E
are ir rersely related in the equation S + E
= M, -vhere M is the number of lines in the
cache .:.S = 2™).) These considerations have
to do ,..,S»r lookup time, expense, miss ratio
and ar‘dressing. We discuss each below. .
The *..:mn consideration is that most cache
memcies (e.g, Amdahl, IBM) are ad-
dressed using the real address of the data,

f

although the CPU produces a virtual ad-
dress. The most common mechanism for
avoiding the time to translate the virtual
address to a real one is to overlap the cache
lookup and the translation operation (Fig-
ures 1 and 2). We observe the following: the
only address bits that get translated in a
virtual memory system are the ones that
specify the page address; the bits that spec-
ify the byte within the page are invariant
with respect to virtual memory translation.
Let there be 2/ bytes per line and 2* sets in
the cache, as before. Also, let there be 27
bytes per page. Then (assuming bit-selec-
tion mapping), p — J bits are immediately
available to choose the set. If (o — N=k
then the set can be selected immediately,
before translation; if (p — j) <&, then the
search for the cache line can o=_~< be nar-
rowed down to a small number 2% *7 of
sets, It is quite advantageous if the set can
be selected before translation (since the
associative search can be started immedi-
ately upon completion of translaticn); thus
there is a good reason to attempt to keep
the number of sets less than or equal to
or=i)_(We note, though, that there is an
alternative. The Amdahl 470V/6 has 256
sets, but only 6 bits immediately available
for set selection. The machine reads out
both elements of each of the four sets which
could possibly be selected, then after the
translation is complete, selects one of those
sets before making the associative search.
See also LEESO.)

Set size is just & different term for the
scope of the associative search. The smaller
the degree of associative search, the faster
and less expensive the search (except, as
noted above, for MOS VLSI). This is be-
cause there are fewer comparators and sig-
nal lines required and because the replace-
ment algorithm can be simpler and faster
(see Section 2.4). Our second consideration,
expense, suggests that therefore the smaller
the set size, the better. We repeat, though,
that the set size and number of sets are
inversely related. If the number of sets is
less than or equal to2‘? =7, then the set size
ig greater than or equal to 9tm=r+J) lines.

The third consideration in selecting set
size is the effect of the set size on the miss
ratio. In [SMrr78a] we developed a model
for this effect. We summarize the results of
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that model here, and then we present some
new experimental results.

A commonly used model for program
behavior is what is known as the LRU
Stack Model. (See Cor¥73 for a more thor-
ough explanation and some basic results.)
In this model, the pages or lines of the
program’s address space are arranged in a
list, with the most recently referenced line
at the top of the list, and with the lines
arranged in decreasing recency of reference
from top to bottom. Thus, referencing a
line moves it to the top of the list and
moves all of the lines between the one
referenced and the top line down one posi-
tion. A reference to a line which is the ith
line in the list {(stack) is referred to as a
stack distance of i. This model assumes
that the stack distances are independently
and identically drawn from a distribution
g, J=1,...,n This model has been
shown not to hold in a formal statistical
gense [LEw171, LEw173], but the author
and others have used this modebwith good
success in many modeling efforts.

Each set in the cache constitutes & sepa-
rate associative memory. If each set is man-
aged with LRU replacement, it is possible
to determine the probability of referencing
the kth most recently used item in a given
set as a function of the overall LRU stack
distance probability distribution {gN}.
Let p{i, S) be the probability of referencing
the ith most recently referenced line in a
set, given S sets. Then, we show that p(i, S)
may be calculated from the {g(i)) with the
following formula:

%.,@..m}::@_-_al\%-. Q. | ”v
-

Note that p(i, 1) = q(i). In SMIT78a this
model was shown to give accurate predic-
tions of the effect of set size.

Experimental results are provided in Fig-
ures 10-14. In each of these cases, the num-
ber of sets has been varied. The rather
curious shape of the curves (and the simi-
larities between different plots) has to do
with the task-switch interval and the fact
that round-robin scheduling was used.
Thus, when a program regained control of
the processor, it might or might not, de-
pending on the memory capacity, find any
of its working set still in the cache.
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wwm& on Figures 10-14, Figure 33, and
o.rm information given by SMIT78a, we be-
lieve nrm.« the minimum number of elements
per set in order to get an acceptable miss
ratio is 4 to 8. Beyond 8, the miss ratio is
likely to decrease very little if at all. This
has also been noted for TLB designs
; [SATY81). The issue of maximum feasible
) set size also suggests that a set size of more

%w: 4 or 8 will be inconvenient and expen-
A sive, The only machine known to the author
with a set size larger than 8 is the IBM 3033
. processor. The reason for such a large set
size is that the 3033 has a 64-kbyte cache
and 64-byte lines. The page size is 4096
bytes, sr._o: leaves only 6 bits for selecting
the set, if m:w translation is to be over-
lapped. This' implies that 16 lines are
searched, «.«,Ear is quite a large number.
The 3033 is also a very performance-ori-
ented machine, and the extra expense is
apparently not a factor.

Values for the set size (number of ele-
ments per set) and number of sets for a
number of machines are as follows: Amdahl
470V/6 (2, 256), Amdahl 470V/7 (8, 128)
Amdahl 470V/8 (4, 512), IBM 370/168-3 (8,

. -
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1::8), IBM 3033 (16, 64), DEC PDP-11/70
¢ . 256), DEC VAX 11/780 (2, 512), Itel
A3/6 (4, 128) [Ross78], Honeywell 66/60
ard 66/80 (4, 128) [DieT74].

2.3 Line Size

One of the most visible parameters to be
chosen mo.n a cache memory is the line size.
Just as with paged main memory, there are
a number of trade-offs and no single crite-
rion dominates. Below we discuss the ad-
vantages of both small and large line sizes.
Additional information relating to this
problem may be found in other papers
ESZP ANACB7, GIBs67, KaprnL73
N £1171, ML..70, and STRE76). .
3mall line sizes have a number of advan-
taes, Hrm transmission time for moving a
8r. s.: line from main memory to cache is
o~..<=.=_m€ shorter than that for a long line
ar: if p.:a. machine has to wait for the ?_m
trznsmission time, short lines are better. (A
hish-performance machine will use fetch
by »ass; see Section 2.1.1.) The small line is
let 1 likely to contain unneeded information:
on'y a few extra bytes are brought in w_o:m.

i

with the actually requested information.
The data width of main memory should
usually be at least as wide as the line size,
since it is desirable to transmit an entire
line in one main memory cycle time. Main
memory width can be expensive, and short
lines minimize this problem.

Large line sizes, too, have 2 number of
advantages. If more information in a line is
actually being used, fetching it all at one
time (as with a long line) is more efficient.
The number of lines in the cache is smaller,
so there are fewer logic gates and fewer
storage bits (e.g., LRU bits) required to
keep and manage address tags and replace-
ment status. A larger line size permits fewer
elements/set in the cache (see Section 2.2),
which minimizes the associative search
logic. Long lines also minimize -the fre-
quency of “line crossers,” which are re-
quests that span the contents of two lines.
Thus in most machines, this means that
two separate fetches are required within
the cache (this is invisible to the rest of the
machine.)

Note that the advantages cited above for

both long and short lines become disadvan-
tages for the other.

Another important criterion for selecting
a line size is the effect of the line size on
the miss ratio. The miss ratio, however,
only tells part of the story. It is inevitable
that longer lines make processing a miss
somewhat slower (no matter how efficient
the overlapping and buffering), so that
translating a miss ratio into a measure of
machine speed is tricky and depends on the
details of the implementation. The reader
should bear this in mind when examining
our experimental results.

Figures 15-21 show the miss ratio as a
function of line size and cache size for five
different sets of traces. Observe that we
have also varied the multiprogramming
quantum time @. We do so because the
miss ratio is affected by the task-switch
interval nonuniformly with line size. This
nonuniformity occurs because long line
sizes load up the cache more quickly. Con-
sider two cases. First, assume that most
cache misses result from task switching. In
this case, long lines load up the cache more
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quickly than small ones. Conversely, as-
sume that most misses occur in the steady
state; that is, that the cache is entirely full
most of the time with the current process
and most of the misses occur in this state.
In this latter case, small lines cause less
memory pollution and possibly a lower miss
ratio. Some such effect is evident when
comparing Figures 18 and 19 with Figures
20 and 21, but explanation is required. A
quantum of 10,000 results not in a program
finding an empty cache, but in it finding
some residue of its previous period of activ-
ity (since the degree of multiprogramming
is only 3 or 4); thus small lines are relatively
more advantageous in this case than one
would expect.

The most interesting number to be
gleaned from Figures 15-21 is the line size
which causes the minimum miss ratio for
each memory size. This information has
been collected in Table 2. The consistency
displayed there for the 360/370 traces is
surprising; we observe that one can divide
the cache size by 128 or 256 to get the
minimum miss ratio line size. This rule does
not apply to the PDP-11 traces. Programs
written for the PDP-11 not only use a dif-
ferent instruction set, but they have been
written-to run in a small (64K) address
space. Without more data, generalizations
from Figures 20 and 21 cannot be made.

In comparing the minimum miss ratio
line sizes suggested by Table 2 and the
offerings of the various manufacturers, one
notes a discrepancy. For example, the IBM
168-1 (32-byte line, 16K buffer) and the
3033 (64-byte line, 64K buffer) both have
surprisingly small line sizes. The reason for
this is almost certainly that the transmis-
sion time for longer lines would induce a
performance penalty, and the main mem-
ory data path width required would be too
large and therefore too expensive.

Kumar [KuMAa79] also finds that the line
sizes in the IBM 3033 and Amdahl 470 are
too small. He creates a model for the work-
ing set size w of a program, of the form w(k)
= ¢/k*, where k is the block size, and ¢ and
a are constants. By making some conven-
ient assumptions, Kumar derives from this
an expression for the miss ratio as a func-
tion of the block size. Both expressions are
verified for three traces, and a is measured
to be in the range of 0.45 to 0.85 over the

L]
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Table 2. Line Size (in bytes) Giving Minimum Miss
Ralio, for Given Memory Capacily and Traces

Minimum miss
Memory size ratio line size

Traces  Quantum (kbytes) (bytes)
CGO1 10,000 4 32
CGO2 8 64
CGO3 16 128
PGO2 32 256
64 256
PGO 10,000 4 32
CCOMP 8 64
FCOMP 16 128
IEBDG ) 32 256
64 256
FGO1 10,000 4 32
FGO2 8 64
FGOJ 16 128
FGO4 32 256
64 128
WFV 10,000 4 32
APL 8 64
WTX 16 128
FFT 32 256
64 128
250,000 4 32
8 64
16 ™ 64
32 128
64 256
ROFFAS 10,000 2 16
EDC 4 32
TRACE 8 16
16 32
333,333 2 8
4 16
8 32
16 64

three traces and various working set win-
dow sizes. He then found that for those
machines, the optimum block size lies in
the range 64 to 256 bytes.

