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Administrivia

o Piazza Time-zone Survey & Office hours

o PS1 Released, due Sept 15



The Secure Communication Problem

Alice

Key k

o Alice and Bob have a common key k

Bob

Key k

Eve

o Algorithms (Gen, Enc, Dec)
o Correctness: Dec(k, Enc(k,m)) = m 
o Security: No Eve learns anything about m.

m



How to Define Security

Perfect secrecy: A Posteriori = A Priori  

Perfect indistinguishability:

The two definitions are equivalent!

For all 𝑚, 𝑐: Pr 𝑀 = 𝑚 𝐸 𝐾,𝑀 = 𝑐] = Pr[𝑀 = 𝑚]

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝐾,𝑚! = 𝑐] = Pr[𝐸 𝐾,𝑚" = 𝑐]



Is there a perfectly secure scheme? 

• One-time Pad: 𝐸 𝑘,𝑚 = 𝑘⨁𝑚

• However:  Keys are as long as Messages

• WORSE, Shannon’s theorem: 
for any perfectly secure scheme, |key|≥|message|.

Can we overcome Shannon’s conundrum?



Let’s first rewrite…
Perfect indistinguishability: as a Turing test

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝐾,𝑚! = 𝑐] = Pr[𝐸 𝐾,𝑚" = 𝑐]

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all EVE and all 𝑚!, 𝑚": Pr 𝑘 ← K; 𝑐 = 𝐸 𝑘,𝑚! : 𝐸𝑉𝐸 𝑐 = 0
= Pr 𝑘 ← K; 𝑐 = 𝐸 𝑘,𝑚" : 𝐸𝑉𝐸 𝑐 = 0

k← K k← K



Let’s first rewrite…
Perfect indistinguishability: as a Turing test

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝐾,𝑚! = 𝑐] = Pr[𝐸 𝐾,𝑚" = 𝑐]

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all EVE and all 𝑚!, 𝑚":
Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 = 1/2

k← K k← K



The Axiom of Modern Crypto

Feasible Computation = Probabilistic polynomial-time*

(p.p.t. = Probabilistic polynomial-time)

So, Alice and Bob are fixed p.p.t. algorithms.  
(e.g., run in time n^2)

Eve is any p.p.t. algorithm.  
(e.g., run in time n^4, or n^100, or n^10000,…)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)



Computational Indistinguishability

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a p.p.t. distinguisher.

For all p.p.t. EVE and all 𝑚!, 𝑚":
Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 = 1/2

k← K k← K

Still subject to Shannon’s impossibility!

(take 1)



Still subject to Shannon’s impossibility!

c
Set of messages 
consistent with c
= {D(k,c): all k} 

Messages n+1 bits 

𝑚!

𝑚"

ciphertexts 

Consider Eve that picks a random key k and 
outputs 0 if D(k,c) = 𝑚!
outputs 1 if D(k,c) = 𝑚"
and a random bit if neither holds.

w.p ≥ 𝟏/𝟐𝒏

w.p = 0

Bottomline: Pr[EVE succeeds] ≥ 1/2 + 1/2%



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Key property: Events that occur with negligible probability 
look to poly-time algorithms like they never occur. 



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)
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Question:  Let 𝝁 𝒏 = 𝟏/𝒏𝐥𝐨𝐠 𝒏. Is 𝝁 negligible?  



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Question:  Let 𝝁 𝒏 = 𝟏/𝒏𝟏𝟎𝟎 if n is prime and 
𝝁 𝒏 = 𝟏/𝟐𝒏 otherwise. Is 𝝁 negligible?  



Computational Indistinguishability

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all p.p.t. EVE, there is a negligible function 𝝁
s.t. for all 𝑚!, 𝑚":

Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 ≤
1
2
+ 𝜇(𝑛)

k← K k← K



Our First Crypto Tool: 
Pseudorandom Generators (PRG)



PRG Definition

A function 𝐺: {0,1}%→ {0,1}%+" is a pseudorandom generator 
if for no p.p.t. EVE can distinguish between 𝐺(𝑈%) and 𝑈%+".

𝑈%= uniform distribution on n bits.

𝑈%+"= uniform distribution on n+1 bits.



PRG Definition

A function 𝐺: {0,1}%→ {0,1}%+" is a pseudorandom generator 
if for for all p.p.t. EVE, there is a negligible function 𝜇 s.t.

|Pr 𝑦 ← 𝑈%+": 𝐸𝑉𝐸 𝑦 = 0 −
Pr[𝑥 ← 𝑈%; y = G x : EVE y = 0]|    ≤ 𝜇(n)

Question: What happens to this de_inition if EVE is unbounded?



PRG ⟹ Overcoming Shannon’s Conundrum

𝐺𝑒𝑛 1% : Generate a random 𝑛-bit key k. 

