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Disk Cache—Muiss Ratio Analysis
and Design Considerations

ALAN JAY SMITH
University of California, Berkeley

The current trend of computer system technology is toward CPUs with rapidly increasing processing
power and toward disk drives of rapidly increasing density, but with disk performance increasing
very slowly if at all. The implication of these trends is that at some point the processing power of
computer systems will be limited by the throughput of the input/output (I/O) system.

A solution to this problem, which is described and evaluated in this paper, is disk cache. The idea
is to buffer recently used portions of the disk address space in electronic storage. Empirically, it is
shown that a large (e.g., 80-90 percent) fraction of all I/O requests are captured by a cache of an 8-
Mbyte order-of-magnitude size for our workload sample. This paper, considers a number of design
parameters for such a cache (called cache disk or disk cache), including those that can be examined
experimentally (cache location, cache size, migration algorithms, block sizes, etc.) and others (access
time, bandwidth, multipathing, technology, consistency, error recovery, etc.) for which we have no
relevant data or experiments. Consideration is given to both caches located in the I/0 system, as
with the storage controller, and those located in the CPU main memory. Experimental results are
based on extensive trace-driven simulations using traces taken from three large IBM or IBM-
compatible mainframe data processing installations. We find that disk cache is a powerful means of
extending the performance limits of high-end computer systems.

Categories and Subject Descriptors: B.3 [Hardware]: Memory Structures—design styles; perform-
ance analysis and design aids; B.4 [Hardware]: Input/Output and Data Communications—input/
output devices; reliability, testing, and fault tolerance; D.4 [Software]: Operating Systems—storage
management; performance.

General Terms: Design, Performance
Additional Key Words and Phrases: Cache controller, disk, 1/0 buffer

1. INTRODUCTION

Computer systems have traditionally relied on a memory hierarchy (such as that
in Figure 1a), in which large amounts of less expensive storage (disk, tape) have
been used to retain the bulk of the stored information, while small amounts of
fast storage (main memory, CPU cache memory) have been employed to hold
information while it is in active use. The problem in such systems has always
been the large ratio in access times (the “access gap”) between the slowest
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Fig.1. (a) Typical memory hierarchy. (b) Part of typical I/0 configuration.

electronic storage (main memory, at less than 1 us) and the fastest bulk storage
(drum, at 5-10 ms). The difficulty is that frequent accesses to bulk storage, either
through implicit (paging) or explicit input/output (I/0), may leave the CPU idle
while the I/O request(s) complete. Multiprogramming is used in large- and
medium-scale computer systems to overlap processing and 1/0 delays, but if all
active programs are awaiting I/0, no processing can take place.

There exists a chain of reasoning that suggests that multiprogramming is
limited in its ability to overlap I/O and CPU activity. The reasoning is as follows:
(a) The speed of high-end computer systems will continue to increase at a rate
comparable to the recent past, that is, doubling every 3-6 years. (b) Disk density
will also continue to increase at a rate similar to the recent past, doubling every
3 or so years [35]. (c) Disk access time will continue to improve only very slowly
[36]. (d) The I/O rate associated with computer systems will remain roughly
proportional to the instruction execution rate of the CPU [1]. To a certain extent,
large memories will cause some reduction in the amount of 1/0 traffic, as is
ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985,
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discussed later, but the effect will be small compared with the other factors
considered. (e) The cost of large, high-end disk spindles will not decrease
significantly over the next few years, although sharp decreases in the cost per
byte will occur. (f) The physical space required by large disk spindles, per spindle,
will also not decrease significantly. (g) Therefore, the number of disk spindles in
a large computer system will not increase (owing to cost and space limits) as
quickly as the I/O rate from the CPU(s). (h) The throughput of the I/O system
is limited by the access time of the disks and the number of independent 1/0
paths. (i) The number of independent 1/0 paths is at best proportional to the
number of disk spindles. (j) Therefore, at some point the 1/0 system, no matter
how carefully tuned, will be unable to service 1/0 requests as quickly as they can
be generated by a fully utilized CPU or CPUs. This same argument applies to a
distributed system, using a file server, and to a multicomputer or multiprocessor
system. ;

This chain of reasoning, although indicating an.eventual bottleneck, does not
rule out changes in the software or hardware that_postpone the problem. Means
of postponing the problem are discussed in Section 6.

The mechanism proposed in this paper for coping with I/0 bottleneck is disk
cache, also sometimes called cache disk. Disk cache is a cache or buffer used to
hold portions of the disk address space contents. If such a buffer (a) can capture
a significant fraction of the I/0 operations, (b) without being too expensive, and
(¢) can provide access times and transfer rates significantly better than disk,
then it can improve 1/0 system performance and thereby postpone or eliminate
the predicted I1/0 system bottleneck.

There is a reason to think that disk cache will be effective, and that reason is
the long established principle of locality [21], which describes most program
reference behavior. This principle has two components: (a) Information that has
been used recently is likely to be reused (or conversely, the information to be
used in the near future is likely to consist primarily of information used in the
recent past); (b) information “near” the information in current use is likely to be
used in the near future. The principle of locality accounts for the success of cache
memories [74] and main memory paging [67). Because disk files are frequently
reused (databases, indexes, directories, etc.) and/or are read sequentially (most
user files), we believe that the principle of locality also describes access patterns
to the disk.

The function of disk cache is specifically as an 1/0 cache and not just as a way
to add additional memory to the computer system. As discussed below, particu-
larly in Section 6, the use of additional memory should reduce the I/O load, but
unless that memory is used for the functions we assign to disk cache, it will not
produce the performance improvements claimed here.

Locality in disk reference patterns has been previously observed (e.g., [65],
[66]). It was suggested that multiple arms be used to access each of several open
data sets on a given spindle in [65], and the idea of a cache was proposed in
[68]. A brief discussion of disk cache appears in [73]. The topic is also discussed
in [78, 79]. More recently, a number of papers have discussed and/or evaluated
aspects of disk cache: [4], [11], and [23]. None of these, however, presents any
miss ratio studies. Research and various industrial (unpublished) studies have
been persuasive enough to lead a number of vendors to develop their own disk

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.




164 . Alan Jay Smith

cache systems; included among them are IBM [51-54], Nippon Electric [771,
Storage Technology [18], and Memorex [61].

In this paper we are concerned with the proper design, implementation, and
operation of disk cache. There are a number of design considerations that merit
attention: Where in the system shall the disk cache be placed? How large does
the cache need to be on the basis of cost and performance? What migration
algorithms (when to fetch or replace information) should be used? What block
size is best? Should all or only some files/devices be cached? Which? Are the
results time varying? Should the cache be turned on and off dynamically? What
technology should be used for implementation? What are the error recovery
considerations? Is there any impact on the rest of the system software? Each of
these is discussed and/or evaluated later in this paper.

It should be noted that because our data are taken from large systems using
IBM software and IBM (or compatible) hardware, the data analysis sections of
this paper incorporate discussions of the peculiarities of such IBM systems.
Further, because we are stressing the direct practical implications of our results,
we consider, in detail, issues that might not be relevant to systems with a
different architecture. Therefore, this paper presents not only “abstract” research
results, but also engineering solutions to real problems.

As explained in the next section, many of the aspects of disk cache design are
sensitive to program behavior and file access patterns, and are therefore best
evaluated empirically. In Section 2 we discuss our evaluation methodology and
the data that we have. In Section 3 we present the results of our experiments,
and in Section 4 we discuss those design considerations that are either not
suitable for experiment or for which we have no relevant measurements. In
Section 5 we consider briefly a related topic, disk arm buffers. Alternatives to
disk cache are examined in Section 6, and current commercial products are
described in Section 7. An overview is provided in the conclusion.

2. METHODOLOGY AND DATA

2.1 Disk Cache Effectiveness

The final measure of disk cache effectiveness is the change in the appropriate
system performance measure (usually either response time or throughput) for a
given disk cache system. The worth and desirability of disk cache must then be
determined by taking into account the performance improvement (if any) and
the cost(s) involved. In this paper we do not try to calculate the overall system
performance impact of disk cache for several reasons. The primary reason is that
“translating the local effect of the disk cache on I/O times to the global effect on
system performance is extremely sensitive to the detailed assumptions about the
system configuration (number of disks, drums, string and storage controllers,
their interconnections, etc.) and workload (I/O rate, distribution of 1/0s to files
and devices, etc.). Further, any given system can be tuned to some extent if a
performance bottleneck is found. The appropriate performance measure is also
an arbitrary one; the two that are used frequently are throughput and response
time, but those two are not the same. Finally, an appropriate design point is
heavily influenced by technology, which is rapidly changing. We do note, however,
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NEC [77], which has published some performance figures on an operating disk
cache system. Additional performance figures appear in [19], [33], and [57].

It is possible to make some estimates of the effect of disk cache on mean disk
I/0 access times. That is done in [11], where it is noted that disk cache may or
may not yield any performance benefits, depending on the hit ratio and the
design.

We, instead, evaluate the effectiveness of disk cache designs in two ways. First,
we measure the miss ratio, which is the fraction of I/0s that are not captured by
the disk cache, given certain disk cache parameters. As noted below, miss ratio
measurements are made using trace-driven simulation. Low miss ratios can be
expected to translate into higher system performance, since every hit to the disk
cache results in an I/O time that is substantially less (e.g., 1-4 ms) than would
otherwise be required (10-100 ms). :

Our miss ratio measurements are limited in a number of aspects. Some
information is not available from the trace data, as noted below, and some
information depends on more than the sequence of I/Os; for example, I/O path
contention depends on the path configuration. Second, some aspects, such as
error recovery, are not suitable for miss ratio analysis. Thus, for topics for which
miss ratios cannot be generated, discussions are presented instead.

2.2 Trace-Driven Analysis

Trace-driven analysis is a powerful technique for evaluating aspects of computer
systems. The idea is to trace a computer system, recording a sequence of events,
along with their relevant parameters (e.g., seek address, memory address, time.).
A variation of that computer system can be evaluated by using an event-driven
simulation, in which the events are drawn from the trace rather than from
random-number generators. If the variation to be evaluated is such that the trace
can be considered to be a valid sequence of events, then the simulation will
indicate the behavior of the variant system. This technique has been used quite
successfully to evaluate virtual memory systems (6] and cache memories [74]
using virtual address traces, and CPU scheduling [64] using CPU interval traces.

In this paper we use traces of I/O events taken from large computer systems
to drive simulations of disk caches. The sequence of I/O events generated should
be only slightly sensitive to the actions of the disk cache (which itself only
changes the time for an I/O to complete). Therefore, we believe that the miss
ratio analysis presented is valid and accurate, to the extent that our workload
sample is adequate.

2.3 Data Sources

Three large IBM System/370 (or compatible) computer systems were traced for
periods of 17 to 23 hours. The operating systems, as noted below, were variations
of OS (OS/MVT, SVS, and MVS); the primary data collection tool was IBM’s
Generalized Trace Facility (GTF) [46]. GTF can be activated on the occurrence
of most system interrupts, including supervisor calls (SVCs), I/0 starts (SIOs),
and I/0O completions (I/O interrupts). The results presented in this paper are
based mainly on a GTF-generated trace of data references (seek addresses) as
derived from the SIO events. Each trace record includes the device address and
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the physical location of the block, consisting of the cylinder and track, for a
direct address device (DASD = disk and drum). The record number on the track
is also available, but since the block sizes are not always known, record numbers
have not been used. Therefore, the smallest unit of storage in the disk cache
designs studied is the track. Iz all cases, only those I/O events directed to disk
or drum devices were considered for caching. Our analysis (with the exception of
some summary tables) uses only those DASD I/Os.