It is worth considering the relationship
between prefetching and line size. Prefetch-
ing can function much as a larger line size
would. In terms of miss ratio, it is usually
even better; although a prefetched line that
is not being used can be swapped out, a half
of a line that is not being used cannot be
removed independently. Comparisons be-
tween the results in Section 2.1 and this
section show that the performance im-
provement from prefetching is significantly
larger than that obtained by doubling the
line size.

Line sizes in use include: 128 bytes (IBM
3081 [IBM82]), 64 bytes (IBM 3033), 32
bytes (Amdahl 470s, Itel AS/6, IBM 370/
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168), 16 bytes (Honeywell 66/60 and
66/80), 8 bytes (DEC VAX 11/780), 4 bytes
(PDP-11/70).

2.4 Replacement Algorithm
2.4.1 Classification

In the steady state, the cache is full, and a
cache miss implies not only a fetch but also
areplacement; a line must be removed from
the cache. The problem of replacement has
been studied extensively for paged main
memories (see SM1T78d for a bibliography),
but the constraints on a replacement algo-
rithm are much more stringent for a cache
memory. Principally, the cache replace-
ment algorithm must be implemented en-
tirely in hardware and must execute very
quickly, so as to have no negative effect on
processor speed. The set of feasible solu-
tions is still large, but many of them can be
rejected on inspection.

The usual classification of replacement
algorithms groups them into usage-based
versus non-usage-based, and fixed-space
versus variable-space. Usage-based algo-
rithms take the record of use of the line (or
page) into account when doing replace-
ment; examples of this type of algorithm
are LRU (least recently used) [CoFF73] and
Working Set [DENN68]. Conversely, non-
usage-based algorithms make the replace-
ment decision on some basis other than and
not related to usage; FIFO and Rand (ran-
dom or pseudorandom) are in this class,
(FIFO could arguably be considered usage-
based, but since reuse of a line does not
improve the replacement status of that line,
we do not consider it as being such.) Fixed-
space algorithms assume that the amount
of memory to be allocated is fixed; replace-
ment simply consists of selecting a specific
line. If the algorithm varies the amount of
space allocated to a specific process, it is
known as a variable-space algorithm, in
which case, a fetch does not imply a re-
placement, and a swap-out can take place
without a corresponding fetch, Working Set
and Page Fault Frequency [Cnu76] are
variable-space algorithms,

The cache memory is fixed in size, and it
is usually too small to hold the working set
of more than one process (although the
470V/8 and 3033 may be exceptions). For
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thie eason, we «:lieve that variable-space
algc-ithms are not suitable for a cache
mer-ory. To our knowledge, no variable-
spac: algorithm has ever been used in a
cacl2 memory.

It"should also be clear that in a set-asso-
ciative memory, replacement must take
plac: in the same set as the fetch. A line is
beir.; added to a given set because of the
fetcl, and thus a line must be removed.
Sinc: a line maps uniquely into a set, the
repliced line in that set must be entirely
rem :ved from the cache.

T 1e set of acceptable replacement algo-
rith:1s is thus limited to fixed-space algo-
rith: 18 executed within each set. The basic
cancidates are LRU, FIFO, and Rand. It is
our . xperience (based on prior experiments
and »n material in the literature) that non-
usag 2-based algorithms all yield compara-
ble serformance. We have chosen FIFO
with n set as our example of a non-usage-
base algorithm.

2.4.. Comparisons

Con:parisons between FIFO and LRU ap-
pea in Table 3, where we show results
bascd on each set of traces for varying
mer ory sizes, quantum sizes, and set num-
bers We found (averaging over all of the
nur bers there) that FIFO yields a miss
rati» approximately 12 percent higher than
LRT, although the ratios of FIFO to LRU
mis: ratio range from 0.96 to 1.38. This 12
perc:nt difference is significant in terms of
periormance, and LRU is clearly a better
choi :e if the cost of implementing LRU is
smal and the implementation does not slow
dow 1 the machine. We note that in mini-
com»uters (e.g., PDP-11) cost is by far the
majer criterion; consequently, in such sys-
tem , this performance difference may not
be worthwhile, The interested reader will
find additional performance data and dis-
cussion in other papers [CHIA75, FURNTS,
G1Bs67, LEEGY, and STRET6].

2.4.3 Implementation

It is important to be able to implement
LRU cheaply, and so that it executes
quickly; the standard implementation in
soft~ are using !~ked lists is unlikely to be
eith>r cheap or fast. For a set size of two,
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Table 3. Miss Ratio Comparison for FIFO and LRU (within set) Replacement

i tum Number of Miss ratio Miss ratio Ratio FIFO/
Zwﬁ.ﬂoﬂmﬁa O:MM« sets LRU FIFO LRU Traces
4 0.02162 0.02254 1.04 WFV
ww M%M wx 0,00910 0.01143 1.26 ZUT
16 250K 64 0.00868 0.01036 119 W1 x
32 250K 64 0.00523 0.00548 _.c.m FFT
» 10K 26 001087 0011860 et
mw %M maam 0.00845 0.00947 _._w ROFFAS
8 10K 64 0.00255 0.00344 1.35 EDC -
4 333K 64 0.00173 0.00214 1.24 TRACE
8 333K 64 0.00120 0.00120 1.00
4 10K 256 0.0218 0.02175 0.998
8 10K 256 0.00477 0.00514 - 1.08
4 333K 256 0.01624 0.01624 1.00
8 333K 256 0.00155 0.00159 1.03 caon
64 10K 64 0.01335 0.01839 1.38 o
128 10K 64 0.01147 0.01103 0.96 MMOQ
64 10K 256 0.01461 0.01894 1.30 a0
128 10K 266 0.01088 0.01171 1.08 ﬁmO—
16 10K 64 0.01702 0.01872 110 s
32 10K 64 0.00628 0.00867 1.38 e
16 10K 256 0.01888 0.01934 1.02 e
32 10K 266 0.00857 0.00946 1.10 m‘no
16 10K . 64 0.03428 0.03496 1.02 Mog—sm
32 10K 64 0.02356 0.02543 1.08 By
16 10K 256 0.03540 o.oumt s pooM
32 10K 256 0.02394 0.02534 1.06 5

Average

only a hot/cold (toggle) Eﬁ. is required.
More generally, replacement in a set of E
elements can be effectively implemented
with E(E — 1)/2 bits of status. (We note
that [log 2E!] bits of status are the theo-
retical minimum.) One creates an upper-
left triangular matrix (without the diagonal,
that is, i +j < E) which we will call R and
refer to as R(i,j). When line i is n&mambo.mm.
row i of R(i, j) is set to 1, and 8.53: i of
R(j, i) is set to 0. The LRU line is the one
for which the row is entirely equal to 0 (for
those bits in the row; the row may be
empty) and for which the column is entirely
1 (for all the bits in the column; the column
may be empty). This algorithm can be eas-
ily implemented in hardware, and executes
rapidly. See MARU75 for an extension and
MARUT6 for an alternative.

The above algorithm requires a number
of LRU status bits that increases with the
square of the set size. This number is ac-
ceptable for a set size of 4 34@<\m. Itel AS/
6), marginal for a set size of eight (470V/7),
and unacceptable for a set size of 16. For
that reason, IBM has chosen to implement

1.116

approximations to LRU in the 370/168 and
the 3033. In the 370/168-3 [IBM75], the set
gize is 8, with the 8 lines grouped in 4 pairs.
The LRU pair of lines is selected, and then
the LRU block of the pair is the one :mma
for replacement. This algorithm requires
only 10 bits, rather than the 28 needed by
the full LRU. A set size of 16 is found in
the 3033 [IBM78]. The 16 lines that make
up & set are grouped into four groups of two
pairs of two lines, The line to'be replaced is
selected as follows: (1) find the LRU group
of four lines (requiring 6 bits of status), Am.v
find the LRU pair of the two pairs (1 bit
per group, thus 4 more bits), and (3) find
the LRU line of that pair (1 bit per pair,
thus 8 more bits). In all, 18 bits are used for
this modified LRU algorithm, as opposed
to the 120 bits required for a full LRU. No
experiments have been v:v:&:.& compar-
ing these modified LRU algorithmsa with
genuine LRU, but we would expect to find
no measurable difference. .
Implementing either FIFO or Rand is
much easier than implementing LRU.
FIFO is implemented by keeping & modulo
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Table 4. Percentage of Memory Reference.3 That Are Reads, Writes, and
Instruction Fetches for E-.ch Trace”
Partial trace Full trace

Trace Data read Data write IFETCH Data read Data write IFETCH

: WATFIV 233 1654 6012 —

: APL 215 82 703 — uw.ww Z

. WATEX 245 9.07 86.4 - 7.84 Z

. FFT1 234 7.1 689 - 7.59 Z
ROFFAS 375 496 576 383 54 56.3
EDC 304 103 59.2 29.8 110 59.2
TRACE 419 102 419 486 10.0 413
CGO1 415 2 24.3 4207 3419 23.74
€GO2 411 324 265 36.92 15.42 47.66
CGO3 377 225 39.8 37.86 2255 39.59
wm% 316 15.4 53.1 30.36 12.77 56.87
Fool 299 176 52.6 3057 11.26 58.17
FGO2 %.M 5.72 63.7 32.54 10.16 57.30
FGO3 200 “ww 57.2 30.60 13.25 56.15
Foo4 ) : 543 28.38 17.29 54.33

20.7 19.8 505 28.68 16.93 54.39

CCOMP!1 308 9.91 59.3 3342 17.10 49.47
FCOMP1 206 20.7 50.0 30.80 16.51 53.68
1EBDG 393 281 327 30.3 28.2 925
Average 320 16.90 52,02 34.56 14.80 49.98
Stand. Dev. 7.1 8.7 134 5.80 7.21 1056

*® Partial trace results are for first 250,000 memo!
ry refer~.ices for IBM 370 traces, and 333,333 memor;
references for PDP-11 traces. ?E,:ﬁno results refer to er :ire length of memory address trace (one to Sw

million Yy p t ref .

E E. elements/set) counter for each set; it
is _.sanmamsgn with each replacement and
points to the next line for replacement.
Rand is simpler still. One possibility is to
usea m_s.m_o modulo E counter, incremented
in a variety of ways: by each clock cycle,
each memory reference, or each replace-
ment anywhere in the cache. Whenever a
replacement i8 to occur, the value of the
counter is used to indicate the replaceable
line within the set.

.