𝐸𝑛𝑐 𝑘,𝑚 where 𝑚 is an (𝒏 + 𝟏)-bit message: 

Expand k into a (n+1)-bit pseudorandom string k, = 𝐺(k)

One-time pad with k,:  ciphertext is  𝑘′⨁𝑚

𝐷𝑒𝑐 𝑘, 𝑐 outputs G(𝑘)⨁𝑐

(or, How to Encrypt n+1 bits using an n-bit key)

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬:
𝐷𝑒𝑐 𝑘, 𝑐 outputs G 𝑘 ⨁𝑐 = G 𝑘 ⨁𝐺 𝑘 ⨁m = m



PRG ⟹ Overcoming Shannon’s Conundrum

Suppose for contradiction that there is a p.p.t. EVE, a polynomial 
function 𝑝 and 𝑚!, 𝑚" 𝑠. 𝑡.

Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 ≥
1
2 + 1/𝑝(𝑛)

Security: by contradiction.



PRG ⟹ Overcoming Shannon’s Conundrum

Suppose for contradiction that there is a p.p.t. EVE, a polynomial 
function 𝑝 and 𝑚!, 𝑚" 𝑠. 𝑡.

ρ = Pr 𝑘 ← {0,1}% ; 𝑏 ← 0,1 ; 𝑐 = 𝐺(𝑘)⨁𝑚#: 𝐸𝑉𝐸 𝑐 = 𝑏

≥
1
2
+ 1/𝑝(𝑛)

Security: by contradiction.

Let ρ, = Pr 𝑘′ ← 0,1 %+" ; 𝑏 ← 0,1 ; 𝑐 = 𝑘′⨁𝑚#: 𝐸𝑉𝐸 𝑐 = 𝑏
= "

-

This will give us a distinguisher EVE’ for G, contradicting the 
assumption that G is a pseudorandom generator. QED.



PRG ⟹ Overcoming Shannon’s Conundrum

Get as input a string y, run EVE(y⨁𝑚#) for a random b, and let EVE’s 
output be b’.  Output “PRG” if b=b’ and “RANDOM” otherwise.

Distinguisher EVE’ for G.

Pr 𝐸𝑉𝐸,𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚]
= ρ ≥ "

-+ 1/𝑝(𝑛)

Pr 𝐸𝑉𝐸,𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚] = ρ, =
1
2

Therefore, Pr 𝐸𝑉𝐸,𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚] −
Pr 𝐸𝑉𝐸,𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚]

≥ 1/𝑝(𝑛)



PRG ⟹ Overcoming Shannon’s Conundrum

𝑸𝟏: Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt 𝑛"!! message bits with 𝑛 key bits?

(Length extension: If there is a PRG  that stretches by one bit, 
there is one that stretches by polynomially many bits) 



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael
(now the Advanced 
Encryption Standard)



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 



Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures



Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

A PRG Candidate from the hardness of Subset-sum:

G(𝑎", … , 𝑎%, 𝑥", … , 𝑥%) = (𝑎", … , 𝑎%,∑./"% 𝑥.𝑎. mod 2%+")

where 𝑎. are random (n+1)-bit numbers, and 𝑥.
are random bits.

Beautiful Function:

If G is a one-way function, then G is a PRG  (Pset 1).

If lattice problems are hard on the worst-case, G is a 
PRG (6.876 Fall18 / CS294-168 Spring20)



PRG ⟹ Overcoming Shannon’s Conundrum

𝑸𝟏: Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt 𝑛"!! message bits with 𝑛 key bits?

(Length extension: If there is a PRG  that stretches by one bit, 
there is one that stretches by polynomially many bits) 



Length extension: One bit to Many bits

Let G: {0,1}% → {0,1}%+" be a pseudorandom generator.

Goal: use G to generate many pseudorandom bits. 



Let G: {0,1}% → {0,1}%+" be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits



Let G: {0,1}% → {0,1}%+" be a pseudorandom generator.

G
𝑥! 𝑥" = 𝐺(𝑥!)

Construction of G’(𝑥!)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits



Let G: {0,1}% → {0,1}%+" be a pseudorandom generator.

G
𝑥! 𝑥"

Construction of G’(𝑥!)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits

𝑏"𝑦"



Let G: {0,1}% → {0,1}%+" be a pseudorandom generator.

G
𝑥!

𝑏"

Construction of G’(𝑥!)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits

𝑦"
G

𝑦-

𝑏-

G
𝑦01"

𝑏01"

…

Output 𝑏" 𝑏- 𝑏2 𝑏3 𝑏4 …𝑦0.

Also called a stream cipher by the applied people.

G

𝑏0 𝑦0



Are we all set with encryption?

To encrypt the i-th bit, use the i-th pseudorandom bit.

1. Runtime  (an efficiency issue)  

2. Need to remember state (a security issue)

In a couple of weeks, Shafi will solve both 
problems in one shot.

Two problems:



Next Lecture:

Define one-way functions (OWF), 

Hardcore bits (HCB), 

Goldreich-Levin Theorem: every OWF has a HCB.

Show that OWF ⇒ PRG  
(how to construct a PRG from any OWF*)