The three systems traced were located at the Stanford Linear Accelerator
Center (SLAC), Crocker Bank, and Hughes Aircraft. Each is briefly described
below. We note that these three systems constitute a limited workload sample;
each system is large and they use the same architecture and similar operating
systems. Although we are confident that our results are representative of a broad
class of systems, the data presented apply only to the systems and the period
traced. In particular, it should be expected that some aspects of systems that
magnify the effectiveness of disk cache, such as the use of small physical block
sizes and the frequent use of temporary files, will diminish over time. We do feel,
however, that large systems based on software from vendors other than IBM will
have many similar characteristics. It is also important to note, however, the
importance of having measured three real systems, rather than having modeled
one hypothetical one.

The SLAC computer installation at the time of tracing consisted of two IBM
370/168s and one IBM 360/91, connected via channel-to-channel adapters. The
entire system was controlled by ASP version 3.1, and the CPU measured, one of
the 370/168s, ran OS/VS2 release 1.6, otherwise known as SVS. The processor
measured was the support processor, and was responsible for all unit record
devices, spooling, the text editing and job entry system (Wylbur [32]), the time
sharing system (Orvyl), and some portion of the batch workload; the other two
machines were used as batch worker machines. The I/0 configuration consisted
of 16 IBM 3330 [45] disks (@100 Mbytes), 27 IBM 2314 disks (@29 Mbytes), two
IBM 2305 drums [44], many tape drives, and numerous unit record and low-
activity devices.

The Crocker Bank computer system had two IBM 370/168s, which were
connected only in that they shared all of the I/O devices. The processor traced
ran TSO and small batch jobs during the day; at night it was mostly used for
batch production work, including bank transaction processing, business data
processing and reporting. The operating system was OS/VS2 release 3.7, other-
wise known as MVS, with JES2. The time sharing and text editing system was
TSO using IBM 3277 terminals and SPF (a full screen editor). Cobol was used
heavily, with some PL/I and assembler use as well. The I/O configuration
consisted of twenty-five 3350 [47] disks (@317 Mbytes), sixteen 3330-11 disks
(@200 Mbytes), seven 3330 disks, and numerous tape drives, unit record devices
(printers, card readers, etc.), and telecommunications controllers.

The third system traced was at the Hughest Aircraft Company and consisted
of an Amdahl 470V/6 and an IBM 370/165, loosely coupled via the ASP system.
The installation was the central corporate computer center for Hughes and ran
a variety of work; the machine traced (the 470V/6) ran TSO, business data
processing, and production scientific; representing administrative, scientific,
development, and engineering support applications workloads. The operating
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system was OS/MVT release 21.8. The I/O configuration consists of forty-nine
IBM 3330s, nine 3330-11s, STC Superdisks equivalent to sixteen 3330-11s, one
IBM 2305-2, twenty-four tape drives, communications lines, and numerous unit
record devices.

2.4 Data Reduction

As noted above, the primary data collection tool was GTF. Each GTF record
(after, in one case, a modification to GTF) contained the seek address for that
1/0; that is, the device address and track and cylinder location. Also used, with
some modification, was IBM’s System Management Facility (SMF) [48], which
generates a record for every open and close of every data set. By combining SMF
and GTF data and some partial device maps, it was possible to tag each I/0 as
to the type of file (system, paging, or other) and type of user (system, batch
program, interactive system (TSO or Wylbur)), where the “user” is the cause of
the 1/0. This data reduction effort (described here so briefly) was immense and
required man-years of effort (see Acknowledgments). Further, the amount of
data gathered is very large; a one day trace consists of about 1.5 Gbytes of data,
or about 10 full reels of 6250-bpi tape. (We therefore believe that it will be some
time before a more varied and larger workload is available.)

The data generated had two important omissions: First, the location of the
block referenced by each I/O within the track was not known; therefore the
smallest block size used in any disk cache simulation is one track. The track size,
of course, varies with the device; track and cylinder sizes are shown in Section
3.3. Second, I/O events were not tagged as to read or write; therefore, measure-
ments or studies that depend on knowing whether an event is a read or write
were not possible and were not done. (Much more extensive system modifications
would have been required to obtain this information.)

We also note here that the large amount of data meant that not all experiments
were run on all complete traces. In particular, for many of the SLAC and Crocker
data analysis runs, a trace of one million I/Os (to all devices), from a daytime
period, was selected for analysis. Since non-DASD I/Os were discarded, the
number of 1/Os used was, respectively, 673K and 835K (see Table I).

2.5 LRU Stack Analysis and Set-Associative Mapping

Almost all of our disk cache simulations use a technique known as least recently
used (LRU) stack analysis [60]; we assume that the reader is familiar with that
technique. A couple of special aspects of our analysis are worth pointing out,
however. First, almost all simulations used set-associative mapping (see, e.g.,
[74]) to reduce the mean stack depth; this technique is actually used in some
commercial implementations of disk cache with which the author is familiar. The
number of sets used is shown in all plots and tables. Experiments that showed
that the effect of the number of sets was very small for realistic disk cache sizes
were run (but are not presented here for brevity). (Realistic cache sizes mean
more than 64 kbytes per device, 256 kbytes per controller, and 1 Mbyte per
overall system.) Second, we note that in many cases, multiple caches were used.
For example, simulations were run showing separate caches in each device, string
controller or channel. In other cases separate caches were simulated for each
user and file type combination.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.
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Table I. Systems Studied

Site

Type of data

SLAC Crocker Hughes
Operating System = A MVS MVT
CPU 370/168 370/168 470V/6
Trace period 5 pm-4 pm 5 pm-12 noon 6 pm-11 am
1/0s (total) 5491891 5367267 3800459
1/0s (DASD) 3671121 3387641 2731973
1/0s (DASD-short period) 673307 835236 —
1/0s (total)/second 66.3 78.5 62.1
1/0s (DASD)/second 44.3 49.5 44.6
CPU MIPS 2.8 2.8 4.2

Fraction seeks .540 .355 411

Table II. Fraction of 1/0s by F)ile and User

Type

File/user type SLAC Crocker
Temporary/all .0311 .130
System/batch 0564 .357
Other/batch 0367 192
System/T'SO or Wylbur .4054 .068
Other/TSO or Wylbur — .015
System/system 4563 167
Paging/system .0136 072
Other/system .0005 —_

2.6 Simple Data Characterization

In Table I we present a number of simple statistics and figures that characterize
the measurements from the three sites. Most of the numbers presented in Table
I are self-explanatory. We note, however, the row labeled “fraction seeks.” That
set of figures gives the fraction of all SIOs that resulted in a seek taking place.
As has been previously noted (e.g., [65] and [58]), half or less of all I/Os tend to
require disk arm movement.

Table II shows the fraction of all DASD I/O events that can be attributed to
various File type and User type combinations. We note the following points. First,
the system (operating system and associated system software, including communi-
cations, and job entry system) accounts for the largest fraction of the I/Os. This
tends to surprise many people, who perceive system operation as a reflection of
the workload that they directly generate and not that induced indirectly. We also
note the small number of paging events at SLAC. The SLAC system is generally
run with a large enough memory and a small enough degree of multiprogramming
that paging is relatively infrequent; further, the use of the SVS operating system,
which allows only a total address space of 16 Mbytes among all processes,
restricts the overcommitment of memory.

Table III shows the distribution of activity among the device types. It is of
interest for two reasons. First, we note that in all cases, the bulk of the activity
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Table III. Distribution of I/Os among Device

Types
o Device type Fraction Fraction
_ and site DASD I/Os  Total I/0s
Crocker Bank
3330:1 .053 .034
3330-11 278 175
3350 669 422
Tape — .310
Other — .059
Hughes
3330-1 562 404
_ 3330-11 154 111
2305 172 124
Superdisk 111 .080
Tape — 1108
Other — 173
SLAC f
3330-1 524 350
2314 .190 127
2305 284 .190
Tape — .0518
Other — .281
is directed toward the newest and fastest disks. Second, the proportion of I/O
directed toward the tapes varies a great deal and ranges from 5-30 percent.
3. DISK CACHE MISS RATIO ANALYSIS
) As noted earlier, there are a number of aspects of disk cache design that can be
.1_'acter1ze usefully examined by trace-driven miss ratio analysis. In this section we present
in Table the results of our analysis, with attention to parameters and such issues as: How
:s.” That large should the cache be? Where should it be placed (CPU, channel, controller,
ng place. spindle)? What should the block size be? What migration algorithm(s) is best?
s tend to ' Should all or only some devices be cached? Should caching be restricted to only
some types of files or users? Are there time-of-day aspects to the effectiveness of
t’“t;d t: disk cache? Each of these items, and others, are considered below.
ts. First,
»mmuni- 3.1 Cache Capacity
OS-_ This Perhaps the most basic aspect of cache design is the cache size, that is, how large
action of it should be in order to obtain a given hit ratio. In Figures 2-4 we show the miss t
We also ratio for caches located globally, in each string controller, in each disk spindle, 3
enerally . and (for Hughes only) in each channel connected to DASD. In each case the £
‘amming ) block size is one track, the results are based on the seek address trace for the full ’
‘system, measurement period, the write algorithm is copy back, and the number of sets
‘ocesses, (using set-associative mapping for the LRU stack simulation) is as indicated.
. The curves for the channel, controller, and device caches are the miss ratio per
It }S_Of cache, and the capacities must be multiplied by the number of caches to get
activity comparable figures, which has been done and presented in Figures 5-7.
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As may be seen from the data presented in Figures 2-7, the miss ratios for the
global cache are already 26 percent or less at 2 Mbytes. Improvement is apparent
beyond this point, but each successive doubling of the overall global cache size
yields only a small improvement. On the basis of these figures, from 2 to 8
Mbytes of total cache capacity appears to capture the “knee of the curve” when
there is one global cache anid the machine is an IBM 370/168 or similar. (Faster
processors, of course, would access more data per unit time and might need a
larger cache.) We note that the subsequent mapping of hit ratio into overall
system performance is not considered here.

It should be pointed out that the miss ratios observed in the three sites are
significantly different; SLAC has a relatively small disk system and shows high
cache effectiveness. The Crocker Bank system shows the worst performance,
perhaps because of the large data bases kept on line.

An alternative to buffering globally is to place the buffer in the channel, string
controller, or disk spindle. Those measurements are also shown in Figures 2-7.
Examining the controller miss ratios, we again see significant differences between
the systems. It appears, as a generalization, that capacities of from 512 kbytes to
2 Mbytes per string controller seem to again include the “knee of the curve.” At
the device level, 256-512 kbytes seem to be needed.

3.2 Cache Location: Hit Ratio, Consistency, and Cost

A disk cache can be placed in any convenient location along the data path
between the CPU and the disk surface (see Figure 1b). In an IBM (or similar)
system, that suggests a number of reasonable locations: (a) a global cache, at the
CPU, either in main memory or outboard; (b) a cache associated with each
channel or with a group of channels (e.g., with the storage director); (c) in/with
a storage controller or group of storage controllers; (d) in/with the string
controller; (e) in/with each device. There are a number of considerations in
choosing among these possibilities, including miss ratio, data consistency, and
cost.

