bv Jack Worlton

A ‘ot of attention has recently been focused
on some preliminary benchmark data from
Japanese supercomputers. Some observers,
failing to understand the limitations of
these data, have based unwarranted inter-
pretations on them. The press has run
headlines like “Japanese Firms Build Two
Fastest Computers” and “Defense Official
Asserts Japan Has Two-Year Computer
Lead.” 1 hope this article will clarify the
issues raised by these data. Specifically, it
will provide background information on

the nature of benchmarking, especially

“senchmarking in a scientific computing en-
vironment. It will present: the benchmark
data currently available, and will provide
some analyses and conclusions from these
data. :

The reader should first be aware of
the limitations of the benchmark data. No
statistically valid study of the performance
of these computers has yet been completed.
Only anecdotal evidence is available at this
time. Preliminary benchmark data are
time-dependent, i.e., these results are
quickly superseded by new results. Small
changes in the compiler and the program
optimization level often lead to significant
changes in measured performance of vector
processors like those being compared here.

It should also be noted that there is
.. a fundamental difference in design between
the Japanese machines and the Cray X-MP,
to which they are being compared. The
Japanese computers are single-processor
designs, while the Cray X-MP is a dual-pro-
cessor design. But so far, all of the bench-
mark data for the X-MP are for a machine
with just one processor, and it has been
necessary to extrapolate these data in order
to estimate the performance of the full X-
MP.

In scientific computation, real-
world problems are described in terms of
the laws of physics. In turn, these laws are
expressed by mathematical models. The
models are implemented in algorithms
adapted to the architecture of the computer

Recent tests of supercomputers may have delivered a
bum rap to American machines. Here’s how to read
the numbers to get the answers.

UNDERSTANDING
SUPERCOMPUTER
'BENCHMARKS

to be used, and the algorithms are imple-
mented in an application program, as illus-
trated in Fig. 1. (The solid lines in the
figure represent the normal processes of
scientific computation; the dashed lines
represent the additional activities pertinent
to benchmarking.) A program developed
for a supercomputer is often adapted to
that specific computer’s architecture in or-
der to achieve very high performance.
‘When a new computer is considered for use
in this environment, it must be tested
(benchmarked) to determine how it would
perform. The type of testing depends on
how the site plans to make use of the new

" computer..

There are three generic approaches
to transporting programs to a new comput-
er system. They should determine how a
computer is benchmarked.

o Type A: The dusty deck approach makes

- no changes to the source code but relies

solely on what the compiler and other sys-

" tem software can do to optimize the source
" code for the new computer. This minimizes

conversion costs but penalizes the perfor-
mance obtained. .
*Type B: The reprogramming approach
modifies the application program to assist
the system software in the conversion pro-
cess. This increases conversion costs but
produces higher performance.
» Type C: The rethinking approach modi-
fies not only the application programs but
also the algorithms and the mathematical
models on which the application programs
are based. This is the most demanding ap-
proach and yields the highest performance.

Thus, how a site intends to use a
new system should decide how the bench-
marking is done. The Type A site should
make no changes to source codes; the Type
B site should make only application-
program changes; and the Type C site
should do radical restructuring of the
mathematical models, algorithms, applica-
tion programs, and system libraries.

All benchmarking efforts are con-
strained by practicality, of course. It may
take as many as 10 person-years of effort to

. compare

fully convert a large application program
(perhaps 100,000 lines of source code) to 2
new computer architecture through re-
thinking the methods from scratch. There-
fore, practical benchmarking is done by
creating a subset of the work load that re-
tains the essential characteristics of the set
of working programs.

WORKLOAD Through workload char-
BROKEN acterization the key pro-
DOWN grams that characterize
the work load are select-

ed, and the fraction of the workload each
represents is determined. Because the pro-
grams themselves are too large to use, sub-
sets of these programs, called kernels, are
then extracted from the full programs.
These are then converted to run on the tar-
get machines. Then, using the workload
fractions as weights, subsequent runs are
timed and compared. v

By definition, then, a computer
benchmark is a program or a section of a
program that is executed for timing pur-
poses. This method of testing computer
performance has several advantages.
o The kernels are tractable. Being relatively
short programs, kernels are easy to use and
understand.
e The kernels are real. Actual program se-
quences are used rather than instruction
counts or hypothetical instruction
sequences. :
e Kemnels can be used as standard tests.
Certain sets of kernels have become widely
available, and they therefore can be used to
the performance of many
computers.