2.5 Write-Through versus Copy-Back

When the CPU executes instructions that
modify the contents of the current address
space, those changes must eventually be
reflected in main memory; the cache is only
a temporary buffer. There are two general
approaches to updating main memory:
stores can be immediately transmitted to
main memory (called write-through or
mS—.o.-oE.o:mE. or stores can initially only
msc.EM the cache, and can later be reflected
in main memory (copy-back). There are
issues om. performance, reliability, and com-
v_ou_@ in making this choice; these issues
are m__mocwmoa in this section. Further infor-
mation can be found in the literature
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[AG:tA77a, BELL74, PouM75, and R1s77]. A

. deteiled analysis of some aspects of this

proi:lem is provided in SM1T79 and YENSI.

:To provide an empirical basis for our
discussion in this section, we refer the
reader to Table 4. There we show the per-
centage of memory references that resulted
m..oB data reads, data writes, and instruc-
tion fetches for each of the traces used in
this paper. The leftmost three columns
show the results for those portions of the
traces used throughout this paper; that is,
the 270 iraces “are run for the first 250,000
me::ory references and the PDP-11 traces
for 33,333 memory references. When avail-
wv.r ) the results for the entire trace (1 to 10
:E:w: memory references) are shown in
the “ightmost columns. The overall average
mrw vs8 16 percent of the references were
wri es, but the variation is wide (5 to 34
per ent) and the values observed are clearly
ver, - dependent on the source language and
on the machine architecture. In SMIT79 we
obs:rved that the fraction of lines from the
cace that had to be written back to main
me:aory (in a copy-back cache) ranged
froin 17 to 56 percent.

Saveral issues bear on the trade-off be-
twe :n write-through and copy-back.

N

1. Main Memory Traffic. Copy-back al-
most always results in less main memory
traffic since write-through requires a main
memory access on every store, whereas
copy-back only requires a store to main
memory if the swapped out line (when a
miss occurs) has been modified. Copy-back
generally, though, results in the entire line
being written back, rather than just one or
two words, as would occur for each write
memory reference (unless “dirty bits” are
associated with partial lines; a dirty bit,
when set, indicates the line has been mod-
ified while in the cache). For example, as-
sume a miss ratio of 3 percent, a line size of
32 bytes, a memory module width of 8
bytes, a 16 percent store frequency, and 30
percent of all cache lines requiring a copy-
back operation. Then the ratio of main
memory store cycles to total memory ref-
crences is 0.16 for write-through and 0.036
for copy-back.

2. Cache Consistency. If store-through is
used, main memory always contains an up-
to-date copy of all information in the sys-
tem. When there are multiple processors in
the system (including independent chan-
nels), main memory can serve as a common
and consistent storage place, provided that
additional mechanisms are used. Other-
wise, either the cache must be shared or a
complicated directory system must be em-
ployed to maintain consistency. This sub-
ject is discussed further in Section 2.7, but
we note here that store-through simplifies
the memory consistency problem.

3. Complicated Logic. Copy-back may
complicate the cache logic. A dirty bit is
required to determine when to copy a line
back. In addition, arrangements have to be
made to perform the copy-back before the
fetch (on a miss) can be completed.

4. Fetch-on-write. Using either copy-
back or write-through still leaves undecided
the question of whether to fetch-on-write
or not, if the information referenced is not
in the cache. With copy-back, one will usu-
ally fetch-on-write, and with write-through,
usually not. There are additional related
possibilities and problems. For example,
when using write-through, one could not
only not fetch-on-write but one could
choose actually to purge the modified line
from the cache should it be found there. If

the line is found in the cache, its replace-
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ment status (e.g., LRU) may or may not be
updated. This is considered in item 6 below.
5. Buffering. Buffering is required for
both copy-back and write-through. In copy-
back, a buffer is required so that the line to
be copied back can be held temporarily in
order to avoid interfering with the fetch.
One optimization worth noting for copy-
back is to use spare cache/main memory
cycles to do the copy-back of “dirty” (mod-
ified) lines [BaLz81b). For write-through, it
is important to buffer several stores so that
the CPU does not have to wait for them to
be completed. Each buffer consists of a data
part (the data to be stored) and the address
part (the target address). In SMIT79 it was
shown that a buffer with capacity of four
provided most of the performance improve-
ment possible in a write-through system.
This is the number used in the IBM 3033.
We note that a great deal of extra logic may
be required if buffering is used. There isnot
only the logic required to imgplement the
buffers, but also there must be logic to test
all memory access addresses and match
them against the addresses in the address
part of the buffers. That is, there may be
accesses to the material contained in the
store buffers before the data in those
buffers has been transferred to main mem-
ory. Checks must be made to avoid possible
inconsistencies.

6. Reliability. If store-through is used,
main memory always has a valid copy of
the total memory state at any given time.
Thus, if a processor fails (along with its
cache), a store-through system can often be
restored more easily. Also, if the only valid
copy of a line is in the cache, an error-
correcting code is needed there. If a cache
error can be corrected from main memory,
then a parity check is sufficient in the
cache.

Some experiments were run to look at
the miss ratio for store-through and copy-
back. A typical example is shown in Figure
22; the other sets of traces yield very similar
results. (In the case of write-through, we
have counted each write as a miss.) It is
clear that write-through always produces &
much higher miss ratio. The terms reorder
and no reorder specify how the replace-
ment status of the lines were updated.
Reorder means that a modified line is
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Figure 22, Miss ;ac.».o_. a.ouz.gnr and 218.:,35? Al writes counted as Emmg for write-
through. No reorder implies replacement status ..ot modified on write; reorder implies

replacement status is updated on write.

moved to the top of the LRU stack within
its set in the cache. No reorder implies that
the replacement status of the line is not
modified on write. From Figure 22, it can
be seen that there is no significant differ-
ence in the two policies. For this reason,
the IBM 3033, a write-through machine,
does not update the LRU status of lines
when a write occurs,

With respect to performance, there is no
clear choice to be made between write-
through and copy-back. This is because a
good implementation of write-through sel-
dom has to wait for a write to complete. A
good implementation of write-through re-
quires, however, both sufficient buffering of
writes and sufficient interleaving of main
memory so that the probability of the CPU
becoming blocked while waiting on a store
is small. This appears to be true in the IBM
3033, but at the expense of a great deal of
buffering and other logic. For example, in
the 3033 each buffered store requires a dou-
ble-word datum buffer, a single buffer for
the store address,.and a 1-byte buffer to
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ind:cate which bytes have been modified in
the double-word store. There are also com-
parstors to match each store address
age nst subsequent accesses to main mem-
ory. 8o that references to the modified data
get the updated values. Copy-back could
prooably have been implemented much
mc e cheaply.

*’he Amdahl Computers all use copy-
bar k&, as does the IBM 3081. IBM uses
stc-e-through in the 370/168 [IBM75] and
the 3033 [IBM78], as does DEC in the
PL P-11/70 [STrE76] and VAX 11/780
[DEC?78], Honeywell in the 66/60 and 66/
80, and Itel in the AS/6.

2.6 Effect of Multiprogramming: Cold-Start
- and Warm-Start

A significant factor in the cache miss ratio
is the frequency of task switching, or in-
versely, the value of the mean intertask
sv'ich time, . The problem with task
sw iching is thuu every time the active task
is « hanged, a new process may have to be

loaded from scratch into the cache. This
issue was discussed by EasT75, where the
terms warm-start and cold-start were
coined to refer to the miss ratio starting
with a full memory and the miss ratio start-
ing with an empty memory, respectively.
Other papers which discuss the problem
include East78, Kona80, MacD79,
PruT?7, Poum75, ScHR71, and STRET6.

Typically, a program executes for a pe-
riod of time before an interruption (1/0,
clock, etc.) of some type invokes the super-
visor. The supervisor eventually relin-
guishes control of the processor to some
user process, perhaps the same one as was
running most recently. If it is not the same
user process, the new process probably does
not find any lines of its address space in the
cache, and starts immediately with a num-
ber of misses. If the most recently executed
process is restarted, and if the supervisor
interruption has not been too long, some
useful information may still remain. In
PEUTT7, some figures are given about the
length of certain IBM operating system
supervisor interruptions and what fraction
of the cache is purged. (One may also view
the user as interrupting the supervisor and
increasing the supervisor miss ratio.)

The effect of the task-switch interval on
the miss ratio cannot be easily estimated.
In particular, the effect depends on the
workload and on the cache size. We also
observe that the proportion of cache misses
due to task switching increases with in-
creasing cache size, even though the abso-
lute miss ratio declines. This is because a
small cache has a large inherent miss ratio
(since it does not hold the program’s work-
ing set) and this miss ratio is only slightly
augmented by task-switch-induced misses.
Conversely, the inherent low miss ratio of
alarge cache is greatly increased, in relative
terms, by task switching. We are not aware
of any current machine for which a break-
down of the miss ratio into these two com-
ponents has been done.

Some experimental results bearing on
this problem appear in Figures 23 and 24.
In each, the miss ratio is shown as a func-
tion of the memory size and task-switch
interval @ (@ is the number of memory
references). The figures presented can be
understood as follows. A very small  (e.g.,
100, 1,000) implies that the cache is shared
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between all of the active processes, and that
when a process is restarted it finds a sig-
nificant fraction of its previous information
gtill in the cache. A very large @ (eg.,
100,000, 250,000) implies that when the pro-
gram is restarted it finds an empty cache
(with respect to its own working set), but
that the new task runs long enough first to
fill the cache and then to take advantage of
the full cache. Intermediate values for Q
result in the situation where a process runs
for a while but does not fill the cache;
however, when it is restarted, none of its
information is atill cache resident (since the
multiprogramming degree is four). These
three regions of operation are evident in
Figures 23 and 24 as a function of @ and of
the cache size. (In SaTv8], Q is estimated
to be about 25,000.)

There appear to be several possible so-
lutions to the problem of high cache miss
ratios due to task switching. (1) It may be
possible to lengthen the task-switch inter-
val. (2) The cache can gﬁawac so large
that several programs can maintain infor-
mation in it simultaneously. (3) The sched-
uling algorithm may be modified in order
to give preference to a task likely to have
information resident in the cache. (4) If the
working set of a process can be identified
(e.g., from the previous period of execu-
tion), it might be reloaded as a whole; this
is called working set restoration. () Mul-
tiple caches may be created; for example, a
separate cache could be established for the
supervisor to use, so that, when invoked, it
would not displace user data from the
cache. This idea is considered in Section
2.10, and some of the problems of the ap-
proach are indicated.

A related concept is the idea of bypassing
the cache for operations unlikely to result
in the reuse of data. For example, long
vector operations such as a very long move
character (e.g., IBM MVCL) could bypass
the cache entirely [Losq82] and thereby
avoid displacing other data more likely to
be reused.

2.7 Muiticache Consistency

Large modern computer systems often have
severa) independent processors, consisting
sometimes of several CPUs and sometimes
of just a single CPU and several channels.
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Figure 24. Misa ratio versus memory capacity f variety of mul.iprogramming intervals Q.