The closer a cache is to the CPU, the more it may be shared by a number of
1/0 devices. That is, if disk x is active at one time and disk y at another, they
can use the same cache if it is along each of their data paths to the CPU. The
data paths from the CPU resemble, for the most part, a tree, so sharing is
enhanced by buffering near the CPU. (Exceptions include the fact that storage
controllers can connect to more than one channel and disks to more than one
string controller (for some vendors).)

In Table IV we show the number of DASD devices, string controllers (for
DASD) and channels (connected to DASD) for each system measured. Multiply-
ing those numbers by the suggested capacities noted in Section 3.1, we find that
the total capacity required for a given miss ratio is much larger for device caches
than for string controller caches, and larger for controller caches than for a global
cache. Those global figures appear in Table V and Figures 5-7. The reason for
this phenomenon is that I/O loads are unbalanced both statically and dynamically
between devices and strings. By that, we mean that over short periods of time
(e.g., minutes) some devices are much more active than others (dynamic imbal-
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Table IV. System Configuration

Site
System aspect
Crocker Hughes SLAC
DASD 48 63 45
Strings 12 18 13
Channels to DASD 4 10 7

Table V. Miss Ratios

Total Crocker SLAC
capacity
(Mbytes) Global Controller Device Global Controller Device
1 316 475 .61 .330 .601 .630
2 .259 .365 45 .226, 414 496
4 225 275 .330 .146 .326 370
8 197 .233 .266 .099 227 271
16 172 .203 224 .070 .136 174
32 150 177 199 .050 .085 .109
64 139 .155 175 .033 .061 071

ance) and over long periods of time (days, weeks) some devices are still much
more busy. For example, in [3] it is stated that over moderate to short periods of
time 60 percent of the I/Os may go to two devices. It is impossible to balance
devices over short periods of time, and even over long periods only very approx-
imate balance is possible. Thus, much lower miss ratios can be expected for
caches closer to the CPU than near the periphery. (Of course, if there are multiple
CPUs, then a cache near the device will be shared by the CPUs, with correspond-
ing efficiency considerations.) In addition, it is worth noting that one is likely to
choose not to cache all of the devices, channels, or strings, omitting those with
poor hit ratios or low traffic. Thus, the penalty for device, string, or channel
caching is not likely to be as high as Table V and Figures 5-7 suggest.

Consistency is the second important issue. If there can be more than one copy
of a given piece of information, all copies must be kept consistent. The easiest
way of doing this is to make sure that all accesses to a given disk spindle pass
through the same cache buffer. Since a given device can be reached via more
than one channel, storage, or string controller (if the system is so wired), a unique
path is guaranteed only if the cache is at the device; otherwise, explicit steps
must be taken to maintain consistency. A survey of methods for maintaining
cache consistency appears in [74], where CPU caches are discussed. See also
Section 4.6.

The third issue, cost, would almost certainly be minimized by minimizing the
number of different caches in the system, given the same hit ratio or total storage
capacity. That is, the increased size and complexity of a shared cache is not likely
to be as costly as replicating a simpler cache. This suggests that placing the cache
in the disk spindle might not be cost effective, and a disk cache in main memory
should be the lowest cost solution.
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The placement of the cache affects the amount of 1/0 overhead. If a cache is
placed in the main memory, for example, a cache hit can bypass the entire 1/0
system, including some operating system routines, the channel, and storage
controller. Placing the controller beyond the channel means that no operating
system or channe] time is eliminated; the latter is quite significant [39] and can
typically be twice as large as the data transfer time. This performance advantage
for placing the cache in main memory is substantial.

On the basis of the above discussion, it is not possible to specify a uniquely
best location for a cache, but there are two that seem most suitable. Placing the
cache at the main memory should eliminate the most overhead and provide the
best performance improvement, if operating system modifications and address
space limits do not make this approach impractical. A cache at the storage controller
has commercial and practical advantages, in that it should require few if any
operating system modifications and can be sold independently of other components
of the system. Some vendors have chosen to place the cache in the storage
controller (IBM [51, 53], Memorex [61]), outboard at the CPU (NEC [private
communication with T. Tokunaga, Sept. 1980]), or inboard, with the CPU main
memory [private communication with mainframe manufacturer], [63].

3.3 Block Size

An important aspect of any cache is the size of the block used. For reasons noted
earlier, we have examined block sizes of 1 track and its multiples, specifically 1,
2, 4, and 8 tracks, and 1, 2, 4, and 8 cylinders. (Cylinder and track sizes vary
between devices, of course. For the 2314, 3330, and 3350 the number of bytes per
track and tracks per cylinder are respectively, 7294 and 20, 13030 and 19, and
19254 and 30. Miss ratios for all three sites and for those eight different block
sizes are shown in Figures 8-10. It can be seen in those figures that for small
cache capacities, small block sizes give the lowest miss ratios. For larger cache
sizes, lower miss ratios are obtained with larger block sizes. In Table VI we show
the block sizes that give the minimum miss ratios at a given total (global) cache
capacity. The block sizes in bytes can be computed by taking the track sizes
weighted by the relative frequency of device types, from Table IIL

The reason for the behavior displayed in Figures 8-10 is as follows: For small
cache sizes, small blocks permit several pieces of information to be in the cache
at once. If the blocks are large, the several active blocks must be swapped in and
out frequently, instead of being coresident. If the cache becomes larger, then
several large blocks can be resident at once. In this case fetching a lot of
information with a large block results in a smaller miss ratio than fetching that
information piecemeal using smaller blocks.

Given, as noted before, that the appropriate buffering capacity is from 2 to 8
Mbytes, block sizes of from 1 to 4 tracks yield minimum miss ratios. This
observation, however, is somewhat misleading. Larger block sizes involve some
other costs, the most important of which is that the very large transfer time for
a multitrack block will tie up the device and data path for a very long time. If
the block must be cached before it is accessed, then the latency for a large block
can be a significant penalty. (See, e.g., [11].) Also, physical disk blocks need not
end on a cylinder boundary, which will either result in a block that is partially
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buffer. + = 1 track, X = 2 tracks, ¢ = 4 tracks, O = 8 tracks, ¢ = 1 cylinder, X = 2
cylinders. & = 4 cylinders, X = 8 cylinders.
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Table VI. Lowest Miss Ratio Block Size in
Tracks—Global Set Associative Buffering, 16

Sets
Capacity
(Mbytes) Crocker Hughes SLAC
1 1 1 1
2 1 2 1
4 2 2 1
8 4 2 2
16 4 4 4
32 4 4 4
64 8 8 8

full, an odd size block, or a block that must wait for a seek in the middle of being
read or written. Since larger block sizes can be effectively simulated by prefetch-
ing, and since the miss ratio differences involved are small, it seems clear that a
1 track block size is best. (See [25] for a discussion of the problem of multitrack

physical blocks.)

3.4 Migration Algorithms

3.4.1 Selective Fetch-User Type and File Type. It is very easy to imagine
situations in which disk cache would be very effective, and other situations in
which it would be totally ineffective; some such have been previously mentioned.
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For that reason we have classified the users (source of an I/0 request) by type
(system, interactive (T'SO or Wylbur), batch job) and the files by type (temporary,
system, paging, other). Miss ratios were collected separately for temporary files
and then for all combinations of user and file types (excluding temporary). Each
such class was buffered (globally) in its own separate cache (which means that if
a given track was accessed by two different types of users, it appeared in two
different caches). The miss ratios for each class for 1-track blocks appear in
Figures 11 and 12; data for the Hughes system were not classified by user and
file type. From those figures (and other tables, not shown), we make the following
observations:

(a) The paging data set(s) appears to show very little locality; that is, the miss
ratio does not drop significantly until most of the paging data set is in the buffer.
Since we are buffering using the physical disk address, we know nothing about
the logical page name. Therefore, we are able to say very little about the use of
gap filler technology for paging store based on these data. (It is possible that the
logical addresses would show either more or less locality, but we have no way of
knowing.) From our other data (not presented), it is also notable that increasing
the block size does not seem to help reduce the paging data set miss ratio. It is
also possible that there is little locality remaining in the memory references
constituting the stream of “misses.”

(b) SLAC and Crocker show different comparative results for the effectiveness
of buffering batch versus buffering system data sets. The SLAC data suggest that
temporary data sets show poor locality compared with batch data sets. The
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Fig.12. Effect of file and user type. SLAC: 3.7 million seek address, 8 sets,
individual buffer. + = temporary. X = system/batch, ¢ = other/batch, O = system/
wylbur, ¢ = system/system, X = paging/system, " = other/system.

Crocker data show that the batch data set locality is poorer than the system and
temporary data set locality. The first shift results at Crocker, however, suggest
that batch and system data sets have roughly equal hit ratios when cached. (The
workload at Crocker varies widely with the time of day; that is much less true at
SLAC.) The interactive system miss ratios are not markedly different from the
other system miss ratios. On the basis of these measurements, neither batch nor
system data sets merit a consistent preference for buffering. The large variance
between SLAC and Crocker, however, suggests that on some systems, a preference
might be useful.

(c) It is worth noting that the batch and temporary file miss ratios drop rapidly
with increasing block size (not shown), whereas the same phenomenon is not
found for the other types of data sets. This suggests, as one would expect, that
such files are accessed sequentially. Therefore, prefetching might be a good
strategy for batch and temporary files, possibly instead of more buffering.

For comparison with our results, we note suggestions in [19] for what should
and should not be cached in IBM (software) systems. Dahman and Grossman
recommend the following as strong candidates for caching: program load libraries,
message format services library, application control block library, VSAM KSDS
indices, the system catalog, and sort and program product libraries. Poor candi-
dates for caching include databases with poor locality of reference, long message
queues, the dynamic log, disk scratch pad areas, and restart and recon data sets.
Intermediate candidates include OSAM databases, VSAM ESDA databases, and
short message queues.
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3.4.2 Prefetching. The standard method of moving data into a cache is called
demand fetch, by which data are moved into the cache at the time they are first
referenced; thus demand misses result in a latency period during which the
desired information is not available. If it were possible to guess accurately which
disk blocks would be needed in the immediate future, those blocks could be
prefetched (i.e., fetched in advance), and they would therefore be available when
referenced. Some quite sophisticated methods of prefetching have been devised;
see, for example, [69] for prefetching in database systems and [70] for prefetching
to cache and main memory. (See also [7].) For this study we have examined only
the prefetching method known as one-block lookahead (OBL).

One-block lookahead prefetching can be defined as follows: Consider each disk
(or drum) to consist of a linear address space of tracks, numbered sequentially
in the obvious way. Then when a block i is referenced, OBL prefetching checks
to see if block i + 1 is resident in the disk cache. If so, it is moved to the head of
the (its) LRU stack; if not, block i + 1 is (pre)fetched (asychonously) and is
placed at the top of its LRU stack. The advantage.to OBL prefetching is that, if
blocks are being accessed sequentially, it ensures that the next block is either in
the cache or on the way in at the time it is first used. A number of costs are
associated with this prefetch, however. If references are not sequential, then it
does a lot of useless fetches. These useless fetches tie up the data paths to/from
the cache, tie up the spindle, busy the cache controller, and cause memory
pollution, the phenomenon by which the cache is polluted with blocks that are
not in use at the cost of removing those that may be reused.

