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HOW TO CONSTRUCT PSEUDORANDOM PERMUTATIONS
FROM PSEUDORANDOM FUNCTIONS*

MICHAEL LUBYt AND CHARLES RACKOFF$

Abstract. We show how to efficiently construct a pseudorandom invertible permutation generator from
a pseudorandom function generator. Goldreich, Goldwasser and Micali ["How to construct random func-
tions," Proc. 25th Annual Symposium on Foundations of Computer Science, October 24-26, 1984.] introduce
the notion of a pseudorandom function generator and show how to efficiently construct a pseudorandom
function generator from a pseudorandom bit generator. We use some of the ideas behind the design of the
Data Encryption Standard for our construction. A practical implication ofour result is that any pseudorandom
bit generator can be used to construct a block private key cryptosystem which is secure against chosen
plaintext attack, which is one of the strongest known attacks against a cryptosystem.
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1. Introduction. The main result of this paper is a method for efficiently construct-
ing a pseudorandom invertible permutation generator from a pseudorandom function
generator. The question of whether pseudorandom permutation generators exist was
first posed by Goldreich et al. [GGM]. A practical application of our result is that a
pseudorandom bit generator can be used to efficiently construct a block private key
cryptosystem which is provably secure against chosen plaintext attack, which is one
of the strongest possible attacks known against a cryptosystem. We expect that there
will be other applications of pseudorandom invertible permutation generators in
cryptographic protocols. Before describing in detail our results, we discuss the basic
questions which motivated our work and the partial answers we can give to these
questions.

The field of cryptography has changed dramatically over the past few years. Several
years ago, cryptography was an art more than a science. Cryptosystem design was
based on clever ad hoc ideas. The security of the cryptosystem rested solely on the
cleverness of the designer; a cryptosystem was deemed secure until it was broken (in
many cases the cryptographer only knew it was broken long after the breaker). Certain
design rules were recognized as playing a crucial role in improving security. Eventually,
the apparent increase in security obtained by using these design rules became part of
the folklore, although there were no formal proofs that security was increased. The
foundations of cryptography were not yet established, there was no established formal
framework for talking about a cryptographic protocol, security, etc. Thus, there was
no formal way to either confirm or dispute the folklore.

More recently, researchers have formalized the notions of cryptographic protocols
and security and today cryptography is an integral part of computational complexity.
Many cryptosystems whose security is based on mathematical assumptions have come
out of this research. However, the security of cryptosystems typically used in practice
is still based on the old folklore. This paper uses the new cryptographic rigor to
formalize and to analyze some of the previously unexamined folklore.
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374 M. LUBY AND C. RACKOFF

Our primary motivation when we started this work was to investigate the soundness
of some of the design rules used in the development of the Data Encryption Standard
(hereafter called DES). DES, which was designed to be used as a block private key
cryptosystem, was developed by IBM for the U.S. National Bureau of Standards, with
an undisclosed amount of highly classified kibbitzing by the super-secret National
Security Agency. The reader can consult [De] for more information about DES and
[Ba] for more information about the National Security Agency and its role in the
development of DES.

DES has features which make it very practical to use. However, one of the
properties that DES does not have (as far as we know) is that it is provably secure,
even assuming some reasonable mathematical hypothesis. DES certainly has several
very clever features, but there is no formal justification that these features help achieve
security. We abstract and formalize what we think are some of the more interesting
design features of DES to see if they can be used to achieve security or if they are
inherently flawed.

The construction of a pseudorandom invertible permutation generator from a
pseudorandom function generator is based on one of the main design features of DES.
We view this as partial justification for the use of this design rule in DES. What our
result intuitively says is that if DES used pseudorandom function generators in its
construction then it would be secure when used as a block private key cryptosystem.
However, this is a weak justification because the function generators used in DES are
not at all pseudorandom. Our result is more of a justification of the use of the design
rule than it is a statement about the security of the entire DES system.

Section 2 gives terminology used throughout the remainder of the paper. In 3,
we discuss block private key cryptosystems, describe how DES is used as a block
private key cryptosystem, make the connection between secure block private key
cryptosystems and pseudorandom invertible permutation generators, and present the
design rule of DES which we use to construct a pseudorandom invertible permutation
generator from a pseudorandom function generator. In 4, we give formal definitions
of pseudorandom bit generators, pseudorandom function generators and pseudo-
random permutation generators and state our main results. In 5, we give the construc-
tion for an invertible permutation generator from a function generator and prove that
if the function generator is pseudorandom then the invertible permutation generator
is pseudorandom. A preliminary version of these results appears in [LR].

2. Terminology. A string is a bit string. Let {0, 1} be the set of all 2 strings of
length n. Let a and b be two equal length strings. Define ab to be the bit-by-bit
exclusive or of a and b, where the resulting string has the same length as a. Let a b
denote the concatenation of the two strings a and b.

Let F be the set of all 2n2n functions mapping {0, 1} into {0, 1}". Let fl and f2
be functions in Fn. We use fl f2 to denote the function in F which is the composition
of fl and f2. Let P F" be the set of such functions that are permutations, i.e., they
are 1-1 onto functions.