Each processor may have zero, one, or sev-
eral caches. Unfortunately, in such a mul-
tiple processor system, a given piece of in-
formation may exist in several places at a
given time, and it is important that all
processors have access (as necessary) to the
same, unique (at a given time) value. Sev-
eral solutions exist and/or have been pro-
posed for this problem. In this section, we
discuss many of these solutions; the in-
terested reader should refer to BEANT9,
Cens78, Drim8la, Duso82, JONET76,
JoNET7a, Maza77, McW177, Ncai8l, and
TANG76 for additional explanation.

As a basis for discussion, consider a single
CPU with a cache and with a main memory
behind the cache. The CPU reads an item
into the cache and then modifies it. A sec-
ond CPU (of similar design and using the
same main memory) also reads the item
and modifies it. Even if the CPUs were
uging store-through, the modification per-
formed by the second CPU would not be
reflected in the cache of the first CPU
unless special steps were taken. There are
several possible special steps.

1. Shared Cache. All processors in the
system can use the same cache. In general,
this solution is infeasible because the band-
widfh of a single cache usually is not suffi-
cient to support more than one CPU, and
because additional access time delays may
be incurred because the cache may not be
physically close enough to both (or all)
processors. This solution is employed suc-
cessfully in the Amdahl 470 computers,
where the CPU and the channels all use
the same cache; the 470 series does not,
however, permit tightly coupled CPUs. The
UNIVAC 1100/80 [BorGc79] permits two
CPUs to share one cache.

2. Broadcast Writes. Every time a CPU
performs a write to the cache, it also sends
that write to all other caches in the system,
If the target of the store is found in some
other cache, it may be either updated or
invalidated. Invalidation may be less likely
to create inconsistencies, since updates can
possibly “cross,” such that CPU A updates
its own cache and then B’s cache. CPU B
simultaneously updates its own cache and
then A’s. Updates also require more data
transfer. The IBM 370/168 and 3033 proc-
essors use invalidation. A store by a CPU
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or channel is broadcast to all caches sharing
the same main memory. This broadcast
store is placed in the buffer invalidation
address stack (BIAS) which is a list of
addresses to be invalidated in the cache.
The buffer invalidation address stack has a
high priority for cache cycles, and if the
target line is found in that cache, it is in-
validated.

The major difficulty with broadcasting
store addresses is that every cache memory
in the system is forced to surrender a cycle
for invalidation lookup to any processor
which performs a write. The memory inter-
ference that occurs.is generally acceptable
for two processors (e.g., IBM's current MP
systems), but significant performance deg-
radation is likely with more than two proc-
essors. A clever way to minimize this prob-
lem appears in a recent patent [BEAN79].
In that patent, a BIAS Filter Memory
(BFM) is proposed. A BFM is associated
with each cache in a tightly coupled MP
system, This filter memory works by filter-
ing out repeated requests to invalidate the
same block in a cache.

3. Software Control. If a system is being
written from scratch and the architecture
can be designed to support it, then software
control can be used to guarantee consist-
ency. Specifically, certain information can
be designated noncacheable, and can be
accessed only from main memory. Such
items are usually semaphores and perhaps
data structures such as the job queue. For
efficiency, some shared writeable data has
to be cached. The CPU must therefore be
equipped with commands that permit it to
purge any such information from its own

cache as necessary. Access to shared write-
able cacheable data is possible only within
critical sections, protected by noncacheable
semaphores. Within the critical regions, the
code is responsible for restoring all modified
items to main memory before releasing the
lock. Just such a scheme is intended for the
S-1 multiprocessor system under construc-
tion at the Lawrence Livermore Laboratory
[HAIL79, McW177]. The Honeywell Series
66 machines use a similar mechanism. In
some cases, the simpler alternative of mak-
ing shared writeable information noncache-
able may be acceptable,

4, Directory Methods. It is possible to
keep a centralized and/or distributed direc-
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tory of all main memory lines, and use it to
ensure that no lines are write-shared. One
such scheme is as follows, though several
variants are possible. The main memory
maintains k& + 1 bits for each line in main
-memory, when there are k caches in the
system. Bit i, i = 1,..., k is set to 1 if the
corresponding cache contains the line. The
(k + 1)th bit is 1 if the line is being or has
been modified in a cache, and otherwise is
0. If the (k& + 1)th bit is on, then exactly
one of the other bits is on. Each CPU has
associated with each line in its cache a
single bit (called the private bit). If that bit
is on, that CPU has the only valid copy of
that line, If the bit is off, other caches and
main memory may also contain current
copies. Exactly one private bit is set if and
only if the main memory directory bit & +
18 set.

A CPU can do several things which pro-
voke activity in this directory system, If a
CPU attempts to read a line which is not in
its cache, the main memory directory is
queried. There are two possibilities: either
but & + 1 is off, in which case the line is
transferred to the requesting cache and the
corresponding bit set to indicate this; or, bit
k + 118 on, in which case the main memory
directory must recall the line from the
cache which contains the modified copy,
update main memory, invalidate the copy
in the cache that modified it, send the line
to the requesting CPU/cache and finally
update itself to reflect these changes. (Bit
k + 1 is then set to zero, since the request
was a read.)

An attempt to perform a write causes one
of three possible actions. If the line is al-
ready in cache and has already been modi-
fied, the private bit is on and the write
takes place immediately. If the line is not
in cache, then the main memory directory
must be queried. If the line is in any other
cache, it must be invalidated (in all other
caches), and main memory must be up-
dated if necessary. The main memory di-
rectory is then set to reflect the fact that
the new cache contains the modified copy
of the data, the line is transmitted to the
requesting cache, and the private bit is set.
The third possibility is that the cache al-
ready contains the line but that it does not
have its private bit set. In this case, per-
mission must be requested from the main
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memoyry directory to perform the write.
The main memory directory invalidates
any other copies of the line in the system,
marks its own directory suitably, and then
gives permission to modify the data.

The performance implications of this
method are as follows. The cost of a miss
may . acreese significantly due to the need
to qiery the main memory directory and
posst’ily retrieve data from other caches.
The use of shared writeable information
becoes expensive due to the high miss
ratic: that are likely to be associated with
such ‘nformation. In CENS78, there is some
atterpt at a quantitative analysis of these
perfcrmance problems.

Aroather problem is that I/0 overruns
may ccur. Specifically, an I/0 data stream
may 2e delayed while directory operations
take lace. In the meantime, some I/0 data
are }-st. Care must be taken to avoid this
probiem. Either substantial 1/0 buffering
or write-through is clearly needed.

Othier variants of method 4 are possible.
(1) The purpose of the central directory is
to m:nimize the queries to the caches of
othe: CPUs. The central directory is not
logic:lly necessary; sufficient information
in the individual caches. It is also
poss:ile to transmit information from cache
to ca*he, without going through main mem-
ory. .{2) If the number of main memory
direc-cory bits is felt to be too high, locking
couli’: be on a page instead of on a line basis.
(3) { tore-through may be used instead of
copy-back; thus main memory always has
a ve'id copy and data do not have to be
fetct:ed from the other caches, but can sim-
ply ke invalidated in these other caches.

T:e IBM 3081D, which contains two

‘CPU3, essentially uses the directory

sche -ae described. The higher performance
3081« functions similarly, but passes the
nece.:sary information from cache to cache
rath:r than going through main memory.

A: other version of the directory method
is celed the broadcast search [Drim81b].
In t!is case, a miss is sent not only to the
mair memory but to all caches. Whichever
men ories (cache or main) contain the de-
sired information send it to the requesting
processor.

Liu [L1u82] proposes a multicache
scheme to minimize the overhead of direc-
tory operations. He suggests that all CPUs

have two caches, only one of which can
contain shared data. The overhead of direc-
tory access and maintenance would thus
only be incurred when the shared data
cache is accessed.

There are two practical methods among
the above alternatives: method 4 and the
BIAS Filter Memory version of method 2.
Method 4 is quite general, but is potentially
very complex. It may also have perform-
ance problems. No detailed comparison ex-
ists, and other and better designs may yet
remain to be discovered. For new machines,
it is not known whether software control is
better than hardware control; clearly, for
existing architectures and software, hard-
ware control is required.

2.8 Data/instruction Cache

Two aspects of the cache having to do with
its performance are cache bandwidth and
access time, Both of these can be improved
by splitting the cache into two parts, one
for data and one for instructions. This dou-
bles the bandwidth since the cache can now
service two requests in the time it formerly
required for one. In addition, the two re-
quests served are generally complementary.
Fast computers are pipelined, which' means
that several instructions are simultaneously
in the process of being decoded and exe-
cuted. Typically, there are several stages in
a pipeline, including instruction fetch, in-
struction decode, operand address genera-
tion, operand fetch, execution, and trans-
mission of the results to their destination
(e.g., to a register). Therefore, while one
instruction is being fetched (from the in-
struction cache), another can be having its
operands fetched from the operand cache.
In addition, the logic that arbiirates priority
between instruction and data accesses to
the cache can be simplified or eliminated.
A split instruction/data cache also pro-
vides access time advantages. The CPU of
a high-speed computer typically contains
(exclusive of the S-unit) more than 100,000
logic gates and is physically large. Further,
the logic having to do with instruction fetch
and decode has little to do with operand
fetch and store except for execute in-
structions and possibly for the targets of
branches. With a single cache system, it is
not always possible simultaneously to place
the cache immediately adjacent to all of the
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logic which will access it. A split cache, on
the other hand, can have each of its halves
placed in the physical location which is
most useful, thereby saving from a fraction
of a nanosecond to several nanoseconds.
There are, of course, some problems in-
troduced by the split cache organization,
First, there is the problem of consistency.
Two copies now exist of information which
formerly existed only in one place. Specifi-
cally, instructions can be modified, and this
modification must be reflected before the
instructions are executed. Further, it is pos-
sible that even if the programs are not self-
modifying, both data and instructions may
coexist in the same line, either for reasons
of storage efficiency or because of immedi-
ate operands. The solutions for this prob-
lem are the same as those discussed in the
section on multicache consistency (Section
2.7), and they work here as well. It is im-
perative that they be implemented in such
a way 80 as to not impair the access time
advantage given by this organization.
Another problem of this cache organiza-
tion is that it results in inefficient use of the
cache memory. The size of the working set
of a program varies constantly, and in par-
ticular, the fraction devoted to data and to
instructions also varies. (A dynamically
split design is suggested by FAVR78.) If the
instructions and data are not stored to-
gether, they must each exist within their
own memory, and be unable to share a
larger amount of that resource. The extent
of this problem has been studied both ex-
perimentally and analytically. In SHED7S6,
a set of formulas are provided which can be
used to estimate the performance of the
unified cache from the performance of the
individual ones. The experimental results
were not found to agree with the mathe-
matical ones, although the reason was not
investigated. We believe that the nonsta-
tionarity of the workload was the major
problem. .
We compared the miss ratio of the split
cache to that of the unified cache for each
of the sets of traces; some of the resulls
appear in Figures 25-28. (See BELL74 and
THAK78 for additional results.) We note
that there are several possible ways to split
and manage the cache and the various al-
ternatives have been explored. One could
split the cache in two equal parts (labeled
“SPLIT EQUAL”), or the observed miss
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ratios could be used (from this particular
run) to determine the optimal static split
(“SPLIT OPT"). Also, when a line is found
to be in the side of the cache other than the
one currently accessed, it could either be
duplicated in the remaining side of the
cache or it could be moved; this latter case
is labeled “NO DUPLICATES.” (No spe-
cial label is shown if duplicates are permit-
omm.v The results bearing on these distinc-
tions are given in Figures 25-28.