The effects of prefetching for a global cache for each system (with no user/file
type breakdown) are shown in Figures 13-15; in each case, prefetching produces
a very significant drop in the demand fetch miss ratio, usually on the order of 10
to 50 percent for reasonable cache sizes. We have also tabulated the effect of
prefetching on the basis of user and file type, but omit the tables for brevity; we
do comment on them here, though: For both Crocker and SLAC, we find that for
batch files, batch users, and temporary files, prefetching yields a dramatic drop
(up to 80 percent) in miss ratio. This is clearly due to the fact that most batch
and temporary files are sequentially allocated and are read and written sequen-
tially. Conversely, paging data sets show no improvement from prefetching,
which is consistent with our earlier observation that they show little locality.
Intermediate between the two cases are system files and files used by the system
that show some but not massive improvement.

Wide variations in the effectiveness of prefetching can also be seen by looking
at a miss ratio breakdown by device and controller. The efficacy of prefetching
seems to be highly correlated with the type of file on the device(s).

It is worth noting that our prefetching has used the crudest algorithm possible,
OBL. A scheme such as that in [69], in which a variable number of blocks are
prefetched depending on the observed degree of sequentiality, could be expected
to perform better. In the article cited, variable prefetching performed significantly
better than prefetching by a fixed number of blocks. Therefore, we believe that
prefetching should be implemented, but made optional, and the implementation
should be one that minimizes the costs and overhead associated with prefetching,
as noted above.
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Fig. 15. Effect of migration algorithm. SLAC: 3.7 million seek address, 1 track
blocks, 64 sets, global buffer. + = demand; X = prefetch, ¢ = purge behind, o =
both.

3.4.3 Purge Behind. Many files, as noted earlier, are accessed sequentially. For
batch and temporary files, it would be expected that after block i is referenced,
block i — 1 would not have a high probability of reuse. This leads to the idea that
block i — 1 could be removed from the cache, which would free up a cache storage
location. If the block removed were indeed no longer active, then the effect should
be beneficial. We define purge behind replacement as follows: Whenever block i
is referenced, remove block { — 1 from the cache immediately.

Figures 13-15 also show the effect of purge behind alone and combined with
OBL prefetch. As may be seen, purge behind significantly increases the miss
ratio. Breaking down the results by device, controller, user type, and file type
shows almost universal increases in the miss ratio from purge behind.

Because of these poor results, we recommend that purge behind not be used in
disk caches.

3.5 Which Devices or Controllers to Cache

Illustrated in Figures 16-18 are miss ratios for the 7 or 8 most heavily used
devices for the Crocker, Hughes, and SLAC computer systems. By referring to
tables that show the uses of the various disk drives, we note that of the 11 most
heavily used devices at Crocker, the three packs that show the worst cache
performance are paging, batch applications, and unknown. At Hughes, the worst
results are for the three scratch packs; we speculate that these spindles contain
user batch data sets with large block sizes, since all three showed excellent results
from prefetching. At SLAC, the worst results are for the packs with ASP spooling
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and job queue, and the Orvyl (time-sharing) file system. (The next worst results
are for user scratch packs.)

On the basis of these observations and those in Section 3.4.1 on user and file
type, the following design principles seem appropriate: (1) A caching mechanism
should have a provision for selecting only certain devices for caching. (2) Paging
data sets/packs should not be cached. (3) Devices containing user-defined data
sets should be cached only if the block sizes are small enough for there to be at
least 2 or 3 blocks per track. (4) Prefetching should be available for sequential
files, especially temporary files, which are almost always sequential. (5) System
packs should be cached on an individual basis, depending on their contents.

3.6 Time of Day Effects

In Tables VII-IX, we show the global cache miss ratio as a function of the
segment (portion) of the seek address trace. That is, the miss ratio was recorded
for each one million trace I/Os (of which only some were to DASD) throughout
the trace period, using warm start (a full buffer) for all but the first segment. We
can see that the three systems exhibit somewhat different behavior. The SLAC
system shows no significant time-of-day effects, excepting the initial transient
while the cache fills up. Hughes shows a minor time-of-day effect, in that in the
middle of the night, the miss ratio drops slightly. Crocker has a very marked
effect, with a miss ratio at night much higher than during first shift. This latter
behavior can be explained by the following argument: on-line TSO and IMS
applications (during the day) have relatively small data working sets. The batch
job and batch IMS applications that run at night (e.g., check processing) have
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Table VII. Effect of Time Period on Miss Ratio—Crocker Bank: 1 Track Blocks; Global

Buffering, 16 Sets

Trace section

Cache size (Mbytes) 0-1M 1-2M 2-3M 3-4M 4-5M
1 313 353 313 319 .303

2 240 298 281 292 219

4 195 2m 262 273 .167

8 158 258 249 .260 123

16 .126 247 238 249 085

32 .096 236 227 237 056

64 076 217 212 230 .038

128 062 .183 .195 224 026

256 057 164 .163 216 .020

512 056 .163 .159 215 019
Number of disk 1/0s 635984 517691 452527 646051 830398

Table VIIL. Effect of Time Period on Miss Ratio—Hughes
Aircraft; 1 Track blocks; Global Buffering, 16 Sets

Trace section

Cache size (Mbytes) 0-1M 1-2M 2-3M
1 .261 217 348

2 221 .176 287

4 195 141 .236

8 172 .106 177

16 .146 078 123

32 113 064 084

64 .080 .056 056

128 .064 .040 .035

Number of DASD I/0s 693101 706571 739077

Table IX. Effect of Time Period on Miss Ratio—SLAC: 1 Track Blocks; Global Buffering, 16 Sets

Trace section

Cache size (Mbytes) 0-1M 1-2M 2-3M 3-4M 4-5M
1 .326 281 333 .405 .406

2 .235 205 232 .276 267

4 172 150 157 .160 151

8 132 107 112 091 094

16 .106 .075 084 .057 .060

32 .088 051 .063 .036 .036

64 052 .034 .049 .022 .024

128 .035 .021 .036 014 .014

256 032 013 .031 011 010

Number of DASD 1/0s 614087 681279 639404 678272 646961
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Fig.19. Comparison of static and dynamic cache. Crocker: 835 thousand seek
address, 1 cylinder blocks. + = dynamic; 16 sets; — = static.

poor locality. Conversely, both SLAC and Hughes run similar workloads during
the day and night.

These time-varying performance figures will reinforce our later discussion
(Section 4.4) about the advantages of dynamic on/off for the cache.

3.7 Static Device

One possible use for a level of storage between disk and main storage, the gap
filler, is as a statically allocated device, not for a dynamically managed cache such
as that we have discussed so far. The idea is to allocate statically to the gap filler
device those data sets with the highest density (rate per byte) of reference. Such
a use exactly reflects what this author calls the “N.;” model, by which user i
references file j as a Poisson process with rate A.j; if such a model is valid, then
an optimal static allocation should give nonlook ahead optimal results, as with
the A, algorithm for the independent reference model for program behavior,

The method that we use to get a static allocation is optimal in the same way
as Ao. For each DASD (disk and drum) cylinder, the entire trace was processed,
and the number of references to that cylinder was counted; then the density of
reference for each cylinder was computed, since the cylinders varied in size by
device. Finally, the cylinders were sorted by decreasing density of reference and
the miss ratio was computed.

In Figures 19-21, the static and dynamic miss ratios are compared. It can be
seen that, except for very small cache sizes (where the set-associative mapping
distorts the results) and very large cache sizes (where the entire DASD address
space is in the cache), the miss ratios for dynamic management are dramatically
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better. Thus, with respect to miss ratio, a static device is a very poor idea. This
also suggests that fixed disk arms (as are available on the 3330 and 3350 disks)
are not cost effective. Note, however, that devices such as electronic drums need
not be managed statically—data can be migrated in and out in the same manner
as is done for a cache.

An implication of the results presented in this section is that the A;j model,
like the independent reference model for programs, is not valid; reference proba-
bilities are clearly time varying. Mathematical models that are sensitive to the
time invariance of the \; j assumption are, therefore, also not valid.

4. DESIGN CONSIDERATIONS

It was noted earlier that there are a number of design considerations that we
have not evaluated by means of a miss ratio analysis. There are three reasons
why we have not done so: First, our data are limited (e.g., no read/write
differentiation) and, therefore, some studies are not possible. Second, some items,
although performance related (e.g., path contention), are not usefully examined
by that means. Finally, some topics, such as error recovery or data consistency,
are not primarily performance related. Therefore, in this section we consider a
number of design considerations, but without the use of trace data analysis.

4.1 Access Time and Bandwidth

The access time of a disk cache depends on both the access time desirable for
performance reasons and that achievable from technology considerations. Be-
cause current disks are accessible in 20-30 ms, average [39], any access time less
than 10 ms will result in a physical disk access time being reduced by more than
50 percent. Therefore, the access time can be allowed to be primarily a function
of the technology, as discussed below in Section 4.5 MOS RAMs or charge-
coupled devices (CCDs) are very fast, and access times of 1 ms or so ought to be
easily achieved. Magnetic bubbles are a lot slower; their access time could be as
much as 5 or 10 ms, depending on the implementation. These times are still
acceptable in most cases. Note that the effective access time is the sum of the
device access time, the transmission time (including any path contention delays),
channel and storage controller “overhead” (command processing time), and the
operating system (OS) overhead time. Therefore, the devices access time may
not be the limiting factor.

The bandwidth of an outboard disk cache should be dictated by the desired
access time. If one assumes that it should be possible to transmit a typical block
(e.g., 4 kbytes) in less than 1 ms, this implies a data rate of at least 4 Mbytes/s.
This compares with a current maximum of 3 Mbytes/s in IBM systems (to/from
the 3380 disk) and up to 5 Mbytes/s in Cray I systems. Thus, figures in this
range are already available, and it should be straightforward to obtain higher
rates for this special case. (High 1/0 rates are expensive to implement and may
require short cables. They are probably not justified for many other devices.) We
also note that if the disk cache is in main memory, bandwidth is not a problem.

4.2 Multipathing

There are several stages in the data path between the disk surface and the CPU,
and each stage is a point at which I/O congestion can occur. Consider a system
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in which the data path is {CPU « channel < storage controller « string
controller « disk spindle}. Assume 3-kbyte blocks on the disk, 16-ms disk rotation
time, and 3-Mbyte/s transmission rate (i.e., approximately an IBM 3380 disk).
Then the mean latency is 8 ms and the transmission time for a block is 1 ms;
thus, excluding seek time, the disk I/0 time is 9 ms. Assume & disks per string
and j strings per controller: Let the utilization of the disk (excluding seek time
and missed rotational position sensing (RPS) delays; that is, including only
rotational latency and transmission time) be x. Then the disk transmits (1/9)x
time. The string controller is busy with data transmission (k/9)x. The storage
controller is busy for data transmission (jk/9)x. (assuming 1 string controller per
string, and each string connected to only one storage controller). For k = 6 and
j = 3 (typical figures), the bottleneck is the storage controller, which is twice as
busy as the disk and three times as busy as the string controller. (The channel
is likely to be even busier than the storage controller, since there are usually
fewer channels for access to the disk system than there are storage controllers).
Even allowing for seek time (approximately 40 percent of I/Os require seeks, at
a mean of 30 ms/seek. (see Table 1)), and missed attempts to reconnect to the
disk as the desired record comes under the read head (at 16 ms/miss for a full
rotation time), the bottleneck is likely to be at the storage controller and channel.
(It is also worth noting that the channel “overhead” (commanid processing time)
might typically be twice the transmission time [39]. See [2] and [10] for a
discussion of some of these issues.