In all cases, a random choice of an object from a set of objects is such that each
object is equally likely to be chosen. For example, a random choice of a string from
{0, 1}" will choose each such string with probability 1/2. As another example, a
random choice of a function from F" will choose each such function with probability
1/2n2".

3. Connections between cryptosystems and invertible permutation generators. Sup-
pose agent A wants to send plaintext to agent B. A wants to do this securely, i.e., in
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PSEUDORANDOM PERMUTATION CONSTRUCTION 375

a way such that any agent L, who is able to read all the information sent from A to
B, has no significant idea about the content of the plaintext. A very practical way to
achieve this goal is for A and B to use a secure block private key cryptosystem. Both
A and B, but not L, have the same randomly chosen private key /c. When A sends
plaintext M to B, M is partitioned into equal length plaintext blocks. A encrypts each
plaintext block into a ciphertext block of the same length using/. B, upon receiving
a ciphertext block, decrypts it back into the plaintext block using

There are two very attractive features of block private key cryptosystems. First,
the total number of bits sent from A to B is the minimum number possible, because
the number of encrypted bits sent from A to B is exactly the same as the number of
plaintext bits. Second, since the plaintext is encrypted in blocks, if the encryption of
one block is lost in transmission then the other blocks can still be decrypted by B,
whether or not B knows that a block was lost. Other cryptosystems tend to send many
more encrypted bits than there are plaintext bits and/or are not robust to transmission
losses.

There is one inherent weakness in any block private key cryptosystem, which is
that any listener L can always tell if exactly the same plaintext block is repeated from
the encryption. In our definition of a secure block private key cryptosystem, this is
essentially the only insecurity of the system. There are encryption systems which avoid
this problem, but these systems tend to be less efficient than a block private key
cryptosystem, in certain respects, as explained above.

As far as we know, there is no provably secure block private key cryptosystem.
One of the main implications of the results given in this paper is that, under the
assumption that there is a pseudorandom bit generator, there is a provably secure
block private key cryptosystem.

One of the main motivations of this work is to study the security of DES, when
it is used as a block private key cryptosystem. In this context, DES works as follows.
Both A and B, but not L, have the same 56-bit private key k. Suppose A wants to send
plaintext M to B. A first partitions M into plaintext blocks of 64 bits each. A encrypts
each plaintext block, using the DES encryption algorithm with key /, into a 64-bit
ciphertext block and sends the ciphertext blocks to B. B decrypts the ciphertext blocks,
using the DES decryption algorithm with key /, to recover the plaintext blocks. One
important property of DES is that, given /, it is easy to encrypt and decrypt. An
important implication of this is that, given k, each string of length 64 has a unique
encryption and a unique decryption.

The encryption algorithm for DES can be thought of as a family of 256 permutations
h64-- {h4" k {0, 1}56}, where each permutation is a member of p64 indexed by a key
/. Similarly, the decryption algorithm for DES can be thought of as a family of 256

permutations ]64= {4:/{0, 1}56}, where each permutation is a member of p64
indexed by a key k. Furthermore, h ,4 o/,4 and/,4 h,4 are both the identity permutation.
DES has the property that, given k and c, both h,4(a) and /4(c) can be computed
very efficiently.

One of the strongest attacks known against a cryptosystem is a chosen plaintext
attack. We would deem DES secure if it was secure against chosen plaintext attack
(which is a stronger notion of security than that given in the first paragraph of this
section). Intuitively, in a chosen plaintext attack an agent L, who does not know the
key/, is nevertheless able to trick A into sending to B encryptions of plaintext blocks
chosen by L. L is allowed to choose a "reasonable" number of plaintext blocks
M1,’’ ", Mi, A encrypts these plaintext blocks and L sees the encryptions of these
plaintext blocks h,4(M1), h4(Mi). During this process, L interactively chooses
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376 M. LUBY AND C. RACKOFF

the next plaintext block for A to encrypt based on all previous plaintext blocks and
their encryptions. Let Mi+l be a plaintext block chosen by A which is different from
all plaintext blocks chosen by L during the attack. Intuitively, the cryptosystem is
secure against L if L cannot predict Mi+l given the information gained from the attack
and given the encryption h,a(Mi+) of Mi+ (but not Mi+) "significantly" better than
if L had not received the information obtained from the attack and from seeing
h,4(Mi/). The cryptosystem is secure against chosen plaintext attack if it is secure
against all such agents L.

The apparent security of DES when it is used as a block private key cryptosystem
rests on the fact that DES seems to pass the black box test, which was informally
suggested by Turing [Hod]. The black box test is the following:

Say that we have two black boxes, one of which computes a fixed randomly chosen
function from f64 and the other computes h,4 for a fixed randomly chosen k.
Then no algorithm which examines the boxes by feeding inputs to them and
looking at the outputs can obtain, in a "reasonable" time, any "significant" idea
about which box is which.

If DES passes the black box test then it is secure against a chosen plaintext attack
when used as a block private key cryptosystem. We do not give a formal definition of
security for a block private key cryptosystem. A rigorous definition in a somewhat
different setting appears in IRa].