Nevertheless, the benchmark meth-
od also has its disadvantages.
 Kernels may be too “easy” in that they
may miss important limitations (bottle-
necks) of the target machine—limitations
that the full program would expose. Memo-
ry and input-output bottlenecks are obvi-
ous examples. Benchmarks may be so small
that they easily fit into main memory with-
out calling on, say, disks or other levels in
the storage hierarchy.

SEPTEMBER 1, 1984 121




How a site intends to use a new system Should decide

how the benchmarking is done.

|

- A MODEL OF SCIENTIFIC COMPUTATION

* The sets of kernels are rarely statistically
weighted representations of the workloads
of interest. For example, the 14 Livermore
kernels used in some of the benchmarks re-
ported below do not each represent exactly
1/14th of the Livermore workload.

* Kernels are often obsolete. Most kernels
are based on the physics, mathematical
models, algorithms, and application pro-
grams developed for computers of genera-
tion N; those that will be used for
generation N+-1 are of greater interest. A
scalar benchmark run on a vector proces-
sor may not demonstrate adequately the
performance of the vector processor; a vec-
tor benchmark developed for a vector pro-
cessor of generation N may not
demonstrate adequately the performance of
a vector processor of generation N+ 1; and
a uniprocessor benchmark may not demon-
strate adequately the performance of a par-

122 DATAMATION

allel processor. -~ - - , s

The kernels used in the benchmarks
have many of these advantages and disad-
vantages, so it is important to be wary of
apparently simple interpretations of these,
or indeed any, benchmark data. Bench-
marks provide a useful first step in estimat-
ing performance and guiding further
studies. But as procurement interests deep-
en, benchmarking must be followed up
with increasingly detailed workload char-
acterization and execution of full programs
on the target machines.

The key problem in the use of
benchmarks is assuring comparability. The
criteria for comparability are site specific
and depend on whether the site plans to use
the dusty deck, reprogramming, or rethink-
ing approach to program conversion. If a
given benchmark is executed on two ma-
chines, and that is all that is known, what

can be said about the relative performance
of the two machines? Not much.

SOME If we are to obtain com-
IMPORTANT  Parisons that are valid in
QUESTIONS  cVen the most elementary

sense, we have to ask sev-
eral questions: Were any changes made to
the mathematical models or algorithms for
any of the machines being compared? If so,
were the changes equivalent across all the
machines tested? Were any of the kernels
optimized on any of the machines by modi-
fying the source or object code? Were the
optimization levels comparable? Were the
configurations comparable? Also impor-
tant, are the memory capacities of the test
environment the same, and will these be the
same in a production environment? Were
the peripherals comparable? Were the com-
pilers comparable? Were compiler direc-




The key problem in the use of benchmarks is assuring comparability.

tives inserted in some programs to aid the
compiler vectorization but not in other
" programs?

We can summarize the minimal
steps that shouild be taken in benchmarking
when kernels are to be used.

s Step 1: Conduct 2 workload characterlza-
tion study. The output of this study should
be the rates, R;, that aré characteristic of
the programs in the workload, together
with their workload fractions, f;, where the
sum of the fractions equals 1. '

o Step 2: Select a subset of the programs to
represent the whole workload; these should
include the programs having relatively
large fi; renormalize the fractions to repre-
sent the whole workload.

 Step 3: Select portions (kernels) of these

programs to represent the whole programs.

This is the crucial step in successful
benchmarking.

* Step 4: Time the kernels to obtam the ker-
nel execution rates.

* Step 5: Compute the wexghted harmomc -

. mean.
. Researchers  conducting  actual
benchmarking studies often fail to conduct
a workload characterization study, depend-
ing instead on intuitive ideas of the pro-
grams that are most important and of what
their weights should be. They can also se-
lect kernels that are too easy and herice do
not adequately represent the complete pro-
grams. And they use the arithmetic mean
rather than the harmonic mean as a work-
load measure. .~

As a concrete example of the diffi-

“culty of comparing benchmarks, consider
the actual benchmarks in Fig. 2. What can
we - conclude from - this comparison of
benchmarks? It would appear that System

A is some 24% faster than System B, right? -

Dead wrong. These benchmarks were exe-
cuted on the same computer, the Hitachi
S810-20. System A data were generated at
the University of Tokyo (see Fig. 5) and
System B data were obtained by personnel
from the Magnetic Fusion Energy Com-
puter Center (see Fig. 3). Clearly, the
benchmarks were run under different con-
ditions, so the results cannot be compared
without an understanding of these condi-
tions. In this example, the conditions
caused the performance ratios to vary by a
factor of more than 2.5.