The congestion at the storage controller is worse when the storage controller
contains a cache. Assume a copy back and allocate on write strategy. A hit to the
cache requires the transfer (to the CPU) of only the bytes accessed. A miss to
the cache requires that the cache be loaded; then the 1/0 takes place to the cache.
(Fetch bypass can also be used, whereby the information is transmitted at the
same time as the cache is loaded.) If each record is read exactly once, then the
traffic to the storage controller has doubled; that is each byte is loaded into the
cache when a miss occurs and is then read by the CPU. The hit ratio may still
be high in this case, since the blocks can be small and several may be in each
track. For a write, the track is loaded, the write occurs, and finally the track is
written back, thus tripling the 1/0 traffic if each byte on the track is written
exactly once. If only some of the records on each track are accessed (read or
written), the factor by which the utilization of the storage controller data path
has gone up is still larger, because the whole track still gets loaded.

The implication of the above argument is that a workable disk cache, if located
at the storage controller, must have multiple data paths. In particular, it should
be possible to read or write the cache from the CPU at the same time a cache-
to-disk or disk-to-cache transfer is taking place. More than two data paths would
be even better. The performance impact is discussed further in Section 4.11. We
note that this problem is avoided if the cache is placed in main memory.

4.3 Write Through versus Copy Back

A write through cache is one in which all writes go immediately to the disk
surface. A write through cache can be implemented with three different allocation
mechanisms: (1) Write allocate means that a copy is made in the cache on a
write, even if the block has not been in the cache previously. (2) Write update
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means that, (only) if a copy is already in the cache, it is updated. (3) Write purge
means that, if a copy is in the cache, it is purged. A copy back cache accepts
writes and transfers them to the disk surface when that information is pushed
from the cache. A copy back cache is usually implemented with write allocate,
by first reading the block to be written to, if it is not already in the cache, and
then modifying it. ‘

A write, in a write through cache, has many of the undesirable characteristics
of a read miss. Even though the CPU does not have to wait for a write to
complete to continue work on a given process unless the operating system so
requires, the write still takes the time of a physical disk access, and the relevant
data paths are made busy for its duration. Since in many systems, writes are
about one-fifth to one-third of all 1/Os [33], [57], it should be clear that the
frequency of disk access will be significantly higher in many or most write
through systems as opposed to copy back. System performance should be better
for copy back than for write through, but we have not modeled that issue.

Two aspects of system design favor write through: error recovery and consist-
ency. Each is discussed in more detail below in its own section. We do note here,
however, a modification to write through with performance advantages. It is
suggested in [24] that two completions be signaled on a write. The first specifies
that the write is complete to the cache (so that processing can continue); the
second indicates that the write is complete to the disk surface (so that reliability
and recovery are ensured).

There is a peculiarity to some system architectures (IBM’s in particular) which
makes it difficult to implement a copy back or write through cache. In IBM’s
count-key-data architecture [71], a sequence of data commands is followed by
the command that indicates whether the transfer is actually a read or write.
Therefore, the transfer cannot be set up (to disk or to cache) until the last
command is received. This problem does not occur in the newer fixed block
architecture (FBA) of the 3310 and 3370 disks [71, 49, 50].

A minor complication that relates to copy back is the removable volume problem.
If a disk can be dismounted, all buffered information must be written back first.
This must be provided for.

The conflict between performance and reliability suggests that a mixture of
modes may be desirable. It is worth noting that the design by NEC [77] has
multiple modes; temporary files can be made write through with allocate on
write, and files in “high speed mode” can be made cache resident only; the normal
mode is write through with update on write.

4.4 Dynamic Cache On/Off

It is quite possible for a disk cache to lessen rather than improve performance
(see e.g., [11]). Consider, for example, a file that is stored with one large block
per disk track and that is read once. In such case, each block will be read to
cache and then to the CPU, thus doubling the I/O traffic and causing the I/0
access time to increase. The hit ratio would be zero. Somewhat less realistic but
even worse cases can be proposed. Further, it is likely that such poor performing
situations will occur unpredictably and will be intermixed with I/0 in which high
hit ratios are observed. In [26], for example, a number of situations are suggested
in which cache loaded would be inhibited.
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The possible unpredictable occurrence of situations in which the disk cache
reduces the performance of the computer system suggests that it might be a good
idea to permit a disk cache to turn itself on and off dynamically. That is, the
cache would dynamically monitor its own miss ratio and write ratio (fraction of
I/0s that are writes). (Such monitoring is available for commercial disk caches
[17], [55].) When these were found to be too high, the cache would disable itself
with respect to the offending devices or strings. The cache could continue to
simulate the miss ratio to be expected were it still active by maintaining a
“shadow directory,” and it could turn itself on when performance had improved
sufficiently.

This idea has not yet been tested, and algorithms need to be developed to
specify when the cache should be enabled and disabled.

4.5 Technology

There are three technologies that have been suggested in the past for use as a
level of storage between disk and main memory. These three are charge-coupled
devices (CCDs), magnetic bubbles, and electron-beam-accessed memory
(EBAM). EBAM has not proved to be a viable technology, and there are currently
no commercial EBAM projects. CCDs have not been available in sufficient supply
in recent years and in all probability will not experience increased availability in
the near future. It was generally predicted, however [37], that they would be two-
four times cheaper on a cost-per-bit basis should they ever be produced in
comparable volume. Magnetic bubbles are also not yet available in adequate
volumes and at reasonable prices. Further, they are somewhat slow and might
not be suitable for many cache designs.

A better choice, and one which has been made for all current commercial
designs, is that of MOS RAM. At the time of this writing, the memory chips for
a megabyte can be purchased for $100, and the performance and design advan-
tages of RAM are obvious.

MOS RAM is the technology used for main memory, and the question arises
as to why there may be an advantage to outboard (external) disk cache, when
the use of the storage in main memory is more general. There are several reasons,
which are discussed elsewhere in this paper, but we note, in particular that
consistency problems may be worse if data are shared between independent
CPUs, and that operating system modifications are certainly required for a main
memory cache. Using part of main memory as a disk cache is, of course, another
good implementation and is likely to provide greater performance improvements
than an outboard cache.

4.6 Consistency

One problem with disk cache is that multiple copies of data may exist—one copy
on the disk and one in each cache connected to it. The important issue is that at
any point in time there must be a unique value for every byte in a file, and any
attempt to read or write that file should reference the uniquely correct value at

that time.
There appear to be two general ways of ensuring that all CPUs have consistent
views of a given file. One is to force all accesses to a given disk to take place via
ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.
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the same cache; this solution may not permit sufficient bandwidth, however.
Further, it will not work if the cache is located in the channel or main memory,
neither of which need be shared by independent CPUs.

The alternative is to provide explicit synchronization. The synchronization
required would depend on the cache design. For example, consider a write through
cache. In this case it is sufficient that, if a file is opened for writing, there be no
other readers or writers. If the cache is copy back, then it is necessary that all
modified file blocks be rewritten to the disk before that file can be read along a
different data path. See [74] for a more thorough discussion in the context of
CPU caches.

It is possible for there to be inconsistent copies of a file even with only one
CPU. Suppose that there are two (or more) data paths to a given file from a
single CPU, with a copy back cache along each path. In such case it is possible
for each cache to have different values for blocks of the file; this situation must
be prevented via either explicit synchronizationk or by allowing only a unique
path to a given disk from a given CPU. Numerous solutions to these problems
exist, and further consideration of this issue is beyond the scope of this paper.

4.7 Error Recovery

Since disks are generally highly reliable, most operating systems assume that
once something is written to disk it is permanently stored and will not be lost in
a system failure. A disk cache design cannot afford to lower this level of reliability;
otherwise, it would not be commercially acceptable. The possible exception is
that the loss of temporary files by jobs that would be restarted after a crash
would be permissible; this is what is presumed by “high-speed file mode” in the
NEC disk cache [77].

There are, therefore, four features that should be part of a disk cache design:
(1) Error-correcting codes must be used in the cache to avoid I/0 data errors,
even though a correct copy of the data may exist on the disk. (2) An external
copy back cache must be nonvolatile, which implies either magnetic bubbles or
battery backup. The probability of a failure must be insignificant. (3) If the cache
is disabled, there should be provision for access to the disks without the use of
the cache. (4) There should be provision for forcing writes to the disk surface;
this feature would be used by reliability and recovery software.

4.8 Software versus Hardware Management and Locus of Control

An external disk cache will consist of several parts: (1) the storage array, which
holds the data; (2) the directory, which specifies which blocks are in the cache,
where they belong on disk, etc.; (3) the control mechanism or logic; (4) the data
transfer logic. The question about the control mechanism and the transfer logic
is whether they should be implemented in software or hardware, and where.
Either the locus of control for the cache can be in the same location as the
cache (e.g., the storage controller), or the cache can be managed from the CPU
by means of the system software. There are several reasons why the latter should
be used only when the cache is in main memory or is directly associated with the
CPU: (1) The CPU would take on a new and significant processing task, resulting
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in increased supervisor overhead. (2) If there is more than one CPU sharing a
cache, this could lead to either significant additional overhead to maintain
consistency and error free operation of the shared cache, or to possible failure.
(3) In the event of system failure, it seems easiest to preserve cache integrity if
the control is local. )

Because of the complexity of the cache control (with respect to synchronization,
directory maintenance, dynamic on/off, etc.), it should be clear that the control
should be either in software or microcode; it is not feasible to hardwire it. Further,
the algorithms for cache operation are likely to be changed and updated, which
is done much more easily in software or microcode. Conversely, the data transfer
logic, which must transfer data at high (=3 Mbytes/s) rates, will have to be
hardwired; software is not fast enough. Some of these points are made in [22].

4.9 Operating System Implications of Disk Cache

The use of disk cache in a computer system has implications for the operating
system, both as to correctness and system performance. The correctness aspects
have already been discussed. The performance aspects of disk cache are somewhat
more subtle, and each is discussed below.

Mechanisms for data set searches [56] are typically reflective of the storage
technology used. For large disk data sets, tree structures are often used to
minimize the number of disk blocks read. Such tree-structured indexes can be
even more efficient when the highest level or levels of the indexes can be expected
to stay cache resident. Conversely, linear searches, such as those that occur in
reading catalogs and volume tables of contents, should not be permitted to go
through a disk cache. Such a linear search (with large block sizes) is likely to
flush the cache of other more useful information, without achieving a high hit
ratio itself.

Some systems maintain main memory buffers which serve the same function
as a disk cache. UNIX! [63], for example, keeps a main memory I/O buffer. IMS
[20] maintains a buffer of recently accessed blocks of the database. It is preferable
that mutiple buffers serving the same function not be used; if they are, the result
is increased overhead and possible side effects leading to worse performance. For
example, if a main memory buffer captures many data rereferences, the reference
stream to the disk cache can result in the wrong blocks being kept.

