MIT 6.875 \& Berkeley CS276

Foundations of Cryptography Lecture 10

Today:
 Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA) composite $N /$ factoring

2: Quadratic Residuosity/Goldwasser-Micali composite $N /$ factoring

3: Diffie-Hellman/El Gamal
prime $p /$ discrete log

4: Learning with Errors/Regev
small numbers, large dimensions

Trāpapodood IRawayaßerrunctidiosns

Review: Number Theory

Let's review some number theory from L7-8.
Let $N=p q$ be a product of two large primes.
Fact: $Z_{N}^{*}=\left\{a \in Z_{N}: \operatorname{gcd}(\mathrm{a}, \mathrm{N})=1\right\}$ is a group.

- group operation is multiplication $\bmod N$.
- inverses exist and are easy to compute (how so?)
- the order of the group is $\phi(N)=(p-1)(q-1)$

Lecture 8: The map $F(x)=x^{2} \bmod N$ is a 4-to-1 trapdoor function, as hard to invert as factoring N.

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Key Fact: Given d such that $e d=1 \bmod \phi(N)$, it is easy to compute x given x^{e}.

Proof: $\left(x^{e}\right)^{d}$

This gives us the RSA trapdoor permutation collection.

$$
\left\{F_{N, e}: \operatorname{gcd}(e, N)=1\right\}
$$

Trapdoor for inversion: $d=e^{-1} \bmod \phi(N)$.

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption given N, e (as above) and $x^{e} \bmod \mathrm{~N}$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $\mathrm{GL}\left(r ; r^{\prime}\right)=\left\langle r, r^{\prime}\right\rangle \bmod 2$
- The least significant bit $\operatorname{LSB}(r)$
- The "most significant bit" $\operatorname{HALF}_{N}(r)=1$ iff $r<N / 2$
- In fact, any single bit of r is hardcore.

RSA Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

- $\operatorname{Enc}(p k, b)$ where b is a bit: Generate random $r \in$ Z_{N}^{*} and output $r^{e} \bmod N$ and $\operatorname{LSB}(r) \oplus m$.
- $\operatorname{Dec}(s k, c)$: Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as above) and $r^{e} \bmod \mathrm{~N}$, hard to compute r.

Today:
 Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Quadratic Residuosity

Let's review some more number theory from L7-8.
Let $N=p q$ be a product of two large primes.

Jacobi symbol $\binom{x}{N}=\binom{x}{p}\binom{x}{q}$ is +1 if x is a square \bmod both p and q or a non-square mod both p and q.

Quadratic Residuosity

Let's review some more number theory from L7-8.
Let $N=p q$ be a product of two large primes.

Surprising fact: Jacobi symbol $\binom{x}{N}=\binom{x}{p}\binom{x}{q}$ is computable in poly time without knowing p and q.

Quadratic Residuosity

Let's review some more number theory from L7-8.
Let $N=p q$ be a product of two large primes.

$$
\begin{aligned}
\text { So: } Q R_{N} & =\left\{x:\binom{x}{p}=\binom{x}{1}=+1\right\} \\
Q N R_{N} & =\left\{x:\binom{x}{p}=\binom{x}{1}=-1\right\}
\end{aligned}
$$

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares $\bmod N$ with Jacobi symbol +1 .

Quadratic Residuosity

Let's review some more number theory from L7-8.
Let $N=p q$ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)
Let $N=p q$ be a product of two large primes.
No PPT algorithm can distinguish between a random element of $Q R_{N}$ from a random element of $Q N R_{N}$ given only N.

Goldwasser-Micali (GM) Encryption

$\operatorname{Gen}\left(1^{n}\right)$: Generate random n-bit primes p and q and let $N=p q$. Let $y \in Q N R_{N}$ be some quadratic nonresidue with Jacobi symbol +1 .

Let $p k=(N, y)$ and let $s k=(p, q)$.
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.
$\operatorname{Dec}(s k, c)$: Check if $\mathrm{c} \in Z_{N}^{*}$ is a quadratic residue using p and q. If yes, output 0 else 1 .

Goldwasser-Micali (GM) Encryption

$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.

IND-security follows directly from the quadratic residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$. without knowing anything about \boldsymbol{b} or \boldsymbol{b}^{\prime} !
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} y^{b} \bmod N$.
Claim: $\operatorname{Enc}(p k, b) \cdot \operatorname{Enc}\left(p k, b^{\prime}\right)$ is an encryption of $b \oplus b^{\prime}=b+b^{\prime} \bmod 2$.

Today: Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Diffie-Hellman Key Exchange

Commutativity in the exponent: $\quad\left(g^{x}\right)^{y}=\left(g^{y}\right)^{x}$ (where g is an element of some group)

So, you can compute $g^{x y}$ given either g^{x} and y, or g^{y} and x.