The black box test, and therefore security, is very informally stated, i.e., the terms
"reasonable" and "significant" are not well defined. The tools of mathematics and
computer science are designed to analyze asymptotic behavior; to utilize these tools
we introduce an asymptotic version of DES and define security in terms of asymptotic
security. We introduce a collection of private key block cryptosystems, one for each
possible plaintext block length n. Let h ={h"’n} where, for each n, h is the
generalization of h 64 defined for DES, i.e., h is used to encrypt plaintext blocks of
length n. Similarly, let h {h"’n 6 }, where for each n, h" is the generalization of
]64 defined for DES, i.e.,/" is used to decrypt plaintext blocks of length n. Thus, both
h and h specify for each key k of a given length a permutation, h k P h k P
respectively, where h , h k is the identity permutation. We require that, given a {0, 1}"
and a key k of a given length, both h,(a) and h,(ce) can be computed in time
polynomial in n. In the terminology of 4, both h and h are invertible permutation
generators. A very similar notion, a function generator, was first formally defined in
[GGM]. We give the definition of a function generator in 4, but intuitively it is the
same as the definition of an invertible permutation generator except that each function
specified by n and k is not necessarily 1-1 onto function, i.e., not necessarily a
permutation. Thus, an invertible permutation generator is a special case of a function
generator.

It is enough that h be pseudorandom for h to be secure against chosen plaintext
attack when used as a block private key cryptosystem. The concept of a pseudorandom
function generator was introduced in [GGM]. An invertible permutation generator is
pseudorandom if it is a pseudorandom function generator. Informally, a pseudo-
random function generator is a function generator which passes the black box test for
all sufficiently large n, where n replaces all occurrences of 64 in the description of the
black box test, "reasonable" time corresponds to time polynomial in n and "significant"
corresponds to probability polynomial in 1/n. We give a formal definition of a
pseudorandom function generator in 4.

Goldreich et al. [GGM] show how to construct a pseudorandom function generator
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PSEUDORANDOM PERMUTATION CONSTRUCTION 377

from a pseudorandom bit generator. Pseudorandom function generators have many
applications in cryptography, but, unless they are also invertible permutation gen-
erators, they cannot be used directly in a block private key cryptosystem as described
above. A natural question to ask is can we construct a pseudorandom invertible
permutation generator from a pseudorandom function generator. In 5, we give an
efficient construction of an invertible permutation generator based on a function
generator and we prove that if the function generator is pseudorandom then so is the
invertible permutation generator. This construction uses some of the ideas behind the
design of DES. Below, we describe the design details ofDES relevant to our construction
together with some comments about DES.

DES begins with f32, where f32 specifies for each key k of length 48 a function

f2 6 F32. Alternatively, f32 can be thought of as an algorithm which, given k and an

input a, computes f2(a). Let L, R {0, 1)32. Define g64 such that for each key k of
length 48, g6k4(L R)= R [Lf3k(R)]. It is easy to see that g4 is 1-1 onto and easy
to invert if k is known. Let h 64 be g64 composed with itself 16 times, so that the key
length function for h64 is 768 48" 16. Given a 768-bit key k, h4 is 1-1 onto and easily
invertible. We refer to h64 as MDES for modified DES. MDES differs from DES in
certain inconsequential ways, but also in one way that might be very important: DES
only has a 56-bit key, which is used to generate (in a very simple way) the 16.48-bit
key to be used in MDES. It is not clear if this makesDES more or less secure than
MDES, but most observers feel that MDES would be much more secure than DES.
In any case, no one has yet succeeded (as far as we know) in breaking DES.

The f32 used in DES is not by any stretch of the imagination pseudorandom. The
creators of DES apparently feel that f32 does enough "mixing up" so that, together
with the rest of the construction, DES as a whole is secure. Our construction replaces
f32 with a pseudorandom function generator f Invertible permutation generator g is
constructed from f as described above. The invertible permutation generator h is
formed by composing g three times with itself (instead of 16 times as in MDES). We
prove in 5 that h formed in this way is a pseudorandom invertible permutation
generator if f is a pseudorandom function generator.

4. Formal definitions and statement of results. In this section we present some
necessary formal definitions and state the main results of the paper.

4.1. Pseudorandom bit generators. The original definitions for pseudorandom bit
generators are due to Blum and Micali IBM] and are generalized to those given here
by Yao [Yao]. A bit generator is a collection of functions f {fn: n N} such that fn
maps {0, 1} into {0, 1}t, where t(n)>= n+ (for example, t(n)= n3) and, given n
and a, f(a) can be computed in time polynomial in n (this implies that t(n) is
polynomial in n). Informally, f is pseudorandom if there is no (probabilistic) poly-
nomial in n time algorithm which, for infinitely many n, can significantly distinguish
a string/ =f(a), where a is a randomly chosen from {0, 1}n, from a string randomly
’chosen from {0, 1}t. Formally, f is pseudorandom if there is no distinguishing circuit
family forf A distinguishing circuit family forf is an infinite family of Boolean circuits
consisting of and/or/not unbounded fan-out gates (for readers unfamiliar with this
model of computation, replace all occurrences of a family of Boolean circuits with a

probabilistic polynomial time algorithm and all the results are the same) C
{Cn, C2,’’’ }, where n < n2..., such that for some pair of constants s and c, for
each n for which there is a circuit C:

(1) The size of C is less than or equal to n . The size of a circuit is the total
number of wires plus the number of gates in the circuit.
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378 M. LUBY AND C. RACKOFF

(2) The input to Cn is a string of length t(n) and the output is a single bit.
(3) Let rn be the probability that the output bit of C, is one when the input to

Cn is a string randomly chosen from {0, 1} t(n). Let p, be the probability that the output
bit of Cn is 1 when a string a is randomly chosen from {0, 1}" and the input is f"(a).
Let d, [p- r,[ be the distinguishing probability for C. Then, d => 1/n c.