A further point about Fig. 2 con-
cerns the average of these results. The aver-
age was computed using an unweighted
arithmetic mean, and the arithmetic mean
often gives distorted perspectives of aver-
age rates.

Consider the following example.
Suppose I want to travel 100 miles, and
part of the journey I travel at 5 mph and

124 DATAMATION

part at 55 mph. What is my average rate?
The average of these two rates appears to
be (5 + 55)/2 = 30 mph, but in fact we
can’t even answer the question without fur-
ther information: how much distance was
covered at each of these rates? If I travel 45
miles at 5 mph and 55 miles at 55 mph,
then my average rate would be just 10 mph

(= 100/(45/5 + 55/55)), not 30 mph. Just
so with averaging computer execution
rates: we must use the harmonic mean or
run the danger of bemg wrong by hundreds
of percentage points in estimating comput-
er performance.
The weighted harmonic mean, Hp,

is computed as follows:




The arithmetic mean often gives distorted
perspectives of average rates.

where the f; are the fractions of the work-
load corresponding to the execution rates,
R;. If the fractions, f;, are unknown, the un-
weighted harmonic mean can be computed
using the assumption that all the weights
are equal to 1/1, where I = the number of
programs we are using:

1

H, = . ,
am Y Ry
- ; i

in con{rast, the unweighted arith-
metic mean is computed as:

- wn 2 R,

MEANS CAN The arithmetic mean and
the harmonic mean can
alll;FEELRY often differ by large fac-

tors. For example, the
arithmetic mean of the rates for System A
in Fig. 2 for the $810-20 is 124.4 MFLOPS,
but the harmonic mean is only 19.4
MFLOPS—the two means differ by a factor

of 6.4. The harmonic and arithmetic means -
are equal only when (a) the rates are all

equal, or (b) the time spent executmg at
each rate is equal. ’

With these factors in mmd Iook at
some benchmark data for some recently an-
nounced supercomputers.

Personnel from the Department of
Energy’s Magnetic Fusion Energy (MFE)
Computer Center at Lawrence Livermore
National Laboratory, Livermore, Calif,,
visited Japan and obtained data for the Liv-
ermore kernels on the Fujitsu vP-100 as
well as the Hitachi S810-20. (The Liver-
more kernels are short FORTRAN kernels, a
few lines each, that have been abstracted
from actual programs used at the Lawrence
Livermore National Laboratory. No statis-
tical weighting of these kernels exists as a
workload characterization, and no claim is
made that they represent the current Liver-
more workload.) Data for the vP-200 have
since been released by Amdahl Corpora-
tion. These results were compared to earli-
er benchmarks on other computers,
generating the data in Fig. 3. The study by
MFE was carefully controlled: no changes in
source code or insertion of compxler direc-
tives were allowed.

Based on these data, the workload

128 DATAMATION

represented by these kernels would run
1.68 times as fast on the vp-100, and 1.78
times as fast on the vP-200, as on the Cray-
1S. For the Cray X-MP-1* these ratios
would be 1.36 and 1.45, respectively; no
data are available for the x-mp-2.

Cray Research has recently run
these same Livermore kernels on a Cray X-
MP-1 using the newest version of their com-
piler, X.14. This is not yet a production
compiler, and the reason for including data
describing its performance is to illustrate
the large variance in benchmark data. The

*Cray X-MP-1 and Cray X-MP-2 refer to the Cray X-MP with one
and two processing elements, respectively.

results are given in Fig. 4 for this machine
and several others, including some earlier
data for the Cray-1 and the X-Mp-1 for ref-
erence. Here we project the performance of
the Cray X-MP-2 as S2 = 1.8. Readers,
however, can adjust this column depending
on their preferred value of S2, the speedup
that full two-processor operation will pro-
duce. Because this compiler is not yet a re-
leased product, the details of the kernel
results are still proprietary and only a sum-
mary is available for publication.