The existence of a disk cache adds a new parameter to disk I/Os: the probability
of a miss. Thererefore, for all I/O system optimizations, there is a new figure of
merit to consider. For example, if the cache is write through, then writes count
(more or less) as misses. Thus, whenever there are trade-offs between reads and
writes, one would now prefer to a greater extent additional reads and fewer
writes. Also, large block sizes are likely to lower the hit ratio, so much of the
incentive for increasing the block size is gone.

Traditionally, data sets are placed on I/O devices so as to balance the load
among spindles, controllers, and channels. With a cache, the load must still be

! UNIX is a trademark of AT&T Bell Laboratories.
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balanced, but the effective load depends on the hit ratio. In addition, one may
want to segregate those data sets suitable for caching from those that are not;
thus caching can be made selective on a device or string basis.

The use of an electronic drum and/or disk cache may suggest some changes in
the scheduling algorithms used and in the way the dispatcher operates. For
example, there is significant overhead in standard 1/0 processing, including
handling I/0 interrupts and executing the dispatcher at least twice. If the time
to complete the I/0 or page fault is short enough, it may be more effective to
wait for the I/O to finish rather than to task switch. (If the cache is in main
memory, then of course a real I/O has to be issued only on a miss.) Similarly,
one might add as a factor in the dispatching algorithm information about which
ready process has the most blocks in the cache; it would generally be advantageous
to start a process that is using a lot of cache blocks.

4.10 Cache Visibility, User Control, and Operating System Modifications

The purpose of a disk cache is to improve performance; it has no other user
visible function. Thus, for example, if a cache is located in the string or storage
controller, it should be possible to activate or deactivate the cache, or, for that
matter, interchange a storage controller without a cache with one that has a
cache, all without the user having to change either his programs or the way in
which he uses the system. Further, in that case, it should be possible to add or
delete the cache without modifying the operating system.

The problem with a completely invisible cache is that it sacrifices possible
performance benefits. For example, if it is known that a given file can be lost
without ill effects in a system failure, then write through need not be used.
Similarly, a temporary file can be written with write allocate, whereas a perma-
nent file should be written without write allocate. If the cache is in main memory,
which has the performance advantages noted above (Section 3.2), then the cache
must be visible to the operating system, which must have been modified to
manage it.

As one example of the performance advantages to be gained by a user visible
cache, we note the cache built by NEC for the ACOS 1000 [77]. In that system,
when running real commercial workloads, performance improvements using all
possible file modes (described further in Section 7.1) are twice those available
using only the basic (write through, no write allocate) mode.

To obtain the full possible performance benefits for a disk cache, it seems clear
that there must exist a mechanism for the user (or the system, by default, for
certain classes of files) to specify how the cache should handle I/Os to a given
file. This can be done in most systems by adding one or more parameters to the
command that opens a file. In an IBM OS-based system, for example, job control
language (JCL) parameters can be added.

4.11 Performance Impact

As noted earlier, we have not attempted to calculate directly the performance
impact of disk cache in this paper. In the literature there are some papers that
do look at the effect of disk cache on the mean I/0 access time. In [11] it is
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observed that if the read/write ratio is high enough and the hit ratio is high
enough, then the use of disk cache can significantly cut mean I/0 time; con-
versely, if the hit ratio is low and/or the read/write ratio is low, I/0 access time
increases. That analysis, however, assumes a single data path through the cached
controller; thus the disk cache has the potential of impeding performance.
Analysis of a design with msultiple data paths should show much better results.
Additional analysis is available in [59]; it also shows performance improvements
from disk cache.

In [77] and [57], it is reported that the use of disk cache (respectively, that of
NEC and IBM) yields overall gains in system performance.

5. DISK SPINDLE BUFFERS

The purpose of disk cache is to frequently eliminate the mechanical access time
component of disk I/0. An examination of the components of that access time
also suggests another idea. Most modern disk drives have a feature known as
rotational position sensing (RPS), which works as follows. A command is given
to the disk to search for a specific record; when that record is recognized, the
disk attempts to reconnect to the storage controller and channel. If both are free,
then the data transfer begins. If one or both are busy (the reconnect fails), then
a full rotation time must elapse (until the record passes under the read heads)
before transmission can again be attempted. This delay (known as an RPS miss)
can add significantly to mean I/O times [39], [2], and its frequency 1s obviously
very sensitive to the utilization of the channel and storage controller.

A mechanism to eliminate RPS misses is called the Disk Spindle Buffer (or
the DASD arm buffer [40]). The idea is to build into each disk spindle (or each
disk arm controller—i.e., device address) a buffer capable of holding a disk track
or some part thereof. A read from disk would then consist of the device accepting
the command, loading the buffer with the track (or record), and then seizing the
data path to the CPU as soon as it becomes available, without waiting for a
specific angular position of the disk. In this way, RPS misses are eliminated,
and, further, the channel utilization can be increased. Previously, if the channel
utilization became too high (above 30 or 40 percent) [9], RPS misses became
quite frequent and costly. With a spindle buffer, queuing can take place in a
useful way.

A spindle buffer also has another potential advantage. All transfers to/from a
disk must run at exactly the transmission rate of the device, which itself is a
function of the bit density along the disk track. If transfers are buffered in
electronic storage, they can be made at arbitrary speeds, and also asynchronously.
That is, they can be interrupted by other (unbuffered) transfers or slowed down
if the channel or storage controller is otherwise too busy to operate at the full
data rate.

6. ALTERNATIVES TO DISK CACHE

Disk cache has been proposed as a solution to a predicted I/O bottleneck. There
are other ways to approach this problem and we discuss them in this section.
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One of the reasons that disk cache is so effective is that it avoids repeated
physical 1/0s to read many small blocks; those blocks are read (or written) from
disk to cache a track at a time, and are then sent to the CPU from electronic
storage. It is well known (see, e.g., [8]) that block sizes are frequently small and
that larger block sizes. improve performance [8, 73]. If system users begin to use
relatively large block sizes (half or full track), then disk cache ceases to be very
useful for sequential files. This is evident from an examination of our miss ratio
data on a device-by-device basis. When the miss ratios for scratch volumes (not
shown) are examined, miss ratios can be seen to be very high. The reason is that
scratch volumes are often used by experienced users to hold large sequential data
sets with large block sizes; in that case rereferences to a given track are infrequent.

A certain amount of I/0 occurs because of the limited size of main memory.
For example, old compilers typically generate large numbers of temporary files
so that they can run in small (50K, 100K) memory sizes. Each such temporary
must be written and then reread. With large modern main memories, most such
information can be kept in main storage; thus that portion of 1/0 (see Table II)
going to temporary files can be almost eliminated.

Some systems already do a significant amount of internal buffering. For
example, it was noted earlier that the IMS database system keeps its own buffer
of recently used blocks. Similarly, UNIX maintains its own main memory I/0
buffer. These buffers are effectively disk caches located in main memory. To the
extent that dedicated buffers are set up to manage I/O streams, the disk cache
becomes redundant. In many cases it can be expected that the author of a system
or program will be better able to manage his buffers than would a standardized
shared disk cache. We don’t believe that this is a good approach, however, because
of the time, effort, and expense of writing many different buffering systems,
some of which may not actually be effective.

Disk cache can be implemented in main memory by using the already existing
virtual memory management system. The idea is to map the disk address space
into the program address space and then rely on the paging mechanism, as is

achieve performance gains similar to the more single-purpose disk cache.

The idea of disk cache is that it is a self-managed cache that retains recently
used blocks of data. An alternative is to create an explicitly managed electronic
storage device, such as the electronic drugs made by Intel (FAST-3805 [42] and
3825) and Storage Technology (4305). There already exists software to manage
drums and maintain on them the most frequently used information. In some
cases that software may work fairly well. We note that these electronic drums
are managed dynamically, not statically, and thus should be able to offer per-
formance comparable to the disk cache, rather than similar to the static device
design.

From the above list of alternatives, we can see that each performs one or more
functions of the disk cache. Internal buffers and main memory keep data in
electronic storage just as the disk cache does; in fact, they are a form of disk
cache. Reblocking explicitly accomplishes the prefetching/large block size func-
tion of disk cache; it does not capture locality by time. Electronic drums can
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function much as a cache. Thus to the extent that one or more of these techniques
are implemented, the projected I/O bottleneck is put off; if all are implemented,
then an explicit disk cache becomes unnecessary, since all of its functions have
been provided in other ways. The appealing aspect of disk cache is that it is a
simple and elegant solution that avoids the need for many small and costly system
changes and improvements. -

7. COMMERCIAL DISK CACHE PRODUCTS

In the last few years, a number of disk cache products have been announced;
some have actually been delivered. In this section we mention some of them,
with particular attention to the NEC and IBM designs.

7.1 The Nippon Electric (NEC) Integrated Disk Cache

NEC has designed and tested a disk cache for their ACOS 1000 system [77].
That machine is structured around a system control unit (SCU) through which
all I/0 passes. Attached to the SCU is the disk cache; thus the cache is global to
the entire system and is accessible on all 1/0s. (A design similar to this is
suggested in [5].) Further, the operating system is aware of the disk cache, and
the type of caching provided is determined by the operating system on the basis
of file type. Performance is also improved by providing a 5.3-MByte/s 1/0 rate
between the cache and main memory.

The disks in the NEC system are fixed sectored, and the cache holds fixed-
size blocks, equal to some (adjustable) multiple of the fixed block size. These
blocks are arranged in a set-associative manner (as with our simulations), with
LRU replacement within each set.

One of the most interesting features of the NEC cache is that it provides four
different modes of operation, depending on the file type:

(1) Basic Mode. (i) A read hit is serviced by a read of one block from the cache.
A read miss results in a load to the cache followed by a read from the cache. (ii)
A write always goes directly to disk, with write update if the block is also in the
cache. Completion is reported only after the physical disk update.

(2) Sequential File Mode. This is the same as the basic mode, except a read
miss causes n records to be prefetched into the cache. A cache block whose last
record has been accessed is placed at the head of the list for replacement (similar
to purge behind.)

(3) Temporary File Mode. Same as basic mode, except with write allocate, as
well as write update.

(4) High Speed File Mode. The file is allocated to the disk cache only and is
never written to disk; space must be preallocated. This mode is used for temporary
files only, and is vulnerable to cache failure.

Error correction is provided. Upon cache failure, only the use of high-speed
file mode can cause a job to fail; in all other cases, a failure of the cache will
cause the cache to be bypassed.

Some performance figures are reported, with the use of all but high-speed
mode. Hit ratios of 60 to 95 percent are observed in practice, and the elapsed job
times decrease by 10-35 percent. Response time decreases for interactive use by
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15-25 percent. It has also been observed [private communication with T. Tokun-
aga, Sept. 1980] that the use of basic mode alone yields only about half of the
potential performance gains.

7.2 1BM 3880 Model 11 ard Model 13

The IBM 3880 Model 11 storage controller [61, 52] is a storage controller
expressly designed for paging and swapping. It has an internal disk cache of 8
Mbytes and can transfer data to the channel at up to 3 Mbytes/s. (More recently,
the capacities of the Model 21 and the Model 23 have been expanded to 32
Mbytes [30].) Its use is invisible to the user and operating system, and no changes
are required by either. It will support up to one string of eight model 3350 disks,
although two disks are recommended per cache. Access time on a page read hit
is 2.4 ms. It uses copy back rather than write through. It appears that there is
only one data path in the storage controller (to which the cache is connected);
thus one I/0 operation at most can be transferring data at a time.