It is important to note that if f is a pseudorandom bit generator, then f is a
pseudorandom bit generator even if we allow distinguishing circuit families for f to
be probabilistic. A probabilistic circuit Cn, besides the inputs described above, has an
additional number of input bits whose values are randomly chosen. It is not hard to
see that there is some way of fixing these additional bits to C,, forming a deterministic
circuit C’,, such that the distinguishing probability for C’, is at least as great as the
distinguishing probability for C, i.e., d’, _-> dn. Hence, if f has a distinguishing prob-
abilistic circuit family then f has a distinguishing deterministic circuit family, which
implies that if f has no distinguishing deterministic circuit family then f has no
distinguishing probabilistic circuit family.

Whether or not pseudorandom bit generators exist is an open question. Blum and
Micali [BM] introduce conditions which are sufficient for constructing pseudorandom
bit generators. They show how to construct a pseudorandom bit generator based on
the assumption that the Discrete Log problem is hard. Yao [Yao] generalizes these
conditions and shows how to construct a pseudorandom bit generator based on the
assumption that the factoring problem is hard. A series of results has improved the
efficiency of the Yao construction [ACGS], [BCS], [GMT], and [VV]. Levin lEe]
introduces weaker conditions which are sufficient to construct a pseudorandom bit
generator.

4.2. Pseudorandom function generators. The concept of a pseudorandom function
generator is defined in [GGM]. They give a construction for a pseudorandom function
generator using a pseudorandom bit generator. We give the definition of a pseudo-
random function generator in this section. Let l(n) be polynomial in n. A function
generator with key length function l(n) is a collectionf {f: n N}, wheref specifies
for each key k of length l(n) a function f, F". It is required that, given a key
k {0, 1}(n), and a string a {0, 1}, f,(a) can be computed in time polynomial in n.

Informally, f is pseudorandom if there is no polynomial time in n algorithm
which, for infinitely many n, is able to even slightly distinguish whether a function
was randomly chosen from f" or from F" after seeing polynomial in n input/output
pairs of the function, even when the algorithm is allowed to choose the next input
based on all previously seen input/output pairs. Formally, f is pseudorandom if there
is no distinguishing circuit family for f A distinguishing circuit family for f is an
infinite family of circuits { C,,, C,2,. }, where n < n2" , such that for some pair of
constants s and c, for each n for which there is a circuit C,:

(1) C, is an acyclic circuit which contains Boolean gates of type and, or and not
(these gates are interpreted in the usual way, i.e., the and gate computes the "and" of
the two inputs). In addition there are constant gates of type zero and one. Each constant
gate has no inputs, and the output is 0 if it is a zero gate and 1 if it is a one gate. C,
also contains oracle gates. Each oracle gate has an input and an output which are both
strings of length n. Each oracle gate is to be evaluated using some function from F"
which for now is left unspecified and is to be thought of as a variable of the circuit.
All gates can fan-out their output bits to an unbounded number of other gates. The
output of Cn is a single bit. Such a circuit is called an oracle circuit.

(2) The size of C, is less than or equal to n . The size of C, is the total number
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PSEUDORANDOM PERMUTATION CONSTRUCTION 379

of connections between gates, Boolean gates, constant gates and oracle gates.
(3) We let Pr [C,(F")] be the probability that the output bit of Cn is one when

a function is randomly chosen from F and used to evaluate the oracle gates. We let
Pr C, (f")] be the probability that the output bit of Cn is one when a key k of length
l(n) is randomly chosen and f, is used to evaluate the oracle gates. The distinguishing
probability for Cn, IPr C, (F")] Pr C, (f")]l, is greater than or equal to 1 / n c.

TI-IEOREM [GGM]. If there is a pseudorandom bit generator then there is a pseudo-
random function generator.

In fact, Goldreich et al. [GGM] give an explicit construction for a function
generator f based on a bit generator g and prove that if g is a pseudorandom bit
generator then f is a pseudorandom function generator. The converse of this theorem
is easily seen to be true.

4.3. Pseudorandom invertible permutation generators and block private key cryp-
tosystems. A permutation generator f is a function generator such that each function
f, is 1-1 onto. Let f= {fn" n N}, where f" {f," k {0, 1}<")}, where f, is the inverse
function of f,. We say f is invertible if f is also a permutation generator. In this case,
f is the inverse permutation generator for f (of course, f is the inverse permutation
generator for f also). We say f is pseudorandom if it is pseudorandom as a function
generator as defined in the previous section. (The definition of pseudorandom is
provably no different if we replace F" with P" in part 3 of the definition of an oracle
circuit.) In 5, we give a construction for a pseudorandom invertible permutation
generator based on a pseudorandom function generator.