Diffie-Hellman Assumption (DHA):
Hard to compute $g^{x y}$ given only g, g^{x} and g^{y}

Diffie-Hellman Key Exchange

Diffie-Hellman Assumption (DHA):
Hard to compute it given only g, g^{x} and g^{y}

We know that if discrete log is easy, DHA is false.

Major Open Problem:
Are discrete log and DHA equivalent?

Diffie-Hellman Key Exchange

$$
p, g \text { : Generator of our group } Z_{p}^{*}
$$

$g^{x} \bmod p$

$g^{y} \bmod p$

Pick a random number $x \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{y}\right)^{x} \bmod p
$$

Pick a random number $\mathrm{y} \in Z_{p-1}$

Shared key K $=g^{x y} \bmod p$

$$
=\left(g^{x}\right)^{y} \bmod p
$$

Diffie-Hellman/El Gamal Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Generate an n-bit prime p and a generator g of Z_{p}^{*}. Choose a random number $x \in Z_{p-1}$

Let $p k=\left(p, g, g^{x}\right)$ and let $s k=x$.

- $\operatorname{Enc}(p k, m)$ where $m \in Z_{p}^{*}$: Generate random $y \in$ Z_{p-1} and output $\left(g^{y}, g^{x y} \cdot m\right)$
- $\operatorname{Dec}(s k=x, c)$: Compute $g^{x y}$ using g^{y} and x and divide the second component to retrieve m.

Is this Secure?

The Problem

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can

Corollary: Therefore, additionally given $g^{x y} \cdot m \bmod p$, the adversary can determine whether m is a square $\bmod p$, violating "IND-security".

The Problem

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can determine if $g^{x y} \bmod p$ is a square $\bmod p$.
$g^{x y} \bmod p$ is a square $\Leftrightarrow x y(\bmod p-1)$ is even
$\Leftrightarrow x y$ is even
$\Leftrightarrow x$ is even or y is even
$\Leftrightarrow x(\bmod p-1)$ is even or $y(\bmod \mathrm{p}-1)$ is even
$\Leftrightarrow g^{x} \bmod p$ or $g^{y} \bmod p$ is a square
This can be checked in poly time!

Diffie-Hellman Encryption

Claim: Given $\mathrm{p}, \mathrm{g}, g^{x} \bmod p$ and $g^{y} \bmod p$, adversary can determine if $g^{x y} \bmod p$ is a square $\bmod p$.

More generally, dangerous to work with groups that have non-trivial subgroups (in our case, the subgroup of all squares $\bmod p$)

Lesson: Best to work over a group of prime order. Such groups have no subgroups.

An Example: Let $p=2 q+1$ where q is a prime itself.
Then, the group of squares $\bmod p$ has order $\frac{(p-1)}{2}=q$.

Diffie-Hellman/El Gamal Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Generate an n-bit "safe" prime $p=2 q+1$ and a generator g of Z_{p}^{*} and let $h=g^{2} \bmod p$ be a generator of $Q R_{p}$. Choose a random number $x \in Z_{q}$.

Let $p k=\left(p, h, h^{x}\right)$ and let $s k=x$.

- $\operatorname{Enc}(p k, m)$ where $m \in Q R_{p}$: Generate random $y \in$ Z_{q} and output $\left(g^{y}, g^{x y} \cdot m\right)$
- $\operatorname{Dec}(s k=x, c)$: Compute $g^{x y}$ using g^{y} and x and divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between $g^{x y}$ and a uniformly random group element, given g, g^{x} and g^{y}

That is, the following two distributions are computationally indistinguishable:

$$
\left(g, g^{x}, g^{y}, g^{x y}\right) \approx\left(g, g^{x}, g^{y}, u\right)
$$

DH/El Gamal is IND-secure under the DDH assumption.

Today: Constructions of Public-Key En

QUANTUM COMPUTER
1: Trapdoor Permutations (RSSA) Quantum
2: Quadratic Rensiduosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev
(post-quantum secure, as far as we know)

SolSiphyingeikinkimeaquratiations

$$
\left(s_{1} \mid s_{2}\right)\left[\begin{array}{lll}
5 & 1 & 3 \\
6 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
11 & 3 & 9
\end{array}\right]
$$

Easy!

How about:

$\left(\boldsymbol{s}_{\mathbf{1}} \mid \boldsymbol{s}_{\mathbf{2}}\right)\left[\begin{array}{lll}\mathbf{5} & \mathbf{1} & \mathbf{3} \\ \mathbf{6} & \mathbf{2} & \mathbf{1}\end{array}\right]+\left[\begin{array}{lll}e_{1} & e_{2} & e_{3}\end{array}\right]=\left[\begin{array}{lll}11 & 3 & 9\end{array}\right]$
$\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)$ are "small" numbers

Find \vec{s}

Learning with Errors (LWE)

 [Regev05, following BFKL93, Ale03]
LWE:

$$
(\mathbf{A}, \boldsymbol{s} \mathbf{A}+e)
$$ very hard!