There appear to be three problems with the 3880 model 11: First, our earlier
results suggest that paging data sets have low locality and, therefore, that the hit
ratio will be low. It may be possible, however, to reorganize the paging data sets
in such a way that they can be cached effectively. Second, the existence of only
one data path suggests that there may be path contention; the suggested restric-
tion to only two disks implies that IBM is aware of the problem. Finally, there
seem to be few if any advantages to caching pages in the same type of MOS
RAM storage as main memory; the cost is just as high and the performance
worse. The introduction of the IBM 308x architecture with MVS/XA and 31-bit
addressing suggests that the one advantage of the 3880/11, a mechanism for
using more than 16 or 32 Mbytes of RAM memory, has disappeared. No perform-
ance results on the 3880/11 have been published yet, but for the reasons noted,
significant system performance improvements are unlikely.

The IBM 3880 model 13 storage controller [53, 54, 19, 57], uses a cache design
different from the model 11 and is explicitly designed for nonpaging 1/0. It can
have either 4 or 8 Mbytes and can attach to two storage directors. It supports
only IBM 3380 disks. The I/O transfer rate is 3 Mbytes/s. Use of the cache
requires no changes in either the operating system or the user program. Individual
devices attached to the controller can be locked out of use of the cache. It is
possible to lock certain data sets into the cache; prefetching and purge behind
are implemented for sequential data sets. Tracks are loaded from the point of
reference forward; the preceding portion of the track is not fetched. Write through
is used with write update, but not write allocate; write hits write first to the
cache, and then subsequently to the disk. Read hit access time is an average of
3.5 ms. Read hit ratios (based on sample IBM benchmarks) are claimed to range
from 50 to 85 percent at 4 Mbytes, and 65 to 90 percent at 8 Mbytes. Other
benchmark data, from [57], show read hit ratios from 3 installations of 92, 88,
and 84 percent.

It also appears that only one data path to/from the 3880/13 cache can be active
at any one time. This fact, plus the use of write through and the fact that I/0
overhead has not been cut, suggests that only small performance improvements
are possible with the current 3880 designs. This impression is reinforced by the
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analysis presented in [11]. Actual performance figures, from [57], show decreases
in average TSO response time of 12, 25, and 13 percent for three sites; batch
throughput changes were —3, + 4, and + 6 percent.

7.3 Other Disk Cache Systems

Some time ago, Memorex [61] designed and built a disk cache (the model 3770)
into one of their storage controllers. It contained 1-18 Mbytes of storage which
buffered recently used tracks using LRU replacement. The 3770 was never
commercially successful, owing, among other reasons, to the fact that since the
cache had only one data path, with no fetch bypass (a miss caused a load, followed
by a read from the cache). Performance improvements, if any, were minor.

Storage Technology offers a disk cache system, the 8890 Intelligent Disk
Controller, or Sybercache [18, 76, 33]. It consists of from 1.5 to 12 Mbytes of
RAM storage associated with two storage directors, (More recently, the cache
size has been expanded to 18 Mbytes [31].) A “typical” configuration would be 6
Mbytes of storage and 16 spindles. The design uses write through, with write
purge, and full track blocks. Some actual performance figures are presented in
[33], where data from two sites are given. Read hit ratios were 76 and 84 percent
with 6-Mbyte caches, and write hit ratios were 22 and 77 percent, respectively.
For site A, the cache was varied in size, over consecutive 24-hour periods, and
read and write hit ratios were, respectively, (.74, .24), (.74, .22), (.76, .22), and
(.78, .24) at 1.5, 3.0, 6.0 and 12.0 Mbytes. The paging volume was found to have
a low hit ratio.

Amperif manufactures a disk cache that can be used on Sperry Univac
computers. Significant performance improvements [15] are reported from its use.
Sperry Univac also manufacturers its own disk cache system [75]. Amperif also
has a model of its cache [14] that is specifically designed to run with the Airline
Control Program on IBM computers.

Computer Automation [38] makes a disk cache to run with its SyFA line of
minicomputers. It uses from 0.5 to 2 Mbytes of RAM, achieves an average access
time for a hit of 4 ms, and a hit ratio average of 85 percent is claimed. Replacement
is by a complex algorithm reflecting both the amount of reference and time since
last reference. Write through is used.

Hewlett Packard [29] provides disk caching in versions of its MPE operating
system for its series 3000 computers. The Masscomp workstation [34] incorpo-
rates disk caching in its main memory.

Other disk caches are announced and/or manufactured by Minicomputer
Technology [27] for Digital Equipment Corporation’s PDP-11 and VAX, by
Point4 Data [12] for its Mark 5 or Mark 8 minicomputers, by Qualex Technology
[13] for the HP 3000 computers, by Integrated Business Computers [43], by IBM
for the Series I [28], and by Amdahl [16] in its 6880 control unit. One vendor
has a software package that simulates a disk cache in main memory. [41]

8. SUMMARY AND CONCLUSIONS

As explained at the beginning of this paper, the rapid increase in CPU perform-
ance without a corresponding improvement in the performance of mechanical
1/0 devices is leading to an I/O bottleneck. The addition of a disk cache to a
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large computer system, either in main memory or as a separate device, can result
in significant performance improvements and elimination of the projected 1/0
bottleneck. Our trace-driven experiments and the commercial benchmarks re-
ported all show that a disk cache (in a large IBM-type system) of less than 8
Mbytes can capture 60-95 percent of I/Os, with access times for read operations
of 2 to 4 ms for an outboard cache, and with shorter access times for a cache in
main memory.

Reflecting the clear desirability of disk cache, a number of commercial in-
stances of this product have been produced in the last few years. Performance
figures, where reported, confirm the utility of disk cache. In some cases, however,
the designs are suspect, because of the lack of multiple data paths to/through
the cache; those products may not be very useful.

The experiments reported in this paper are only a fraction of the range of data
we have gathered. Nevertheless, there are a numiber of aspects of disk cache
design that have not yet been investigated and need to be explored. Migration
algorithms need to be studied further, and the effectiveness of more sophisticated
prefetch algorithms must be tested. Algorithms for managing a dynamic on/off
cache must be developed. The overall system performance impact needs to be
quantified.

There is the need to study information gathered from non-IBM systems, to
look at the frequency of writes and compare write through with copy back, and
to further refine the measurements with regard to user and file type. Our data
are not sufficient to study these questions, and more complete data are needed.

ACKNOWLEDGMENTS

The research reported in this paper consists of some of the author’s portion of a
larger study conducted in collaboration with George Rossman, David Rosetti,
and James Richardson. The work by Rosetti and Richardson in collecting and
reducing the data to analyzable form was particularly heroic, and this research
would not have been possible without their help. The cooperation of the computer
center staffs at Crocker Bank, Hughes Aircraft, and SLAC is also appreciated.
The computer time for the data reduction and data analysis was provided mainly
by Amdahl Corporation, without which much of this research would not have

been possible.

REFERENCES

1. AMDAHL, G. M. Storage and IO parameters and systems potential. In Proceedings of the IEEE
Computer Group Conference (Washington, D.C., June 16-18). IEEE. New York, 1970, pp. 371-
3172.

2. ARTiS, H. P. Calculating head of string utilization in a shared DASD environment. In Proceed-
ings of the CMG International Conference (Dec. 6-8, Washington, D.C.). Computer Measurement
Group, 1983, pp. 62-65.

3. BASTIAN, A. L., HYDE, J. S., AND LANGSTROTH, W. E. Characteristics of DASD use. In
Proceedings of the CMG 12th International Conference (Dec. 1-4, New Orleans, Dec.). Computer
Measurement Group, 1981, pp. 107-109.

4. BASTIAN, A. L. Cached DASD performance prediction and validation. In Proceedings of the
CMG 13th International Conference (Dec. San Diego, Calif.). 1982, pp. 174-177.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.




;, can result
ojected I/0
hmarks re-
less than 8
operations
- a cache in

mercial in-
arformance
s, however,
to/through

nge of data
disk cache
Migration
chisticated
mic on/off
eeds to be

ystems, to
back, and
. Our data
e needed.

ortion of a
d Rosetti,
acting and
s research
computer
preciated.
.ed mainly
not have

of the IEEE
70, pp. 371-

In Proceed-
[easurement

.SD use. In
). Computer

dings of the

11
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.
24.
25.
26.

27.
 ELecTRONIC NEws. IBM expands CPU for system 38; adds series 1 processor, disk drive.

29.
30.
31
32.

33.

Disk Cache . 201

. BATALDEN, G. D., CRABTREE, M. R. AND GOURNEAU D. A. DASD cache for file subsystem.

IBM Tech. Disc. Bull. 27, 6 (Nov. 1984), 3433-3435.

. BELADY, L. A. A study of replacement algorithms for a virtual storage computer. IBM Sys. J.

5, 2 (1966), 78-101.

. BENNETT, B. T. AND May, C. Improving performance of buffered DASD to which some

references are sequential. IBM Tech. Disc. Bull. 24, 3 (Aug. 1981), 1559-1562.

. BERBECK, S., SHIBAMIYA A., "TOGASAKI, S., AND YosHIDA, H. Use of direct access storage

devices by MVS customers—Guide survey results. In Proceedings of the Guide 47 Conference
(Chicago, Nov. 10). 1978, pp. 1121-1138.

. BERETVAS, T. Performance tuning in 0S/VS2 MVS. IBM Sys. J. 17, 3 (1978), 290-313.
 BRANDWAJN, A. Models of DASD subsystems: Basic model of reconnection. Perform. Eval. 1

(1981), 263-281.

Buzen J. P. BEST/1 analysis of the IBM 3880-13 cached storage controller. In Proceedings of
the CMG 13th International Conference (Dec. San Diego, Calif.). 1982, pp. 156-172.
COMPUTERWORLD. Cache memory reduces data transfer time. Computer (Feb., 1982), 103
CoMPUTERWORLD. HP 3000 access time slashed 400%. Computerworld (Feb. 8, 1982), 109.
COMPUTERWORLD. Cache disk system out for IBM ACP. Coriputerworld (June 7, 1982), 101.
CoMPUTERWORLD. Cache disk system speeds access for power firm. Computerworld (Dec. 6,
1982), 34.

COMPUTERWORLD. Amdahl offers cache for new, older, drives. Computerworld (Mar. 12, 1984),
4.

COMPUTERWORLD. Storage Technology Corp., Sybercache statistical product. Computerworld
(July 9, 1984), 80.

CoTE, H. J. AND DUHL, B. New horizons for cached disk and buffered tape. In Proceedings of
the CMG 13th International Conference (Dec. San Diego, Calif.). 1982, pp. 333-337.

DaHMAN, K. AND GROSSMAN, G.  Effective use of cached DASD in a data base/data communi-
cations environment. In Proceedings of the 1983 CMG International Conference (Washington,
D.C., Dec.). 1983, pp. 425-431.

DATE, C. J. An Introduction to Database Systems. 2nd ed., Addison-Wesley, Reading, Mass.,
1977.