4.4. Super pseudorandom invertible permutation generators. There is even a
stronger notion of pseudorandom for invertible permutation generators which is very
natural. Let f be an invertible permutation generator. We say that f is a super
pseudorandom if there is no super distinguishing circuit family forf A super distinguish-
ing circuit family for f is an infinite family of circuits C--{Cn,, C2,...} where
nl < n2 , where each circuit is an oracle circuit containing two types of oracle gates,
normal and inverse. For some pair of constants s and c, for each n for which there is
a circuit C,"

(1) The size of C, is less than or equal to n .
(2) We let Pr [C,(Pn)] be the probability that the output bit of C, is one when

a permutation r is randomly chosen from P" and r and are used to evaluate normal
and inverse gates in C,, respectively, where is the inverse permutation of r. We let
Pr C, (fn)] be the probability that the output bit of C, is one when a key k of length
l(n) is randomly chosen and f, and f, are used to evaluate the normal and inverse
oracle gates in C,, respectively. The distinguishing probability for C,, ]Pr [C,(P")]-
Pr C, (fn)][, is greater than or equal to 1/n e.

We state in 5 that there is a super pseudorandom invertible permutation generator
if there is a pseudorandom function generator. Although every super pseudorandom
invertible generator is also a pseudorandom invertible generator, we show in 5 that
the converse is not necessarily true.

Let f be a super pseudorandom invertible permutation generator. We can use f
as described above in a block private key cryptosystem. This cryptosystem is secure
against chosen plaintext/ciphertext attack, which is an even stronger attack than chosen
plaintext attack. In chosen plaintext/ciphertext attack, L can interactively choose
plaintext blocks and see their encryptions and choose encryptions and see their
corresponding plaintext blocks. Thus, L is allowed to attack the cryptosystem from
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380 M. LUBY AND C. RACKOFF

"both ends." Let M be a plaintext block which is different than all plaintext blocks
seen in the attack. Intuitively, the cryptosystem is secure against chosen plain-
text/ciphertext attack if for all agents L, given the information L gained from the
attack and given the encryption fT,(M) of M (but not M), L cannot predict the value
of M any better than if L had no information about M. Symmetrically, let E be the
encryption of a plaintext block which is different than all encryptions of plaintext
blocks seen in the attack: The cryptosystem is secure against chosen plaintext! ciphertext
attack if for all agents L, given the information L gained from the attack and given
the decryption f,(E) of E (but not E), L cannot predict the value of E any better
than if L had no information about E.

4.5. Definition of cryptographic composition. In this section, we formally define
the composition of function generators. Let g and h be two function generators, where
ll(n) and 12(n) are the key length functions for g and h, respectively (we allow the
possibility that g h). Then f=g h is a function generator defined as follows.

(1) The key length function for f is /(n)=/l(n)+/2(n).
(2) fc2.kl---h2o gl, where k is of length ll(n) and k2 is of length 12(n).

Note that if both g and h are (invertible) permutation generators then so is f.

5. Generating permutations from functions. In this section we show how to con-
struct a pseudorandom invertible permutation generator from a pseudorandom function
generator (see 4 for definitions). A natural thing to try is an abstraction of MDES.
Let f= {fn} be a pseudorandom function generator where the key length function is
l(n). Define a function generator g= {gn} in terms off as follows. Let k be a string
of length l(n), let k’ be a string of length l(n + 1), let L, R and L’ be strings of length
n and let R’ be a string of length n + 1. Then

g2k(L R)= R [L@f,(R)],

gk,+l(L R’)= R’ [L’0)first n bits off,,+l(R’)].

Note that g is an invertible permutation generator. The inverse permutation generator
for g, g, is computed as follows. Let a,/3 and/3’ be strings of length n and let a’ be
a string of length n + 1. Then

g2k"(Ce fl)=[fl@f,(a)] a,

g,,"+l (a’ /3’) [fl’@ first n bits of f,,+(a’) a’.

Thus,

gk (Lo R))=Lo R,

Y+’(g,+l(L’ R’))= L’o R’.

Let h =g g g. Since g is an invertible permutation generator, h is also an invertible
permutation generator. Theorem 1 shows that h is pseudorandom iff is pseudorandom.
Before proving this theorem, we show that h g g is not at all pseudorandom, and
then we state and prove the main lemma used in the proof of Theorem 1. The proof
of the main lemma, which is a combinatorial lemma not based on any unproven
assumptions, is the interesting and difficult portion of the proof of the theorem.

We show that h g g is not pseudorandom as follows. Let k and k2 be keys of
length l(n). For all strings L1, L2 and R of length n, the @ of the first n bits of
h2-k2- k, (L1 R) and h 2,k2 k, (L2 R) is equal to L1@ L2 Thus, a distinguishing circuit C2n
for h2n can be described as follows. Choose L1 and L2 such that L1 L2 and let R be
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PSEUDORANDOM PERMUTATION CONSTRUCTION 381

any string of length n, e.g., a string of n zeros. C2n has two oracle gates: the input to
the first oracle gate is L1 R and the input to the second oracle gate is L2 R. Tlle
output of C2, is 1 if[ the ( of the first n bits of the outputs from the two oracle gates
is equal to LI L2. Thus, the output of C2, is always 1 when the oracle gates are
evaluated using a function in h 2n. On the other hand, if the oracle gates are evaluated
using a function randomly chosen from F2", the output of C:, is 1 with probability 1/2".