($\mathbf{A} \in Z_{q}^{n X m}$
$\mathbf{s} \in Z_{q}^{n}$ random "small" secret vector
$\boldsymbol{e} \in Z_{q}^{n}$: random "small" error vector)
Decisional LWE:

$$
(\mathbf{A}, \mathrm{s} \mathbf{A}+e)
$$

(A, b)
(b uniformly random)

Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" prime

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\mathrm{Enc}_{\mathrm{s}}(\mathrm{m}): / / \mathrm{m} \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "short" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mathrm{m}$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c}):$ Output
($(\mathrm{b}-\langle\mathbf{a}, \mathbf{s}\rangle \bmod \mathrm{q})$
// correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$

Basic (Secret-key) Encryption

 [Regev05]This is an incredibly cool scheme. In particular, additively homomorphic.

$$
\begin{aligned}
& c=(\mathrm{a}, \mathrm{~b}=\langle\mathrm{a}, \mathrm{~s}\rangle+\mathrm{e}+\mathrm{m}\lfloor q / 2\rfloor)+ \\
& \boldsymbol{c}^{\prime}=\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}=\left\langle\mathrm{a}^{\prime}, \mathrm{s}\right\rangle+\mathrm{e}^{\prime}+\mathrm{m}^{\prime}\lfloor q / 2\rfloor\right)
\end{aligned}
$$

$\boldsymbol{c}+\boldsymbol{c}^{\prime}=\left(\mathrm{a}+\mathrm{a}^{\prime}, \mathrm{b}+\mathrm{b}^{\prime}=\left\langle\mathrm{a}+\mathrm{a}^{\prime}, \mathrm{s}\right\rangle+\left(\mathrm{e}+\mathrm{e}^{\prime}\right)+\left(\mathrm{m}+\mathrm{m}^{\prime}\right)\lfloor q / 2\rfloor\right)$
In words: $c+c^{\prime}$ is an encryption of $m+m^{\prime}(\bmod 2)$

Public-key Encryption

[Regev05]

Here is a crazy idea. Public key has an encryption of 0 (call it c_{0}) and an encryption of 1 (call it c_{1}). If you want to encrypt 0 , output c_{0} and if you want to encrypt 1, output c_{1}.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given just the pk...

Public-key Encryption

[Regev05]
Here is another crazy idea.
Public key has many encryptions of 0 and an encryption of 1 (call it c_{1}).

If you want to encrypt 0 , output a random linear combination of the 0 -encryptions.

If you want to encrypt 1 , output a random linear combination of the 0 -encryptions plus c_{1}.

This one turns out to be a crazy good idea.

Public-key Encryption

[Regev05]

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $k=\operatorname{poly}(n)$

$$
\left(\boldsymbol{c}_{\mathbf{0}}=\left(\boldsymbol{a}_{\mathbf{0}},\left\langle\boldsymbol{a}_{\mathbf{0}}, \boldsymbol{s}\right\rangle+e_{0}+\left\lfloor\frac{q}{2}\right\rfloor\right), \boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)\right)
$$

- Encrypting a bit m : pick k random bits r_{1}, \ldots, r_{k}

$$
\sum_{i=1}^{k} r_{i} \boldsymbol{c}_{\boldsymbol{i}}+m \cdot \boldsymbol{c}_{\mathbf{0}}
$$

Correctness: additive homomorphism
Security: decisional LWE + "Leftover Hash Lemma"

We saw:
 Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Practical Considerations

I want to encrypt to Bob. How do I know his public key?
Public-key Infrastructure: a directory of identities together with their public keys.

Needs to be "authenticated":
otherwise Eve could replace Bob's pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower than secret-key encryption.

1. We just showed how to encrypt bit-by-bit! Superduper inefficient.
2. Exponentiation takes $O\left(n^{2}\right)$ time as opposed to typically linear time for secret key encryption (AES).
3. The n itself is large for PKE (RSA: $n \geq 2048$) compared to SKE (AES: $n=128$).

Can solve problem 1 and minimize problems $2 \& 3$ using hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):
Pick a random key K (think 128 bits) for a secretkey encryption

Encrypt K with the PKE: PKE.Enc $(p k, K)$
Encrypt m with the SKE: $\operatorname{SKE} . \operatorname{Enc}(K, m)$

To decrypt: recover K using $s k$. Then using K, recover m

Next Lecture:

Digital Signatures