DENNING, P. J.  On modelling program behavior. In Proceedings of the Spring Joint Computer
Conference, vol. AFIPS Press, Reston, Va., 1972, pp. 937-944.

DixoN, J. D., MARAZAS G. A., AND McNEILL, A. B. Mini-ops—A microcoded data transfer
scheduling and execution systems for the optimized control of an I/O controller cache memory.
IBM Tech. Disc. Bull. 27, 2 (July, 1984), 1226-1227.

DopsoN, G. W. Cached DASD evaluations for paging and non-paging data. In Proceedings of
the CMG 13th International Conference (Dec. San Diego, Calif.). 1982, p. 338.

DUKE, A. H., HARTUNG, M. H., HUNTLEY, J. D., AND MARSCHNER, F. J. Buffered writing in a
peripheral storage hierarchy. IBM Tech. Disc. Bull. 25, 4 (Sept. 1982), 2075-2076.

DUKE, A. H. AND HARTUNG, M. H. Controlling multitrack references in & cached storage
system. IBM Tech. Disc. Bull. 25, 7B (Dec. 1982), 3756-3757.

DUKE, A. H., HARTUNG, M. H., HUNTLEY, J. D., AND NoraN K. P. Inhibiting cache loading.
IBM Tech. Disc. Bull. 25, 12 (May 1983), 6351-6353.

ELECTRONICS 1. Cache memories catch on for disks. Electronics (Apr. 21, 1981), 62-63.

Electron. News (Apr. 11, 1983).
ELECTRONIC NEws. New HP 16-bit CPUs Based on OS Upgrades. Electron. News (May 30,

1983), 18.

ELECTRONIC NEws. IBM Increases Memory, Cuts Tag on 3880 Controller. Electron. News
(Sept. 24, 1984), 27, 39.

ELECTRONIC NEws. Storage Tek Offers Controller Upgrade. Electron. News (Aug. 13, 1984),
33.

FAIMAN, R. AND BORGELT, J. Wylbur: An interactive text editing and remote job entry system.
Commun. ACM 16, 5 (May, 1973), 314-322.

FRIEDMAN, M. “DASD access patterns” In Proceedings of the 1983 CMG International Confer-
ence, (Dec. 1-4 Washington, D. C.). 1983, pp. 51-61.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.




202 - Alan Jay Smith

34.
35.
36.
37.
38.
39.

40.
41.

42,
43.

44.

46.
47.
48.
49.
50.
51.
52.
53.
54.

55.
56.

57.
58.
59.
60.
61.

62.

GALE, L. Work station performs at the superminicomputer level. Electronics (Sept. 8, 1983),
119-123.

HARKER, J. M., BREDE, D. W., PaTTisoN, R. E,, SANTANA, G. R, AND TAFT, L. G. A quarter
century of disk file innovation. IBM J. Res. Devel. 25, 5 (Sept. 1981), 677-689.

HoAGLAND, A. S.  Storage technology: Capabilities and limitations. Computer 12, 5 (May 1979)
12-18.

HoDGES, D. A. A review and projection of semiconductor components for digital storage. Proc.
IEEE 63, 8 (Aug. 1975), 1136-1147.

HUGELSHOFER W. AND SHULTZ, B. Cache buffer for disk accelerates minicomputer perform-
ance. Electronics (Feb. 10, 1982), 155-159.

HUNTER, D. Modeling real DASD configurations. IBM Res. Rep. RC 8606, IBM Thomas J.
Watson Research Center, Yorktown Heights, N.Y., 1980.

HUNTER, D. W. DASD arm buffers. IBM Tech. Disc. Bull. 24, 4 (Sept. 1981), p. 2035,
INFOWORLD. Cache/Q Disk buffering enhancement for CP/M. Infoworld 5, 7 (Jan. 14, 1983),
50-54.

INTEL. FAST-3805 Functional Description. PN 19-1619-006 (Aug. 1979), Intel Commercial
Systems Division, Phoenix, Ariz. i

IBC/INTEGRATED BUSINESS COMPUTERS. CADET/10 cacbe disk memory reference manual.
Integrated Business Computers, Chatsworth, Calif., 1982.

IBM. Reference manual for the IBM 2835 storage control and the IBM 2305 fixed head storage
module. GA26-1589, IBM Corporation, 1972, San Jose, Calif.

. IBM. Reference manual for IBM 3830 storage control and IBM 3330 disk storage. GA26-1592,

IBM Corporation, Armonk, N.Y.

IBM. 0S/VS2 system programming library: Service aids. GC28-0674-1, IBM Corporation,
Gaithersburg, Md., 1976.

IBM. Reference manual for IBM 3350 direct access storage. GA26-1638-2, IBM Corporation,
San Jose, Calif., 1977.

IBM. 0OS/VS MVS systems programming library: System management facilities (SMF). GC28-
0706-1, IBM Corporation, Poughkeepsie, N. Y., 1977.

IBM. IBM 3310 direct access storage reference manual. GA26-1660, IBM Corporation, San
Jose, Calif., 1979.

IBM. IBM 3370 direct access storage description. Pub GAZ6-1657-2 IBM Corporation, General
Products Division, San Jose, Calif., 1979.

IBM. Introduction to IBM 3880 storage control, model 11. GA32-0060, IBM Corporation.
Tucson, Ariz., 1981.

IBM. IBM 3880 storage control model 11 description. GA32-0061, IBM Corporation, Tucson,
Ariz., 1982.

IBM. Introduction to IBM 3880 storage control model 13. GA32-0062, IBM Corporation,
Tucson, Ariz., 1983.

IBM. IBM 3880 storage control model 13 description. GA32-0067, IBM Corporation, Tucson,
Ariz., 1983.

IBM. Cache RMF reporter. G320-0362, IBM Corporation, Irving, Tex., 1984.

KNUTH, D. E. The Art of Computer Programming. Vol. 3, Sorting and Searching Addison-
Welsey, Reading, Mass., 1973,

Lowwman, R. IBM 3880 model 13 storage subsystem. Rep., IBM Corporation, General Products
Division, Tucson, Ariz., 1983.

LYNCH, W. C. Do disk arms move? Perform. Eval. Rev. 1 (Dec. 1972), 3-16.

MANKEKAR, P. S. AND MILLIGAN, C. A. Performance prediction and validation of interacting
multiple subsystems in skew-loaded cached DASD Proceedings 1983 CMG Internationa! Con-
ference (Washington, D. C., Dec.). 1983, pp. 383-387.

Martson, R. L., GEcsEl, J., SLutz D. R., AND TRAIGER, 1. L. Evaluation techniques for
storage hierarchies. IBM Syst. J. 9, 2 (1970), 78-117.

MEMOREX. 3770 Disc cache product description manual. Memorex Corporation, Santa Clara,
Calif., 1978.

ORGANICK, E. The Multics System: An Examination of its Structure, MIT Press, Cambridge,
Mass., 1972.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.




2pt. 8, 1983),
A quarter

» (May 1979)
torage. Proc.
ter perform-
Thomas J.

35.
1. 14, 1983),

Commercial
.ce manual.
ead storage
3A26-1592,
Jrporation,
>rporation,
F). GC28-
ition, San
1, General
rporation.
, Tucson,
“poration,

, Tucson,

Addison-
Products
teracting
nal Con-
ques for
a Clara,
nbridge,

63.

64.

65.

66.

67.

68.

69.

74.
75.

76.

77.

78.

79.

Disk Cache . 203

RITcHIE D. AND THOMPSON, K. The UNIX time sharing system. Commun. CACM 17, 7 (July
1974), 365-375. :

SHERMAN, S., BASKETT F. AND BROWNE, J. C. Trace driven modeling and analysis of CPU
scheduling in a multiprogramming system. Commun. CACM 15,12 (Dec. 1972), 1063-1069.
SMITH A. J. A locality model for disk reference patterns. In Proceedings of the IEEE Computer
Society Conference (Feb., San Francisco, Calif.) 1975 IEEE, New York, pp. 109-112.

SMITH, A. J. Analysis of a locality model for disk reference patterns. In Proceedings of the 2nd
Conference on Information Sgiences and Systems (Baltimore, MD., Apr.). 1976, pp. 593-601.
SmiTH, A. J. Bibliography on paging and related topics. Oper. Syst. Rev. 12, 4 (Oct. 1978), 39-
56.

SMITH, A. J. On the effectiveness of buffered and multiple arm disks. In Proceedings of the 5th
Computer Architecture Symposium (Palo Alto, Calif., Apr.) 242-248.

SMITH, A. J. Sequentiality and prefetching in data base systems. ACM Trans. Database Syst. 3,
3 (Sept. 1978), 223-247.

. SMITH, A. J. Sequential program prefetching in memory hierarchies. JEEE Computer 11, 12

{Dec. 1978), 7-21.

. Smith, A. J. Input/Output optimization and disk architecture: A survey. Perform. Eval. 1, 2

(1981) 104-117. 2

. SMITH, A. J. Bibliography on file system and Input/Output optimization and related topics.

Oper. Syst. Rev. 15, 4 (Oct 1981) 39-54. N

. SMITH, A. J. Optimization of I/O systems by cache disk and file migration, A summary.

Perform. Eval. 1, 3 (1981), 249-262.

SMITH, A. J. Cache Memories. ACM Comput. Surv. 14, 3 (Sept., 1982), 473-530.

Cache disk system. Sperry Univac Product Announcement, for 5057 Cache Disk Processor and
7053 Storage Unit, Sperry Univac, 1981.

Storage Technology Corporation. Sybercache 8890 intelligent disk controller. Storage Technol-
ogy Corporation, Louisville, Colo. 1982.

TOKUNAGA, T., HiRAL Y., AND YAMAMOTO S. Integrated disk cache system with file adaptive
control., In Proceedings of the IEEE Computer Society Conference, (Washington, D. C., Sept.)
IEEE, New York, 1980, pp. 412-416.

WELCH, T. Effects of sequential data access on memory hierarchy design. In Proceedings of the
IEEE Computer Society Conference, (San Francisco, February). IEEE, New York, 1979 pp. 65-
68.

WELCH, T. A.  Analysis of memory hierarchies for sequential data access. Computer 12, 5 (May
1979), 19-26.

Received May 1983; revised August 1984; accepted December 1984.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.




REMARK ON “DISK CACHE—MISS RATIO ANALYSIS
AND DESIGN CONSIDERATIONS”

Disk Cache—Miss Ratio Analysis and Design Considerations [Alan Jay Smith,
ACM Trans. Comput. Syst. 3, 3 (Aug. 1985), 161-203]

My paper, “Disk Cache—Miss Ratio Analysis and Design Considerations,” which
appeared in the August 1985 issue of TOCS, provoked some discussion of early
disk cache development. Two early papers not cited in my paper are particularly
noteworthy.

The first report of a disk cache appeared in [2]. This paper explains the concept
of a disk cache and evaluates its utility using both modeling and trace-driven
simulation from an IBM 0S/360 system with IBM 2311 disks. Cache effectiveness
was further demonstrated with an experimental implementation on a 360/50 and
a 360/65 using Large Core Storage (LCS).

Another early disk cache implementation is reported in [1]. In that system the
Triangle University’s Computation Center used bCS for several functions, in
particular an automatically managed disk-cache to which substantial performance
improvement was attributed.

ALAN JAY SMITH
University of California
Berkeley, CA 94720
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