The following definitions are used in the main lemma and in Theorem 1. We
define the operator H F" x F x F" -> P" as follows. Letfo, fl andf2 be three functions
from F". Let L and R be strings of length n. Define

a=fo(R), fl=f(Lc), y=f2(Rfl),

H(f2,fl,fo)(L R)= [R@fl] [Lay].

H is derived from three applications of the DES design rule described in 3. The
main lemma states that any Boolean circuit with m oracle gates, where each oracle
gate has an input and an output which are both strings of length 2n, can distinguish
with probability at most m2/2 between the case when the oracle gates are evaluated
using a randomly chosen function from Fn and the case when the oracle gates are
evaluated using H(fz,fl,fo) and f, fl and fo are randomly chosen from F". This result
is surprising in the sense that it uses no unproven assumptions and that the number
of distinct permutations generated by H is at most 23n2", which is a very small fraction
of the 22nz2" functions in F2n. On the other hand, it is not so surprising given that we
allow the distinguishing circuit to examine only a very small portion of the domain
of the function (there are only m oracle gates).

PROPOSITION. Let D, be an oracle circuit with m oracle gates and size s, where the
input and output of each oracle gate is a string of length n and where m <-_ 2". Dn can be
easily modified to another circuit D’, which never repeats an input value to an oracle gate
such that: (1) For each function fo F", the output bit of D’, when fo is used to evaluate
the oracle gates is exactly the same as the output bit of D, when fo is used to evaluate
the oracle gates; (2) The number of oracle gates in D’, is m; (3) The size of D’, is at

most 8

Proof Omitted but easy.
MAIN LEMMA. Let C2, be an oracle circuit with rn oracle gates such that no input

value is repeated to an oracle gate as in the above proposition. Then, IPr C2,(F2")]-
Pr C,(H(F", F", F"))]I <_- m2/2".

Proof There are really two experiments occurring in different probability spaces
in the statement of the Main Lemma. For Pr [C2,(F")] the sample space is F2" with
the uniform probability distribution, and for Pr C2,(H(F", F", F"))] the sample space
is F"x F"x F" with the uniform probability distribution. To be able to analyze the
behavior of C2, with respect to these two probability distributions we introduce a new
probability space with sample space 1 {0, 1}3"rn and the uniform probability distribu-
tion, i.e., for all to , Pr [to] n. We define two random variables A, B on the new
probability space with the following properties:

(1) A:-->{0, 1}, B:->{0, 1}.
(2) E[A] Pr [C2.(F2n)]. (The left-hand side is with respect to the new probabil-

ity space, the right-hand side is with respect to the probability space for the original
experiment.)

(3) E[B]= Pr[C2,(H(F", Fn, F"))]. (Same remarks as for (2).)
(4) IE[A] E[B] <-_ rnZ/2".
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382 M. LUBY AND C. RACKOFF

Note that ]E[A]-E[B]I ]]oa (A(to)-B(to))l/23"’L Our objective is to define
A and B with properties (1), (2) and (3) such that for most sample points A and B
take on the same value, so that property (4) is also satisfied. A sample point in f is
a string to to, , to3n,. For 1 N <- m we define the random variables Xi :1) -+ {0, 1}",
Y :f-{0, 1}n, Zi :1-* {0, 1} as follows:

Xi(to) to(i-).+

yi(w OOmn+(i_l)n+

Zi((,o O.)2mn+(i_l)n+ OO2mn+(i_l)n+

We define the vector X(w)=(X(w),... ,X,,(to)). Y(to) and Z(to) are defined
similarly.

At sample point to ), B(to) is defined as the output bit of C2,, when the oracle
gates of C2, are computed as described below. This description also defines L(to) and
R(to), where L and R are vectors of m random variables corresponding to the left
half of the inputs to the oracle gates and the right half of the inputs to the oracle gates,
respectively. In addition, a’(to), ’(to) and y’(to) are defined, where a’,/3’ and y’ are
each vectors of m random variables defined by the following circuit. The ith oracle
gate of C2, is computed as follows:

B-gate:
The input is Li(to) Ri(to),- min {j: 1 <=j <- and Ri(w) R(w)},
Ol (.O " Li to ( Xt to ),

’(o)},<-- min {j 1 =<j < and al(w) a

min {j" 1 _<-j =< and/31(o)) =/3j(w)},
")Iti O) <’- Ol O0

The output is fl (to) Y’i(to).

The circuit defining B can be thought of as a circuit with Boolean and, or and not
gates and constant zero and one gates. The input to the entire circuit can be thought
of as X(to), Y(to) and Z(to).

We now describe a random variable B’ which is exactly the same as B except that
it is the output bit of C2. when the ith oracle gate is computed as follows:

B’-gate:
The input is Li(to) Ri(to),

min {j: 1 =<j _-< and Ri(to) R(to)},
.;(,o) - L,()(R) X,(),

<-- min {j: 1 <=j --< and al(to) a.(to)},
Y to Yi to ( R to

t31( ., - R oo (R) Y o- min {j" 1 --<j <= and ’i(to)=/3j(to)},
Z to 4-- Zi to

The output is

B and B’ are exactly the same except that Y’i and Z’i are computed from Y and Zi
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PSEUDORANDOM PERMUTATION CONSTRUCTION 383

and used in place of Y/ and Zi in the oracle gate computation. The definition of B’
also redefines the vectors of random variables L, R, a’, fl’, y’.