We observe in Figures 25 and 26 that the
unified cache, the equally split cache, and
the cache split unequally (split optimally)
all perform about equally well with respect
to miss ratio. Note that the miss ratio for
the instruction and data halves of the cache
individually are also shown. Further, com-
paring Figures 26 and 26, it seems that
barring duplicate lines has only a small
negative effect on the miss ratio.

In sharp contrast to the measurements of
Figures 25 and 26 are those of Figures 27
and 28. In Figure 27, although the equally
and optimally split cache are comparable,
the unified cache is significantly better. The
unified cache is better by an order of mag-
nitude when duplicates are not permitted
(Figure 28), because the miss ratio is
sharply increased by the constant move-
ment of lines between the two halves. It
appears that lines sharing instruction and
data are very common in programs com-
piled with IBM’s FORTRAN G compiler
and are not common in programs compiled
using ‘the IBM COBOL or PL/I compiler.
(Results similar to the FORTRAN case
have been found for the two other sets of
IBM traces, all of which include FOR-
TRAN code but are not shown.)

Based on these experimental results, we
can say that the miss ratio may increase
significantly if the caches are split, but that
the effect depends greatly on the workload.
wmomzﬁnv_w. compilers can be designed to
minimize this effect by ensuring that data
and instructions are in separate lines, and
perhaps even in separate pages.

Despite the possible miss ratio penalty of
splitting the cache, there are at least two
experimental machines and two commer-
cial ones which do so. The S-1 [HAIL?9,
McW177] at Lawrence Livermore Labora-
tory is being built with just such a cache; it
relies on (new) software to minimize the
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probiems discussed here. The 801 minicom-
puter, built at IBM Research (Yorktown
Heights) [ELEC76, RaDI182] also has a
split cache. The Hitachi H200 and Itel
AS/6 [Ross79] both have a split data/in-
struction cache. No measurements have
been publicly reported for any of these
machines.

2.9 ‘lrt12! Address Cache

Mo: . cache memories address the cache
usir:;7 the real address (see Figure 2). As.the
reac'sr recalls, we discussed (Introduction,
Section 2.3) the fact that the virtual address
was ‘ranslated by the TLB to the real ad-
dret 3, and that the line lookup and readout
cou. 1 not be completed until the real ad-
dress was available, This suggests that the
cacl e access time could be significantly re-
duci-d if the translation step could be elim-
inat:d. The way to do this is to address the
caclie directly with the virtual address. We
call a cache organized this way a virtual
add ess cache. The MU-5 [IBBE77] uses
this organization for its name store. The
S-1, the IBM 801, and the ICL 2900 series
macaines also use this idea. It is discussed
in E:2DE79. See also OLBET79,

Thiere are some additional considerations
in tuilding a virtual address cache, and
the: 2 is one serious problem. First, all ad-
dre:ses must be tagged with the identifier
of the address space with which they are
ass ziated, or else the cache must be purged
eve.y time task switching occurs. Tagging
is not a problem, but the address tag in the
cact:ie must be extended to include the ad-
dreis space ID. Second, the translation
me:.hanism must still exist and must still be
effizient, since virtual addresses must be
tras:slated to real addresses whenever main
meraory is accessed, specifically for misses
anc for writes in a write-through cache.
The:a the TLB cannot be eliminated.

Tae most serious problem is that of
‘“gy..onyms,” two or more virtual addresses
tha. map to the same real address. Syn-
ony ns occur whenever two address spaces
sha e code or data. (Since the lines have
adc-ess space tags, the virtual addresses
are lifferent even if the line occurs in the
san.2 place in both address spaces.) Also,
the supervisor may exist in the address
space of each user, and it is important that

only one copy of supervisor tables be kept.
The only way to detect synonyms is to take
the virtual address, map it into a real ad-
dress, and then see if any other virtual
addresses in the cache map into the same
real address. For this to be feasible, the
inverse mapping must be available for every
line in the cache; this inverse mapping is
accessed on real address and indicates all
virtual addresses associated with that real
address. Since this inverse mapping is the
opposite of the TLB, we choose to call the
inverse mapping buffer (if a separate one is
used) the RTB or reverse translation
buffer. When a miss occurs, the virtual ad-
dress is translated into the real address by
the TLB. The access to main memory for
the miss is overlapped with a similar search
of the RTB to see if that line is already in
the cache under a different name (virtual
address). If it is, it must be renamed and
moved to its new location, since muitiple
copies of the same line in the cache are
clearly undesirable for reasons of consist-
ency.

The severity of the synonym problem can
be decreased if shared information can be
forced to have the same location in all
address spaces. Such information can be
given a unique address space identifier, and
the lookup algorithm always considers such
a tag to match the current address space
ID. A scheme like this is feasible only for
the supervisor since other shared code
could not conceivably be so allocated.
Shared supervisor code does have & unique
location in all address spaces in IBM's MVS
operating system.

The RTB may or may not be a simple
structure, depending on the structure of the
rest of the cache. In one case it is fairly
simple: if the bits used to select the set of
the cache are the same for the real and
virtual address (i.e., if none of the bits used
to select the set undergo translation), the
RTB can be implemented by associating
with each cache line two address tags
[BepE79]. If a match is not found on the
virtual address, then a search is made in
that set on the real address. If that search
finds the line, then the virtual address tag
is changed to the current virtual address. A
more complex design would involve a sep-
arate mapping buffer for the reverse trans-
lation.
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2.10 User/Supervisor Cache

It was suggested earlier that a significant
fraction of the miss ratio is due to task-
switching. A possible solution to this prob-
lem is to use a cache which has been split
into two parts, one of which is used only by
the supervisor and the other of which is
used primarily by the user state programs.
If the scheduler were programmed to re-
start, when possible, the same user program
that was running before an interrupt, then
the user state miss ratio would drop appre-
ciably. Further, if the same interrupts recur
frequently, the supervisor state miss ratio
may also drop. In particular, neither the
user nor the supervisor would purge the
cache of the other's lines. (See PEUT77 for
some data relevant to this problem.) The
supervisor cache may have a high miss ratio
in any case due to its large working set.
(See M1LAT5 for an example.)

Despite the appealing rationale of the
above comments, there are™ number of
problems with the user/supervisor cache.
First, it is actually unlikely to cut down the
miss ratio. Most misses occur in supervisor
state [M1LA75] and a supervisor cache half
as large as the unified cache is likely to be
worse since the maximum cache capacity is
no longer available to the supervisor. Fur-
ther, it is not clear what fraction of the time
the scheduling algorithm can restart the
same program, Second, the information
used by the user and the supervisor are not
entirely distinct, and cross-access must be
permitted. This overlap introduces the
problem of consistency. )

We are aware of only one evaluation of
the split user/supervisor cache [R0ss80}.
In that case, an experiment was run on an
Hitatchi M180. The results seemed to show
that the split cache performed about as well
as a unified one, but poor experimental
design makes the results questionable. We
do not expect that a split cache will prove
to be useful.

2.11 Input/Output through
the Cache

In Section 2.7, the problem of multicache
consistency was discussed. We noted that
if all accesses to main memory use the same
cache, then there would be no consistency
problem. Precisely this approach has been
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used in one manufacturer's computers
(Amdahl Corporation). '

2.11.1 Overruns

While putting all input/output through the
cache solves the consistency problem, it
introduces other difficulties. First, there is
the overrun problem. An overrun occurs
when for some reason the 1/0 stream can-
not be properly transmitted between the
memory (cache or main) and the 1/0 de-
vice. Transmitting the I/O through the
cache can cause an overrun when the line
accessed by the I/0 stream is not in the
cache (and is thus a miss) and for some
reason cannot be obtained quickly enough.
Most I/0 devices involve physical move-
ment, and when the buffering capacity
embedded in the I/0 path is exhausted, the
transfer must be aborted and then re-
started. Overruns can be provoked when:
(1) the cache is already processing one or
more misses and cannot process the current
(additional) one quickly enough; (2) more
than one I/O transfer is in progress, and
more active (in use) lines map into one set
than the set size can accommodate; or (3)

the cache bandwidth is not adequate to

handle the current burst of simultaneous
1/0 from several devices. Overruns can be
minimized if the set size of the cache is
large enough, the bandwidth is high
enough, and the ability to process misses is
sufficient. Sufficient buffering should also
be provided in the 1/0 paths to the devices.

2.11.2 Miss Ratio

Directing the input/output data streams
through the cache also has an effect on the
miss ratio. This I/0 data occupies some
fraction of the space in the cache, and this
increases the miss ratio for the other users
of the cache. Some experiments along these
lines were run by the author and results are
shown in Figures 29-32. IORATE is the
ratio of the rate of I/0 accesses to the cache
to the rate of CPU accesses. (I/0 activity
is simulated by a purely sequential syn-
thetic address stream referencing a distinct
address space from the other programs.)
The miss ratio as a function of memory size
and I/0 transfer rate is shown in Figures
29 and 30 for two of the sets of traces. The
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data has been rearranged to show more
directly the effect on the miss ratio in Fig-
ures ;. and 32. The results displayed here
show 10 clear mathematical pattern, and
we wi-re unable to derive a useful and ver-
ifiabl: formula to predict the effect on the
miss - atio by an /0 stream.

Ex mination of the results presented in
Figur :s 29-32 suggests that for reasonable
1/0 7 ites (less than 0.05; see Powg77 for
some I/0 rate data) the miss ratio is not
affect 2:d to any large extent. This observa-
tion i: consistent with the known perform-
ance »f the Amdahl computers, which are
not s-riously degraded by high 1/0 rates.