It appears from these data that the
Cray X-MP-1 will run about 1.78 times as
fast as a Cray-1S when both use the X.14
compiler. How much faster the X-Mp-2 will

JRI SN




the speedup achieved with two processors,
and this is application dependent. The har-
monic mean for the X-MP-1 using the X.14
compiler in Fig. 4 is about the same as for
the vp-200 in Fig. 3, indicating that these
computer/compiler systems would give
about the same performance on this work

load, assuming equal weights for the ker--
_ nels. The workload fractions corresponding

to each kernel would be needed to make a
more precise comparison, however.
The University of Tokyo Newsletter

- for October 1983 published benchmark re-

sults from runs of the Livermore kernels
made on the Hitachi S810-20, as shown in
Fig. 5, along with some data for the Hitachi
M-280H with an integrated array processor

.. (1aP). Notice that the data in Fig. § are

higher than the comparable data for the
Hitachi S810-20 in Fig. 3, even though the

same kernels and computer were used. Ac-'
cording to the newsletter, the loops are the -

original kernels except for the correction
on the clock overhead and accuracy.

In a production environment, pro-
grams are usually optimized by identifying
and correcting those sections with low per-
formance. To simulate that environment
from these preliminary data, the best we
can do is to compare (and it is a highly un-
certain comparison) the best benchmark

data for each computer. This is done in Fig. .

6. The figures for the Fujitsu vP-100 and
vP-200 come from Fig. 3; the figures for the
Hitachi S810-20 from Fig. §; and the fig-
ures for the Cray-1S, Cray X-MP-1 and X-
Mmp-2 from Fig. 4.

FIVE Professor Raul Mendez

BENCHMARK of the Naval. Post-Gradu-
TESTS RUN ate School in Monterey,

Calif., visited Japan in
late 1983 and ran benchmarks on the vp-
200. These tests included five benchmarks
run in both scalar and vector mode. Com-
piler directives were inserted into two of
the Fujitsu programs (SHEAR3 and
2DMHD). These directives essentially
caused vectorization of some loops that
would otherwise not have been vectorized,
but the quantitative effects of this action
are uncertain. The benchmarks were subse-
quently run by Professor Mendez on the
Cray X-MP and the results were published
in the SIAM News in January and March.
Subsequently, Cray Research assisted Pro-
fessor Mendez with the vector versions (but
not the scalar versions) of these bench-
marks, and those data, which update the
earlier publication, are included in Fig. 7.
Fujitsu published a paper at the 1983 1FIP
Congress describing its work on vectorizing
techniques. The advantages for the vp-200

130 DATAMATION

run compared to the Cray-1S depends on

“The best we can conclude is that the VP-200 and the
X-MP-1 would run with roughly the same execution rate.

compiler in these and other data are proba-
bly due in part to the vectorization method-

ology described by Fujitsu in its IFIP paper,
and in part to the hardware features includ-
ed in the Fujitsu vpP-200 that permit ease of
vectorization.

The automatic vectorization tech-
niques used by Fujitsu are based in part on
work done in the United States by Profes-
sor David Kuck and his associates at the
University of Illinois. The special hardware
features include a constant stride in vector
addressing and vector indexing operations
like gather-scatter and compress-expand.
The Cray-1 design includes a constant

-stride and the cDC Cyber 205 includes vec-

tor indexing operations, but neither Ameri-
can design offers both features. Professor

Mendez’s results are shown in Fig. 7. Note

that these data are times, not MFLOPS.
Some of these results indicate an ad-
vantage to the Cray X-MP-1 and some indi-
cate an advantage to the vP-200. Because so
little is known about the optimization of
these programs for these computers, the
best we can conclude is that the vpr-200 and
the x-MP-1 would run with roughly the

same execution rate. Any advantage of one
over the other would be due to the applica-
tion used in the test. .

Based on the data available now,
one can make the following tentative
conclusions: :
¢ Optimized programs for the Cray X-MP-1,
the Fujitsu vp-200, and the Hitachi S810-
20 should achieve roughly comparable per-
formance in general purpose computing
environments.
¢ The relative performance of the Cray X-
MP-2 will be higher by the speedup
achieved with its two processors.

*The vectorization methods used in the
Japanese compilers appear to be better than
the methods used in the production ver-
sions of American compilers. This is due in
part to the software vectorization methods
used and in part to the data-handling fea-
tures of the hardware.

*Only site-dependent benchmarking can
determine which of these computers will
perform better for a given workload. ®

Jack Worlton is a iaboratory fellow at Los
Alamos National Laboratory.

S

b A DR TNl b