FACT. E[B’]--E[B]. This follows because the random variables
are identically and uniformly distributed and because Ri and cl do not depend on Y/
and Z, respectively. Thus, YI and Z’ are independently and randomly chosen strings
from {0, 1

We now describe the computation of B’ in an equivalent way. This alternative
description is used in all further references to B’. B’ is the output of C2, when the
ith oracle gate in C2, is evaluated as follows:

B’-gate:
The input is Li(to Ri(to),
ui(to) <- min {j: 1 <=j<--i and Ri(w) Rj(to)},
O OO -- L to X., to

Vi((.O <"" min {j" 1 <--j =< and

wi(to)<- min {j’l -<j_-< and ill(to) fl(to)},
v(o) - (o) (R) ’w()(,o) (R) Zw((o),
The output is/3 l(to) y’i(to).

From the above discussion, it is clear that E B’] Pr C2n (H(F", F", F" )) ]. In addition
to defining L, R, a’,/3’ and y’ in terms of X, Y and Z, this also defines the vectors u,
v and w in terms of X, Y and Z.

Let A be the random variable which is defined to be the output of C2, when the
oracle gates are evaluated exactly the same way as in the definition of B’ except that
the output of the ith oracle gate is Y/(to) Zi(to). This defines different vectors of
random variables L, R, a’, fl’, y’, u, v and w in terms of X, Y and Z then those
defined for B’. In the following, the vectors of random variables we are considering
are explicitly mentioned as needed. Because A is determined by C2, when the output
values from each oracle gate are independently and identically distributed random
variables and because C2, never repeats an input value to an oracle gate, E[A]
Pr [C2,(F2")]. Our goal now is to show that IE[A]-E[B’]I<-m2/2".

DEFINITION. to E [’ is preserving if for 1 -<_ _-< m, v(to) and Wi(to) i, where V

and wi are the random variables defined with respect to A.
CLAIM. For all to E , if to is preserving then A(to) B’(to).
Justification. If for 1 -<_ _-< m, v(to) and wi(to) i, then for 1 _-< -< m,/3’i(to)

Y/(to) and y’i(to)=Zi(to), where all these random variables are those defined with
respect to A. Thus, all the outputs of the oracle gates are the same as though they
were calculated as in B’, and thus all the variables defined with respect to A have
exactly the same values as the corresponding variables defined with respect to B’.

For all tofl, if to is preserving then A(to)-B’(to)=O and even if to is not
preserving then [a(to)- B’(to)] <- 1. Thus, [E[A]- E[B’][ <- Pr [to is not preserving]. In
the following discussion, all variables are defined with respect to A.

DEFINITION. For all to D, Y(to) is bad if there is i, j, 1 <-j < <- m, such that
Y(to) Y(to). It is not hard to verify that Pr[Y is bad] <- m2/2"+1.

DEFINITION. For all to 12, X(to) is bad if there is i, j, 1 <=j < i-<_ m, such that

CLAIM. Pr [X is bad] <- m2/2n+l.
Proof For 1 <_- <_- m, let 37i and ffi be strings of length n, let 37 (371, , 37,) and

let (:l, ", if,,). Let ff, {to f" Y(to) 37 and Z(to) if}. We show that for each
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384 M. LUBY AND C. RACKOFF

)7, , Pr [X(w) is bad]12,]_-< m2/2"+1 which implies that Pr[X is bad]-< m2/2"+1. Y,
Z, L, R and u are constants 37, , ]’, and ff on 1,, respectively. This is by definition
for Y and Z, and it is true for L and R because the outputs from all oracle gates are
constant on 1,, which implies that the inputs to all oracle gates are also constant, u
is constant because it depends only on R. On the other hand, X is a vector of rn
independently and identically distributed random variables on the probability space
restricted to f;,, and each such variable has uniform distribution on {0, 1}". Let
eqn (i,j) be the equation a(w)= al(w). On 11;,, this equation reduces to

When tj =/i, .Pr e.qn (i, j) is satisfied 11) ;,el 0 because tj gi implies that 6 i which
implies that lj li (because C2n does not repeat an input value to an oracle g.ate)
which implies that eqn (i, j) is not satisfied (because eqn (i, j) simplifies to li in
this case). When t , Pr[eqn (i,j) is satisfied [12;,e] 1/2 because tT g together
with the fact that X is a vector of independent random variables on ;. implies that
for fixed Xa, the probability that a randomly chosen Xa, satisfies the equation is 1!2n.
Thus, summing these probabilities over all m(m-1)/2 equations yields Pr IX(to) is
bad If,]-<_ rn2l 2"+’.

CLAIM. For all o) 11, X(w) is not bad and Y(w) is not bad implies that w is
preserving.

Proof X(w) is not bad implies that for 1 <=j < N m, c(w) a’(w) which implies
that for 1 <= <-_ rn, v(oo) which implies that for 1 _-< _<- rn, ill(w) Y(w). Y(w) is
not bad and for 1 < < m,/31(o9) Y(w) implies that for 1 <--j < < m,/3(w) /3(w)
which implies that for 1 <- -<_ rn, w(o) i.