2.12 ache Size

Two ery important questions when select-
ing a :ache design are how large should the
cache¢ be and what kind of performance can
we ex rect. The cache size is usually dictated
by a aumber of criteria having to do with
the cost and performance of the machine.
The ‘ache should not be so large that it
repre.ents an expense out of proportion to
the ¢.1ded performance, nor should it oc-
cupy an unreasonable fraction of the phys-
ical 8:ace within the processor. A very large
cach. may also require more access cir-
cuitr -, which may increase access time.
As:le from the warnings given in the
para; raph above, one can generally assume
that ' he larger the cache, the higher the hit
ratio and therefore the better the perform-
ance The issue is then one of the relation
betw=en cache size and hit ratio. This is a
very lifficult problem, since the cache hit
ratic varies with the workload and the ma-
chine architecture. A cache that might yield
a 99.” percent hit ratio on a PDP-11 pro-
gram could result in a 90 percent or lower
hit r..tio for IBM (MVS) supervisor state
code. This problem cannot be usefully stud-
ied viing trace-driven simulation because
the miss ratio varies tremendously from
program to program and only a small num-
ber of traces can possibly be analyzed. Typ-
ical trace-driven simulation results appear
throughout this paper, however, and the
reader may wish to scan that data for in-
sight. There is also a variety of data avail-
able in the literature and the reader may
wish to inspect the results presented in
ALss78, BELL74, BERGT6, GIBS67, LEE6Y,
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Figure 29. Miss ratio versus memory capacity while 1/0 occurs through cache at specified
rate. IORATE refers to fraction of all memory references due to 1/0.
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Figure 30. Miss ratio versus memory capacity while I/0 occurs through cache.
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' MISS RATIQ VS. CACHE SIZE
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Figure 33. . Miss ratio versus cache size, classified by set size and user/supervisor state. Data
gathered by hardware monitor from machine running standard benchmark.

MEAD70, STRE76, THAKTS8, and YUVATS.
Some direct measurements of cache miss
ratios appear in CLARS] and CLARS2. In the
former, the Dorado was found to have hit
ratios above 99 percent. In the latter, the
VAX 11/780 was found to have hit ratios
around 90 percent.

Another problem with trace-driven sim-
ulation is that in general user state pro-
grams are the only ones for which many
traces exist. In IBM MVS systems, the
supervisor typically uses 25 to 60 percent of
the CPU time, and provides by far the
largest component of the miss ratio
[MiILA75]. User programs generally have

" very low miss ratios, in our experience, and

many of those misses come from task
switching.

Two models have been proposed in the
literature for memory hierarchy miss ratios.
Saltzer [SALT74] suggested, based on his
data, that the mean time between faults
was linearly related to the capacity of the
memory considered. But later results, taken
on the same system [GREE74] contradict

Saltzer's earlier findings. [CHOWT75 and
CHow?76] suggest that the miss ratio curve
was of the form m = a(c®), where a and &
are constants, m is the miss ratio, and c is
the memory capacity. They show no exper-
imental results to substantiate this model,
and it seems to have been chosen for math-
ematical convenience.

Actual cache miss ratios, from real ma-
chines running “typical” workloads, are the
most useful source of good measurement
data. In Figure 33 we show a set of such
measurements taken from Amdahl 470
computers running a standard Amdahl in-
ternal benchmark, This data is reproduced
from HARD80a. Each digit represents a
measurement point, and shows either the
supervisor or problem state miss ratio for a
specific cache size and set size; the value of
the digit at each point is the set size. Ex-
amination of the form of the measurements
from Figure 33 suggest that the miss ratio
can be approximated over the range shown
by an equation of the form m = a(k®)
(consistent with CHow75 and CHow76),
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where m is the miss ratio, ¢ and b are
constants (b < 0), and £ is the cache capac-
ity in kilobytes. The values of a and b are
shown for four cases in Figure 33; supervi-
sor and user state for a set size of two, and
supervisor and user state for all other set
sizes. We make no claims for the validity of
this function for other workloads and/or
other architectures, nor for cache sizes be-
yond the range shown. From Figure 33 it is
evident, though, that the supervisor con-
tributes the largest fraction of the miss
ratio, and the supervisor state measure-
ments are quite consistent. Within the
range indicated, therefore, these figures can
probably be used for a first approximation
at estimating the performance of a cache
design.

Typical cache sizes in use include 128
kbytes (NEC ACOS 9000), 64 kbytes (Am-
dahl 470V/8, IBM 3033, IBM 3081K per
CPU), 32 kbytes (IBM 370/168-3, IBM
3081D per CPU, Amdahl 470V/7, Magnu-
son M80/43), 16 kbytes (Amdahl 470V/6,
Itel AS/6, IBM 4341, Magnuson M80/42,
MB80/44, DEC VAX 11/780), 8 kbytes (Hon-
eywell 66/60 and 66/80, Xerox Dorado
[CLARS1]), 4 kbytes (VAX 11/750, IBM
4331), 1 kbyte (PDP-11/70),

2.13. Cache Bandwidth, Data Path Width,
and Access Resolution

'2.13.1 Bandwidth

For adequate performance, the cache band-
width must be sufficient. Bandwidth refers
_to the aggregate data transfer rate, and is
equal to data path width divided by access
time. The bandwidth is important as well
as the access time, because (1) there may
be several sources of requests for cache
access (instruction fetch, operand fetch and
store, channel activity, etc.), and (2) some
requests may be for a large number of bytes.
If there are other sources of requests for
cache cycles, such as prefetch lookups and
transfers, it must be possible to accommo-
date these as well.

In determining what constitutes an ade-
quate data transfer rate, it is not sufficient
that the cache bandwidth exceed the aver-
age demand placed on it by a small amount.
um is important as well to avoid contention
since if the cache is busy for a cycle and one
or more requests are blocked, these blocked
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requests can result in permanently wasted
machine cycles. In the Amdahl 470V/8 and
the IBM 3033, the cache bandwidth ap-
pears to exceed the average data rate by a
factar of two to three, which is probably
the - ainimum suficient margin. We note
thai in the 470V/6 (when prefetch is used
expirimentally) prefetches are executed
only during otherwise idle cycles, and it has
beer observed that not all of the prefetches
actully are performed. (Newly arrived pre-
fetc® requests take the place of previously
queed but never performed requests.)

Fir some instructions, the cache band-
widti can be extremely important. This is
wia&ﬁ.@ the case for data movement
instractions such as: (1) instructions which
load or unload all of the registers (e.g., IBM
ch. instructions STM, LM); (2) instructions
whic 1 move long character strings (MVC,
MV:L); and (3) instructions which operate
on l.ng character strings (e.g., CLC, OC,
NC, XC). In these cases, especially the first
two,. there is little if any processing to be
done. the question is simply one of physical
data movement, and it is important that
the cache data path be as wide as possible—
in le 'ge machines, 8 bytes (3033, 3081, Itel
AS/~) instead of 4 (470V/6, V/7, V/8); in
sma!! machines, 4 bytes (VAX 11/780) in-
stea:: of 2 (PDP-11/70).

It ‘s important to note that cache data
patl width is expensive. Doubling the path
widt 1+ means doubling the number of lines
into and out of the cache (ie., the bus
widt:ig) and all of the associated circuitry.
This frequently implies some small increase
in ac-ess time, due to larger physical pack-
agin: and/or additional levels of gate delay.
The: sfore, both the cost and performance
aspe ts of cache bandwidth must be consid-
ered luring the design process.

Arother approach to increasing cache
banc¢ width is to interleave the cache
[Drr:80, YAM080]. If the cache is required
to seve a large number of small requests
very Auickly, it may be efficient to replicate
the cache (e.g., two or four times) and ac-
cess each separately, depending on the low-
order bits of the desired locations. This
approach is very expensive, and to our
w:oiomwo. has not been used on any exist-
ing machine. (See POHM75 for some addi-
tional comments.)

2.13.2 Priority Arbitration

An issue related to cache bandwidth is what
to do when the cache has several requests
competing for cache cycles and only one
can be served at a given time. There are
two criteria for making the choice: (1) give
priority to any request that is “deadline
scheduled” (e.g., an I/0 request that would
otherwise abort); and (2) give priority (after
(1)) to requests in order to enhance ma-
chine performance. The second criterion
may be sacrificed for implementation con-
venience, since the optimal scheduling of
cache accesses may introduce unreasonable
complexity into the cache design. Typically,
fixed priorities are assigned to competing
cache requests, but dynamic scheduling,
though complex, is possible [BLou80].

An an illustration of cache priority reso-
lution, we consider two large, high-speed
computers: the Amdahl 470V/7 and the
IBM 3033. In the Amdahl machine, there
are five “ports” or address registers, which
hold the addresses for cache requests. Thus,
there can be up to five requests queued for
access. These ports are the operand port,
the instruction port, the channel port, the
translate port, and the prefetch port. The
first three are used respectively for operand
store and fetch, instruction fetch, and chan-
nel 1/0 (since channels use the cache also).
The translate port is used in conjunction
with the TLB and translator to perform
virtual to real address translation. The pre-
fetch port is for a number of special func-
tions, such as setting the storage key or
purging the TLB, and for prefetch opera-
tions. There are sixteen priorities for the
470V/6 cache; we list the important ones
here in decreasing order of access
priority: (1) move line in from main stor-
age, (2) operand store, (3) channel store,
(4) fetch second half of double word re-
quest, (5) move line out from cache to main
memory, (6) translate, (7) channel fetch, (8)
operand fetch, (9) instruction fetch, (10)
prefetch.

The IBM 3033 has a similar list of cache
access priorities [IBM78]: (1) main memory
fetch transfer, (2) invalidate line in cache
modified by channel or other CPU, (3)
search for line modified by channel or other
CPU, (4) buffer reset, (5) translate, (6) redo
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(some cache accesses are blocked and have
to be restarted), and (7) normal instruction
or operand access.

2.14 Multitevel Cache

The largest existing caches (to our knowl-
edge) can be found in the NEC ACOS 9000
(128 kbytes), and the Amdahl 470V/8 and
IBM 3033 processors (64 kbytes). Such
large caches pose two problems: (1} their
physical size and logical complexity in-
crease the access time, and (2) they are
very expensive. The cost of the chips in the
cache can be a significant fraction (5-20
percent) of the parts cost of the CPU. The
reason for the large cache, though, is to
decrease the miss ratio. A possible solution
to this problem is to build a two-level cache,
in which the smaller, faster level is on the
order of 4 kbytes and the larger, slower
level is on the order of 64-512 kbytes. In
this way, misses from the small cache could
be satisfied, not in the six to twelve machine
cycles commonly required, but in two to
four cycles. Although the miss ratio from
the small cache would be fairly high, the
improved cycle time and decreased miss
penalty would yield an overall improve-
ment in performance. Suggestions to this
effect may be found in BENN82, OHNOT7,
and SpAR78. It has also been suggested for
the TLB [Nca82].