CLAIM. Pr[w is not preserving]=< Pr [X is bad or Y is bad]_-<rn2/2 ". Thus,
[E[A]-E[B’]I<= m/2" and the Main Lemma follows.

TI-IZORZM 1. h g g g is a pseudorandom invertible permutation generator.
Proof What must be shown is that h is pseudorandom, i.e., there is no distinguish.

ing circuit family for h. The proof is by contradiction. Assume that there is a distinguish-
ing circuit family C {C2,1, Ca,,. .} where n < n , for h. We show this implies
there is a distinguishing circuit family D {D,,: e N} for f, contradicting the fact that
f is a pseudorandom function generator. In particular, for a fixed n we show that if
C, distinguishes h" from F2n with probability at least 1/nC then there is a circuit
D, (where D, is not much bigger than C2,) which distinguishes f" from F" with
probability at least 1 /4n. (The proof for C,+ is similar). Let us first state the definition
of h2n in a different way. If k0, k and k2 are strings of length l(n) then

h2nk k,- ko H(f2’ f,, fo)"

Let pg, p, p, p be Pr[Cz,(H(f",f",f"))], Pr[C,(H(f",f",F"))],
Pr C,(H(f", F", F")) ], Pr C2, (H(F", F", F"))], respectively. Let p
Pr [C2,(F")]. The main lemma shows that Ip -PI <- m/2", where rn is the number
of oracle gates in C,. Since rn is less than or equal to n" for some constant s,
rn/2" <= 1/4n for sufficiently large n. Since

1In <= ]p --ponl = lp -p’l+ [p3n-pUl+ lpn-plnl+ lp-ponl,

there is an i {0, 1 2} such that] H
Pi+l _pH] >= 1/4n The cases when i= 0 and i= 2 are

similar to the case when i= 1 and are omitted. For the case i= 1, we use C2. to
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PSEUDORANDOM PERMUTATION CONSTRUCTION 385

construct a probabilistic circuit Dn not much larger than C2n which will distinguish
fn from F with probability at least 1/4n c. D, is the same as C2, except that it first
randomly chooses k2{0, 1}(") and foe Fn, and then each oracle gate X in C2, is
replaced with a subcircuit which computes H(fT,2, X’,fo), where X’ is an oracle gate
with an input and output which are both strings of length n. The main problem with
constructing D, is how to randomly choose fo and F". In fact, D, does not specify fo
at all (since a complete description would involve n2" bits). Instead, Dn remembers
all inputs and outputs to fo. When D, is to compute fo(c) for some string a of length
n, if a is the same as a previous input then the same output as before is given, otherwise
c is a new input and then fo(c) is a randomly chosen string from {0, 1}".

When the oracle gates in D, are evaluated using f,l, where kl is a randomly
chosen key of length l(n), then p Pr [The output of D, is 1]. When the oracle gates
in D, are evaluated using fl, where f is randomly chosen from F", then pz" Pr [The
output of D, is 1]. Since Ip2n -PI >- 1/4ne, D, distinguishes F" fromf" with probability
greater than or equal to 1/4nC. [3

TrEOREM 2. Let g be defined in terms of pseudorandom function generator f as
described in the beginning of this section. Then h g g g g is a super pseudorandom
invertible permutation generator.

Proof The proof of this theorem is very similar to the proof of Theorem 1 and
is omitted. [3

It is interesting to note that h =g g g is not super pseudorandom, although
Theorem 1 shows that it is pseudorandom. This can be seen as follows. Let k, k2 and
k3 be keys of length l(n). A distinguishing circuit C, for h" can be described as
follows. Let L, L and R be strings of length n such that L L2. Czn has two normal
oracle gates: the input to the first normal oracle gate is L1 R and the input to the
second normal oracle gate is L2 R. Let S1 T and $2 T be the outputs of these
two normal oracle gates respectively. C2, also has an inverse oracle gate with input
$2 T2(L@ L]. The output of C2, is 1 if and only if the last n bits of the output
from this inverse oracle gate is equal to R S@ $2. It can be verified that the output
of Czn is always 1 when the normal oracle gates and inverse oracle gates are computed
by first choosing a key k at random and then using h" for the normal oracle gates
and/," to compute the inverse oracle gates. On the other hand, if the oracle gates are
computed using a permutation randomly chosen from pZn, the output of C2, is 1 with
probability 1 /2".

6. Conclusions. Assuming the existence of a pseudorandom function generator,
we have proven the existence of a super pseudorandom invertible permutation gen-
erator. This is of interest by itself, but the construction and the proof can be viewed
as a partial justification of some of the methodology used in the design of DES.

Another methodology which is important both in DES and in the cryptographic
literature is using cryptographic composition of permutation generators to increase
security. In [LR] we define a measure of security for permutation generators, and prove
that if one composes two permutation generators which are slightly secure the result
is more secure than either one alone.
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pseudorandom and for finding a problem with an initial construction we had for a
pseudorandom invertible permutation generator. We thank Johan Hastad for simplify-
ing the proof of the Main Lemma. We thank Paul Beame for numerous suggestions
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