As might be expected, the two-level or
multilevel cache is not necessarily desira-
ble. We suggested above that misses from
the fast cache to the slow cache could be
serviced quickly, but detailed engineering
studies are required to determine if this is
possible. The five-to-one or ten-to-one ratio
of main memory to cache memory access
times is not wide enough to allow another
level to be easily placed between them.

Expense is another consideration. A two-
level cache implies another level of access
circuitry, with all of the attendant compli-
cations. Also, the large amount of storage
in the second level, while cheaper per bit
than the low-level cache, is not inexpensive
on the whole, )

The two-level or multilevel cache repre-
sents a possible approach to the problem of
an overlarge single-level cache, but further
study is needed.
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2.15 Pipelining

Referencing a cache memory is a multistep
process. There is the need to obtain priority
for a_cache cycle. Then the TLB and the
desired set are accessed in parallel. After
this, the real address is used to select the
correct line from the set, and finally, after
the information is read out, the replace-
ment bits are updated. In large, high-speed
machines, it is common to pipeline the
cache, as well as the rest of the CPU, so
that more than one cache access can be in
progress at the same time. This pipelining
is of various degrees of sophistication, and
we illustrate it by discussing two machines:
the Amdahl 470V/7 and the IBM 3033.

In the 470V/7, a complete read requires
four cycles, known as the P, B1, B2, and R
cycles [Sm1T78b]. The P (priority) cycle is
used to determine which of several possible
competing sources of requests to the cache
will be permitted to use the next cycle. The
B1 and B2 (buffer 1, buffer 2) cycles are
used actually to access the cache and the
TLB, to select the appropriate line from
the cache, to check that the contents of the
line are valid, and to shift to get the desired
byte location out of the two-word (8-byte)
segment fetched. The data are available at
the end of the B2 cycle. The R cycle is used
for “cleanup” and the replacement status is
updated at that time. It is possible to have
up to four fetches active at any one time in
the cache, one in each of the four cycles
mentioned above. The time required by a
store is longer since it is essentially a read
followed by a modify and write-back; it
takes six cycles all together, and one store
requires two successive cycles in the cache
pipeline.

The pipeline in the 3033 cache is similar
[IBM78]. The cache in the 3033 can service
one fetch or store in each machine cycle,
where the turnaround time from initial re-
quest for priority until the data is available
is about 2} cycles (4-cycle transmission
time to S-unit, 14 cycles in S-unit, § cycle
to return data to instruction unit). An im-
portant feature of the 3033 is that the cache
accesses do not have to be performed in the
order that they are issued. In particular, if
an access causes a miss, it can be held up
while the miss is serviced, and at the same
time other requests which are behind it in
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tl:e pipeline can proceed. There is an elab-
ovate mechanism built in which prevents
this out-of-order operation from producing
ircorrect results.

2.%6 Translatlon Lookaside Buffer

The translation lookaside buffer (also
called the translation buffer [DEC78], the
associative memory [ScHR71], and the di-
rectory lookaside table [IBM78)), is a small,
high-speed buffer which maintains the
mapping between recently used virtual and
real memory addresses (see Figure 2). The
TLB performs an essential function since
otherwise an address translation would re-
ire iwo rdditional memory references:
¢~e each to the segment and page tables.
Ir: most machines, the cache is accessed
u:ing real addresses, and so the design and
iriplementation of the TLB is intimately
related to the cache memory. Additional
it formation relevant to TLB design and
ooeration may be found in JONE77b,
LapL77, Rama81, Satv81, ScHR71, and
V'1Lk71. Discussions of the use of TLBs
(''LB chips or memory management units)
it microcomputers can be found in Joun8l,
€ :Ev8l, and ZoLN81,

The TLB itself is typically designed to
leok like a small set-associative memory.
For example, the 3033 TLB (called the
L LAT or directory lookaside table) is set-
a-sociative, with 64 sets of two elements
e .ch. Similarly, the Amdahl 470V/6 uses
18 sets of two elements each and the 470V/
7 and V/8 have 256 sets of 2 elements each.
T'he IBM 3081 TLB has 128 entries.

The TLB differs in some ways from the
c:chein its design. First, for most processes,
aldress spaces start at zero and extend
voward as far as necessary. Since the TLB
t anslates page addresses from virtual to
r-al, only the high-order (page number)
& 1dress bits can be used to access the TLB.
I’ the same method was used as that used
f r accessing the cache (bit selection using
1= wer order bits), the low-order TLB entries
vould be used disproportionately and
t -erefore the TLB would be used ineffi-
c:ently. For this reason, both the 3033 and

t ie 470 hash the address before accessing

t 1e TLB (see Figure 2). Consider the 24-bit
g idress used in the System/370, with the
L -ts numbered from 1 to 24 (high order to

low order). Then the bits 13 to 24 address
the byte within the page (4096-byte page)
and the remaining bits (1 to 12) can be used
to access the TLB. The 3033 contains a 6-
bit index into the TLB computed as follows.
Let @ be the Exclusive OR operator; a 6-
bit quantity is computed [7, (8 @ 2), (9 @
3), (10 @ 4), (11 @ 5), (12 @ 6)], where
each number refers to the input bit it des-
ignates.

The Amdahl 470V/7 and 470V/8 use a
different hashing algorithm, one which pro-
vides much more thorough randomization
at the cost of significantly greater complex-
ity. To explain the hashing algorithm, we
first explain some other items. The 470
associates with each address space an 8-bit
tag field called the address space identifier
(ASID) (see Section 2.19.1). We refer to the
bits that make up this tag field as SI,
..., S8. These bits are used in the hashing
algorithm as shown below. Also, the 470V/
7 uses a different algorithm to hash into
each of the two elements of a set; the TLB
is more like a pair of direct mapping buffers
than a set-associative buffer. The first half
is addressed using 8 bits calculated as fol-
lows: [(6 @1 @ $8),7, (8@3 @5S6),9, (10
@ S4), 11, (12 @ S2), 5]; and the second

~half is addressed as [6, (7@ 2 @ S7), 8, (9

@ 4 @ S5), 10, (11 @ S3), 12, (5 @ S1)).
There are no published studies that indi-
cate whether the algorithm used in the 3033
is sufficient or whether the extra complex-
ity of the 470V /7 algorithm is warranted.
There are a number of fields in a TLB
entry (see Figure 34). The virtual address
presented for translation is matched against
the virtual address tag field (ASID plus
virtual page address) in the TLB to ensure
that the right entry has been found. The
virtual address tag field must include
the address space identifier (8 bits in the
470V/17, 5 bits in the 3033) so that entries
for more than one process can be in the
TLB at one time. A protection field (in 370-
type machines) is also included in the TLB
and is checked to make sure that the access
is permissible. (Since keys are associated
on a page basis in the 370, this is much
more efficient than placing the key with
each line in the cache.) The real address
corresponding to the virtual address is the
primary output of the TLB and occupies a
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" Figure 34. Structure of translation lookaside buffer
(TLB) entry and TLB set.

field. There are also bits that indicate
whether a'given entry in the TLB is valid
and the appropriate bits to permit LRU-
like replacement. Sometimes, the modify
and reference bits for a page are kept in the
TLB. If so, then when the entry is removed
from the TLB, the values of those bits must
be stored.

It may be necessary to change one or
more entries in the TLB whenever the vir-
tual to real address correspondence changes
for any page in the address space of any
active process. This cambe accomplished in
two ways: (1) if a single-page table entry is
changed (in the 370), the IPTE (insert page
table entry) instruction causes the TLB to
be searched, and the now invalid entry
purged; (2) if the assignment of address
space IDs is changed, then the entire TLB
is purged. In the 3033, purging the TLB is
slow (16 machine cycles) since each entry
is actually invalidated. The 470V/7 does
this in a rather clever way. There are two
sets of bits used to denote valid and invalid
entries, and a flag indicating which set is to
be used at any given time. The set not in
use is supposed to be set to zero (invalid).
The purge TLB command has the effect of
flipping this flag, so that the set of bits
indicating that all entries are invalid are
now in use. The set of bits no longer in use
is reset to zero in the background during
idle cycles. See Cosc8l for a similar idea.

The cache on the DEC VAX 11/780
[DEC?78] is similar to but simpler than that
in the IBM and Amdahl machines. A set-
associative TLB (called the translation
buffer) is used, with 64 sets of 2 entries
each. (The VAX 11/750 has 256 sets of 2
entries each.) The set is selected by using
the high-order address bit and the five low-
order bits of the page address, so the ad-
dress need not be hashed at all. Since the
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higher order address bit separates the user
from the supervisor address space, this
means that the user and supervisor TLB
entries never map into the same locations.
This is convenient because the user part of
the TLB is purged on a task switch. (There
are no address space IDs.) The TLB is also
m._mom to hold the dirty bit, which indicates
if the page has been modified, and the
protection key.

Published figures for TLB performance
are not generally available. The observed
miss ratio for the Amdahl 470V/6 TLB is
about 0.3 to 0.4 percent (Private Commu-
nication: W. J. Harding). Simulations of the
VAX 11/780 TLB [SATY81] show miss ra-
tios of 0.1 to 2 percent for TLB sizes of 64
to 256 entries.

2.17 Translator

When a virtual address must be translated
into a real address and the translation does
not already exist in the TLB, the translator
must be used. The translator obtains the
_uw.mo of the segment table from the appro-
priate place (e.g., control register 1 in 370
machines), adds the segment number from
the virtual address to obtain the page table
address, then adds the page number (from
the virtual address) to the page table ad-
dress to get the real page address. This real
address is passed along to the cache so that
the access can be made, and simultane-
ously, the virtual address/real address pair
is entered in the TLB, The translator is
cmwmnwzv. an adder which knows what to
add.

It is important to note that the translator
requires access to the segment and page
table entries, and these entries may be
either in the cache or in main memory.
Provision must be made for the translator
accesses to proceed unimpeded, independ-
ent of whether target addresses are cache
or main memory resident.

We also observe another problem related
to translation: “page crossers.” The target
of a fetch or store may cross from one page
to another, in a similar way as for “line
crossers.” The problem here is considerably
more complicated than that of line crossers
since, although the virtual addresses are
contiguous, the real addresses may not be.
Therefore, when a page crosser occurs, two
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Figure 35. Ur..m.s:_ of computer system in which
caches are associated with memories rather than with
processors,

sepr rate aumsm_azo:m are required; these
may occur in the TLB and/or translator as
the accasion demands.

2.1¢ Memory-Based Cache

It w a8 stated at the beginning of this paper
that caches are generally associated with
the vrocessor and not with the main mem-
ory. A different design would be to place
the -;ache in the main memory itself. One
way to do this is with a shared bus interfac-
ing “ietween one or more CPUs and several
mai memory modules, each with its own
cacl e (see Figure 35).

.A., 1ere are two reasons for this approach.
Firsi, the access time at the memory mod-
ule i3 decreased from the typical 200-500
nan-seconds (given high-density MOS
RAH) to the 50-100 nanoseconds possible
for # high-speed cache. Second, there is no
con: istency problem even though there are
several CPUs. All accesses to data in mem-
ory module i go through cache i and thus
M&M; is only one copy of a given piece of

at:

. Uufortunately, the advantages men-
tior»d are not nearly sufficient to compen-
sate for the shortcomings of this design.
Fire:, the design is too slow; with the cache
on ie far side of the memory bus, access
time is not cut sufficiently. Second, it is too
expensive; there is one cache per memory
moc ale. Third, if there are multiple CPUs,
ther:: will be memory bus contention. This
slows down the system and causes memory
acce:s time to be highly variable.

Overall, the scheme of associating the
cact2 with the memory modules is very
poo: unless both the main memory and the
proc:ssors are relatively slow. In that case,
a large number ‘of processors could be
served by a small number of memory mod-
ules with built-in caches, over a fast bus,

2.19 Speclalized Caches and Cache
Components

This paper has been almost entirely con-
cerned with the general-purpose cache
memory found in most large, high-speed
computers. There are other caches and
buffers that can be used in such machines
and we briefly discuss them in this section.

2.19.1 Address Space Identifier Table

In many computers, the operating system
identifier for an address space is quite long;
in the IBM-compatible machines discussed
(370/168, 3033, 470V), the identifier is the
contents of control register 1. Therefore,
these machines associate a much shorter
tag with each address space for use in the
TLB and/or the cache, This tag is assigned
on a temporary basis by the hardware, and
the correspondence between the address
space and the tag is held in a hardware
table which we name the Address Space
Identifier Table (ASIT). It is also called
the Segment Base Register Table in the
470V/17, the Segment Table Origin Address
Stack in the 3033 [IBM78] and 370/168
[IBM75], and the Segment Base Register
Stack in the 470V /6.

__The 3033 ASIT has 32 entries, which are
assigned starting at 1. When the table be-
comes full, all entries are purged and IDs
are reassigned dynamically as address
spaces are activated. (The TLB is also
purged.) When a task switch occurs, the
ASIT in the 3033 is searched starting at 1;
when a match is found with control register
1, the index of that location becomes the
address space identifier.

The 470V/6 has a somewhat more com-
plex ASIT. The segment table origin ad-
dress is hashed to provide an entry into the
ASIT. The tag associated with that address
is then read out. If the address space does
not have a tag, a previously unused tag is
assigned and placed in the ASIT. Whenever
a new tag is assigned, a previously used tag
is made available by deleting its entry n
the ASIT and (in the background) purging
all relevant entries in the TLB. (A complete
TLB purge is not required.) Thirty-two
valid tags are available, but the ASIT has
the capability of holding up to 128 entries;
thus, all 32 valid tags can usually be used,
with little fear of hashing conflicts.
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2.19.2 Execution Unit Buffers

In some machines, especially the IBM 360/
91 [ANDE67b, IBM71, ToMA67], a number
of buffers are placed internally in the exe-
cution unit to buffer the inputs and outputs
of partially completed instructions. We re-
fer the reader to the references just cited
for a complete discussion of this.

2.19.3 Instruction Lookahead Buffers

In several machines, especially those with-
out general-purpose caches, a buffer may
be dedicated to lookahead buffering of in-
structions. Just such a scheme is used on
the Cray 1 [Crav76], the CDC 6600
[CDC74), the CDC 7600, and the IBM
360/91 [ANDE67a, BOLAGT, IBM71}. These
machines all have substantial buffers, and
loops can be executed entirely within these
buffers. Machines with general-purpose
caches usually do not have much instruc-
tion lookahead buffering, although a few
extra bytes are frequently fetched. See also
BLAz80 and KoNESQ.

2.19.4 Branch Target Buffer

One major impediment to high perform-
ance in pipelined computer systems is the
existence of branches in the code. When a
branch occurs, portions of the pipeline must
be flushed and the correct instruction
stream fetched. To minimize the effect of
these disruptions, it is possible to imple-
ment a branch target buffer (BTB) which
buffers the addresses of previous branches
and their target addresses. The instruction
fetch address is matched against the con-
tents of the branch target buffer and if a
match occurs, the next instruction fetch
takes place from the (previous) target of
the branch. The BTB can correctly predict
the correct branch behavior more than 90
percent of the time [LEE82]. Something like
a branch target buffer is used in the MU-5
(IsBE72, MORRT9], and the S-1 [McW177].

2.19.5 Microcoda Cache

Many modern computer systems are micro-
coded and in some cases the amount of
microcode is quite large. If the chqooon.m
is not stored in sufficiently fast storage, it
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is possible to build a special cache to buffer
the microcode.

2.19.6 Buffer Invalidation Address Stack
(BIAS)

The IBM 370/168 and 3033 both use a
store-through mechanism in which any
store to main memory causes the line af-
fected to be invalidated in the caches of all
processors other than the one which per-
formed the store. Addresses of lines which
are to be invalidated are kept in the buffer
invalidation address stack (BIAS) in each
processor, which is a small hardware imple-
mented queue inside the S-unit. The DEC
VAX 11/780 functions in much the same
way, although without a BIAS to queue
requests, That is, invalidation requests in
the VAX have high priority, and only one
may be outstanding at a time.

2.19.7 Input/Output Buffers

As noted earlier, input/output streams
must be aborted if the processor is not
ready to accept or provide data when they
are needed. For this reason, most machines
have a few words of buffering in the I/0
channels or I/O channe! controller(s). This
is the case in the 370/168 [IBM75] and the
3033 [IBM78).

2.19.8 Write-Through Buffers

In a write-through machine, it is important
to buffer the writes so that the CPU does
not become blocked waiting for previous
writes to complete. In the IBM 3033
[IBM78], four such buffers, each holding
a double word, are provided. The VAX
11/780 [DEC?78], on the other hand, buffers
one write. (Four buffers were recommended
in SM1T79.)

2.19.9 Register Cache

It has been suggested that registers be au-
tomatically stacked, with the top stack
frames maintained in a cache [Di1282].
While this is much better (faster) than im-
plementing registers as part of memory, as
with the Texas Instruments 9900 micropro-
cessor, it is unlikely to be as fast as regular,
hardwired registers. The specific cache de-
scribed, however, is not general purpose,
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but ‘s dedicated to holding registers; it
ther::fore should be much faster than a
large.;, general-purpose cache.

3. D:3ECTIONS FOR RESEARCH AND
D+VELOPMENT

Cacl.2 memories are moderately well un-
dersisod, but there are problems which in-
dicate directions both for research and de-
velopment. First, we note that technology
is changing; storage is becoming cheaper
and faster, as is processor logic. Cost/per-
formance trade-offs and compromises will
change with technology and the appropri-
ate solutions to the problems discussed will
shift. In addition to this general comment,
we see some more specific issues.

3.1 'n-Chip Cacnz and Other Technology
~dvances

The aumber of gates that can be placed on
a mi-rocomputer chip is growing quickly,
and “ithin a few years, it will be feasible to
buil¢: a general-purpose cache memory on
the rame chip as the processor. We expect
that such an on-chip cache will occur.
Ther: is research to be done in designing
this wvithin the constraints of the VLSI state
of th: art. (See LiND81 and Poum82.)

Ceche design is also affected by the im-
plenr :ntation technology. MOS VLSI, for
exan:ple, permits wide associative searches
to be implemented easily. This implies that
para-aeters such as set size may change
with changing technology. This related as-
pect >f technological change also needs to
be stadied.

3.2 !1lulticache Consistency

The sroblem of multicache consistency was
disctssed in Section 2.7 and a number of
solutrons were indicated. Additional com-
mer: ‘al implementations are needed, espe-
ciall: of systems with four or more CPUs,
befo e the cost/performance trade-offs can
be ealuated.

3.3 ‘rnplementation Evaluation

A nu:nber of new or different cache designs
were discussed earlier, such as the split
instr.iction/data cache, the supervisor/user

cache, the multilevel cache, and the virtual
address cache. One or more implementa-
tions of such designs are required before
their desirability can be fully evaluated.

3.4 Hit Ratlo versus Slze

There is no generally accepted model for
the hit ratio of a cache as a function of its
size. Such a model is needed, and it will
probably have to be made specific to each
machine architecture and workload type
{e.g., 370 commercial, 370 scientific, and
PDP-11).

3.5 TLB Design

A number of different TLB designs exist,
but there are almost no published evalua-
tions (but see SaTy81). It would be useful
to know what level of performance can be
expected from the various designs and, in
particular, to know whether the complexity
of the Amdahl TLB is warranted.

3.6 Cache Parameters versus Architecture
and Workload

Most'of the studies in this paper have been
based on IBM System 370 user program
address traces. On the basis of that data,
we have been able to suggest desirable pa-
rameter values for various aspects of the
cache. Similar studies need to be performed
for other machines and workloads.

APPENDIX. EXPLANATION OF TRACE
NAMES

1. EDC PDP-11 trace of text editor,
written in C, compiled with C compiler
on PDP-11.

2. ROFFAS PDP-11 trace of text output
and formatting program. (called ROFF
or runoff).

3. TRACE PDP-11 trace of program
tracer itself tracing EDC. (Tracer is
written in assembly language.)

4. FGO1 FORTRAN Go step, factor
analysis (1249 lines, single precision).

5. FGO2 FORTRAN Go step, double-
precision analysis of satellite informa-
tion, 2057 lines, FortG compiler.

6. FGO3 FORTRAN Go step, double-
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precision numerical analysis, 840 lines,
FortG compiler.

7. FGO4 FORTRAN Go step, FFT of
hole in rotating body. Double-precision
FortG.

8. CGO1 COBOL Go step, fixed-assets
program doing tax transaction selec-
tion.

9. CG0O2 COBOL Go step, “fixed assets:
year end tax select.”

10. CGO3 COBOL Go step, projects de-
preciation of fixed assets.

11. PGO2 PL/I Go step, does CCW anal-
ysis.

12. IEBDG IBM utility that generates
test data that can be used in program
debugging. It will create multiple data
sets of whatever form and contents are
desired.

13. PGO1 PLI Go step, SMF billing pro-
gram.

14. FCOMP FORTRAN compile of pro-
gram that solves ReiMolds partial dif-
ferential equation (2330 lines).

15. CCOMP COBOL compile. 240 lines,
accounting report.

16. WATEX Execution of a FORTRAN
program compiled using the WATFIV
compiler. The program is a combina-
torial search routine,

17. WATFIV FORTRAN  compilation
using the WATFIV compiler. (Com-
piles the program whose trace is the
WATEX trace.)

18. APL Execution of APL program
which does plots at a terminal.

19. FFT Execution of an FFT program
written in ALGOL, compiled using AL-
GOLW compiler at Stanford.
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